Deformation of Concrete
Fall 2010
Dept of Architecture
Seoul National University
7 th week
Special cases of uncracked
sections
Chap. 3. Special Cases of uncracked
sections and calculation of displacement
1. Introduction 2. Prestress loss
3. Effect of presence of non-prestressed steel 4. Reinforced concrete section w/o prestress 5. Approximate equations
6. Graphs
7. Multi-stage prestressing
8. Displacement
3.1 introduction
1. One type of concrete
2. Reinforcing bars and prestressing steel
are located in one layer
3.2 prestress loss
Total reinforcement area
st ns ps
A A A
Modulus of elasticity
st ns ps
E E E
c ns ps
P P P
ps ps ps
P A
Equilibrium
ns ns ns
P A
Compatibility condition
ns s
E
st
Creep + Shrinkage + due to P
c
2
0 0
0
0 0
, 1
, ,
ps pr cst
ns c c st
cs
st st c c c c
t t t P P y
E E E t t t E t t A I
0 0 0 0
2 2 0
, / ,
1 1
,
cst st st c cs st st pr ps
c
st st st
c c
t t t A E E t t t E A A
P A E y
A E t t r
pr r pr
Stress change in concrete
c c st
c c
P P y
A I y
1
2c st
c
c c
P y y
A r
Since 2
c c c
I A r
o
ns
E
sty
st
o
ps
E
sty
st pr
3.2.1
and
o 0 0 o 0
0
, ,
,
c cs
c c
t t t t t P
E t t A
0 0
0, ,
c st
c c
t t t P y
E t t I
,
115 MPa 1700 MPa
ps
f
ptk
3 4
2
2 2
0
42.588*10 m 0.357 m
0.1193 m 1400 kN
390 kN-m 30 GPa
c c c
c
I A r P M E t
Intrinsic relaxation
Characteristic tensile strength
1 o
2
1 1
ref ref st
A B N I B N
M Py
B I M B A
E E AI B
3 4
2
2 2
0
42.588*10 m 0.357 m
0.1193 m 1400 kN
390 kN-m 30 GPa
c c c
c
I A r P M E t
o
2 0
1 1400
390 1400 * 0.454
t ref
I B
B A
E AI B
0 6.533 MPacps t
Strain distribution right after pressing
0 0 0 0
2 2 0
, / ,
1 1
,
cst st st c cs st st pr ps
c
st st st
c c
t t t A E E t t t E A A
P A E y
A E t t r
Assume the relaxation factor
r 0.7
0.7( 115) 80.5
pr r pr
, 0 8.824 GPa E t tc
t t, 0 3.0
2
2 2
0
0.357 m 0.1193 m
30 GPa
c c
c
A r E t
In the absence of non-prestressed steel
c ps
P P
3 6
242.7 *10
Pa=216.7MPa 1120 *10
ps c
ps
ps ps
P P
A A
To find an improved estimate the relaxation reduction factor
Relaxation reduction coefficient
rpr r pr
Reduced relaxation
0
216.7 115
0.081 1250
ps pr
p
r is a function of and
p0 ptk
1250 0.706 1770
f
r
0.8
0.8( 115) 92 MPa
pr r pr
0 0 0 0
2 2 0
, / ,
1 1
,
cst st st c cs st st pr ps
c
st st st
c c
t t t A E E t t t E A A
P
A E y
A E t t r
ps c
ps
ps ps
P P
A A
1
2c st
c
c c
P y y
A r
o 0 0 o 0
0
, ,
,
c cs
c c
t t t t t P
E t t A
0 0
0, ,
c st
c c
t t t P y
E t t I
3.4 RC w/o prestress
3.5 Approximate equation
3.6 Graph
3.8 Displacement
• 3.8.1 unit load theory
Real Strain and Curvature Distribution
Virtual Axial and Moment Distribution due to unit virtual force at coordinate j
O
N
ujM
ujj
1
ON dx
uj M dx
uj
Displacement System Equilibrium System
3.8.2 Elastic weight: Conjugate Beam
Load
Shear
Moment
1 2
3 4
1
1
S 2 s b a
3
1
S 2 s b c S
2 sa
S
4 sc
1 2
1 3
1 3
1 2 1
2 2 3
2 3
1 2
1 1 2
1 1
2 3
Q S S
3 3 4
1 1
2 3
Q S S
2 1 2 3 4
1 2 1 2
2 3 2 3
Q S S S S
2
1 0
1
s x
Q Ax Bx C dx
s
2
2
3 1
s
s
Q Ax Bx C x dx
s
2
2
2
2 0
2
s s
s
x x
Q Ax Bx C dx Ax Bx C dx
s s
y Ax
2 Bx C
2
2 3 3
, ,
2 2
a b c a b c
A B C a
s s
Assume parabolic variation of strain at O and curvature.
Note 2s=l
1 2 3
123
7 / 48 / 8 / 48
, , / 24 5 /12 / 24
/ 48 / 24 7 / 48
l l l
Q Q Q l l l
l l l
D
1D
2D
4D
3Apply a unit moment at the left support
1
1/ 2
12 2
3
1 0, 0.5, 1
Q
D Q
Q
Moment distribution by a unit load
D
1D
2D
4D
3Apply a unit moment at the left support
1 1/ 2
3
123
1 1, 0.5, 0 Q
D Q
Q
Apply a unit load at the center
1 4l
1
4 2
3
1 1, , 0
4 l Q
D Q
Q
1 1
2 2 2
3 3
7 / 48 1/ 8 1/ 48
1 8 8
0, , 1 1/ 24 5 /12 1/ 24 0, ,
2 24 48
1/ 48 1/ 8 7 / 48
D l l
1 11 2 2
3 3
7 / 48 1/ 8 1/ 48
8 16 8
1,1,1 1/ 24 5 /12 1/ 24 , ,
48 24 48 1/ 48 1/ 8 7 / 48
O O
O O
O O
D l l
Axial deformation
OAxial force distribution due to a unit load
1.0