• Tidak ada hasil yang ditemukan

Deformation of Concrete

N/A
N/A
Protected

Academic year: 2024

Membagikan "Deformation of Concrete"

Copied!
39
0
0

Teks penuh

(1)

Deformation of Concrete

Fall 2010

Dept of Architecture

Seoul National University

(2)

7 th week

Special cases of uncracked

sections

(3)

Chap. 3. Special Cases of uncracked

sections and calculation of displacement

1. Introduction 2. Prestress loss

3. Effect of presence of non-prestressed steel 4. Reinforced concrete section w/o prestress 5. Approximate equations

6. Graphs

7. Multi-stage prestressing

8. Displacement

(4)

3.1 introduction

1. One type of concrete

2. Reinforcing bars and prestressing steel

are located in one layer

(5)
(6)

3.2 prestress loss

Total reinforcement area

st ns ps

A  A  A

Modulus of elasticity

st ns ps

E  E  E

(7)

c ns ps

P P P

    

ps ps ps

P A 

  

Equilibrium

ns ns ns

P A 

  

Compatibility condition

ns s

E

st

  

  

Creep + Shrinkage + due to

 P

c

   

     

2

0 0

0

0 0

, 1

, ,

ps pr cst

ns c c st

cs

st st c c c c

t t t P P y

E E E t t t E t t A I

   

      

  

      

 

(8)

       

 

0 0 0 0

2 2 0

, / ,

1 1

,

cst st st c cs st st pr ps

c

st st st

c c

t t t A E E t t t E A A

P A E y

A E t t r

          

  

 

   

 

pr r pr

  

  

(9)

Stress change in concrete

c c st

c c

P P y

A I y

  

  

1

2

c st

c

c c

P y y

A r

   

    

 

Since 2

c c c

I  A r

o

ns

E

st

y

st

  

    

o

ps

E

st

y

st pr

   

      

3.2.1

  and  

       

o 0 0 o 0

0

, ,

,

c cs

c c

t t t t t P

E t t A

    

   

   

0 0

 

0

, ,

c st

c c

t t t P y

E t t I

   

  

(10)

,

115 MPa 1700 MPa

ps

f

ptk

  

  

3 4

2

2 2

0

42.588*10 m 0.357 m

0.1193 m 1400 kN

390 kN-m 30 GPa

c c c

c

I A r P M E t

Intrinsic relaxation

Characteristic tensile strength

(11)

 

1 o

2

1 1

ref ref st

A B N I B N

M Py

B I M B A

E E AI B

        

 

           

   

 

3 4

2

2 2

0

42.588*10 m 0.357 m

0.1193 m 1400 kN

390 kN-m 30 GPa

c c c

c

I A r P M E t

 

o

2 0

1 1400

390 1400 * 0.454

t ref

I B

B A

E AI B

   

   

 

 

0 6.533 MPa

cps t

   Strain distribution right after pressing

(12)

       

 

0 0 0 0

2 2 0

, / ,

1 1

,

cst st st c cs st st pr ps

c

st st st

c c

t t t A E E t t t E A A

P A E y

A E t t r

          

  

 

   

 

Assume the relaxation factor

r

 0.7

0.7( 115) 80.5

pr r pr

  

 

 

, 0 8.824 GPa E t tc

 

t t, 0 3.0

 

2

2 2

0

0.357 m 0.1193 m

30 GPa

c c

c

A r E t

(13)

In the absence of non-prestressed steel

c ps

P P

  

3 6

242.7 *10

Pa=216.7MPa 1120 *10

ps c

ps

ps ps

P P

A A

  

     

To find an improved estimate the relaxation reduction factor

Relaxation reduction coefficient

r

pr r pr

  

  

Reduced relaxation

(14)

0

216.7 115

0.081 1250

ps pr

p

 

     

          

r is a function of

 and 

p0 ptk

1250 0.706 1770

f

    

r

0.8

 

0.8( 115) 92 MPa

pr r pr

  

  

   

(15)

       

 

0 0 0 0

2 2 0

, / ,

1 1

,

cst st st c cs st st pr ps

c

st st st

c c

t t t A E E t t t E A A

P

A E y

A E t t r

      

  

 

   

 

ps c

ps

ps ps

P P

A A

  

   

1

2

c st

c

c c

P y y

A r

   

    

 

       

o 0 0 o 0

0

, ,

,

c cs

c c

t t t t t P

E t t A

    

   

   

0 0

 

0

, ,

c st

c c

t t t P y

E t t I

   

  

(16)
(17)

3.4 RC w/o prestress

(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)

3.5 Approximate equation

(28)

3.6 Graph

(29)
(30)
(31)
(32)

3.8 Displacement

• 3.8.1 unit load theory

Real Strain and Curvature Distribution

Virtual Axial and Moment Distribution due to unit virtual force at coordinate j

O

N

uj

M

uj

j

1 

O

N dx

uj

 M dx

uj

     

Displacement System Equilibrium System

(33)

3.8.2 Elastic weight: Conjugate Beam

 Load 

Shear

Moment

(34)

1 2

3 4

 

1

1

S  2 s b a 

 

3

1

S  2 s b c  S

2

 sa

S

4

 sc

1 2

1 3

1 3

1 2 1

2 2 3

2 3

1 2

1 1 2

1 1

2 3

Q  S  S

3 3 4

1 1

2 3

Q  S  S

2 1 2 3 4

1 2 1 2

2 3 2 3

Q  S  S  S  S

(35)

2

1 0

1

s x

Q Ax Bx C dx

s

 

 

2

2

3 1

s

s

Q Ax Bx C x dx

s

2

2

2

2 0

2

s s

s

x x

Q Ax Bx C dx Ax Bx C dx

s s

 

   

 

 

y  Ax

2

 Bx C 

2

2 3 3

, ,

2 2

a b c a b c

A B C a

s s

    

  

(36)

Assume parabolic variation of strain at O and curvature.

Note 2s=l

1 2 3

12

3

7 / 48 / 8 / 48

, , / 24 5 /12 / 24

/ 48 / 24 7 / 48

l l l

Q Q Q l l l

l l l

    

  

      

D

1

D

2

D

4

D

3

Apply a unit moment at the left support

 1

 1/ 2

 

1

2 2

3

1 0, 0.5, 1

Q

D Q

Q

   

     

   

Moment distribution by a unit load

(37)

D

1

D

2

D

4

D

3

Apply a unit moment at the left support

1 1/ 2

3

 

12

3

1 1, 0.5, 0 Q

D Q

Q

   

   

   

Apply a unit load at the center

1 4l

1

4 2

3

1 1, , 0

4 l Q

D Q

Q

   

 

         

 

1 1

2 2 2

3 3

7 / 48 1/ 8 1/ 48

1 8 8

0, , 1 1/ 24 5 /12 1/ 24 0, ,

2 24 48

1/ 48 1/ 8 7 / 48

D l l

    

   

          

(38)

 

1 1

1 2 2

3 3

7 / 48 1/ 8 1/ 48

8 16 8

1,1,1 1/ 24 5 /12 1/ 24 , ,

48 24 48 1/ 48 1/ 8 7 / 48

O O

O O

O O

D l l

 

 

 

      

     

 

                        

Axial deformation

O

Axial force distribution due to a unit load

1.0

(39)

Referensi

Dokumen terkait

Originally, the deformation-wear transition map was intended to graphically distinguish between the plastic deformation and impact wear of DLC coating, as well as to predict

A monolithic exterior beam-column joints without plastic-hinges on the beam is designed as a model structure of the Special Moment brace using a partially prestressed concrete

Comparison of some plate theories Model Theory Number of unknown Shear stress Analysis FGM plates CPT Classical plate theory 3 No Yes FSDT First shear deformation

Development of Concrete Boat by Using Lightweight Concrete อัศวิน คุณาแจมจรัส1 รุงโรจน จักภิระ2 และ สนธยา ทองอรุณศรี3* 1,2,3อาจารย สาขาวิศวกรรมโยธาและสิ่งแวดลอม คณะวิศวกรรมศาสตร

Slump of fresh concrete, porosity and compressive strength of hardened concrete are study parameters which are used to investigate concrete characteristic which use ternary cementitious

Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation Duc Tam Ho1,4, Youngtae Im2, Soon-Yong Kwon3,4, Youn Young Earmme2 & Sung Youb Kim1,4 It is

Reduced CaOH2 compounds in concrete can minimize the formation of gypsum compounds which area precursor for ettringite compounds, and these ettringite compounds play a role to reduce

Concrete pouring and pumping Page 1 of 2 General requirements Exposed skin that contacts wet concrete can become extremely irritated.. In some cases, the irritation is serious enough