• Tidak ada hasil yang ditemukan

Development of Electrocatalysts for Hydrogen Evolution and Oxygen Reduction Reaction.

N/A
N/A
Protected

Academic year: 2023

Membagikan "Development of Electrocatalysts for Hydrogen Evolution and Oxygen Reduction Reaction."

Copied!
50
0
0

Teks penuh

Lower concentration of Pt was loaded on the WC/CNT support and they showed comparable activity to Pt/C catalyst in acid solution. The high activity and stability of Pt/WC/CNT is attributed to increased electronic metal-support interaction.

Cobalt Phosphide as a Hydrogen Evolution Reaction catalysts

Introduction

Preparation of CoP/CNT: To prepare cobalt phosphide on carbon nanotubes (CNT), NaBH4 purified CNT was added before the reduction step. Preparation of CoP/GR and CoP/CNT-GR: First, I synthesized graphene oxide (GO) according to Hummer's method.

Results and discussion

The morphology of CoP and CoP/CNT were examined by SEM images shown in Figure 1-2. CNT and GR support increased HER activity and CoP/CNT shows the highest activity. CoP/GR shows less activity than CoP/CNT due to incomplete reduction of GO during chemical and thermal reduction steps due to low temperature.

In all electrolytes, CoP/CNT shows better activity than CoP electrocatalysts, although it is lower than Pt/C. Finally, the Tafel plot in Figure 1-9 shows that the CoP/CNT catalyst showed a smaller Tafel slope than CoP in all electrolytes. Both CoP and CoP/CNT catalysts show better activity in acidic solution with smaller Tafel slope, generation overvoltage of 10 mA/cm2 and onset potential than those in neutral and basic electrolytes.

CoP/CNT exhibits superior activity as an onset potential of 24 mV, a Tafel slope of 51 mV and the overpotential required to drive 10 mA cm-2 is 93 mV. High resolution TEM images of (a) CoP, (b) CoP/CNT and (c) enlarged CoP particles in CoP/CNT. In summary, CoP/CNT was successfully synthesized by low-temperature phosphidation of cobalt metal precursor and phosphate.

This CoP/CNT exhibits a superior HER performance in acidic electrolyte with an onset potential of 24 mV and a Tafel slope of 51 mV dec-1.

Figure  1-1.  XRD  patterns  of  (a)Reduced-Co  and  CoP/CNT,  (b)  CoP  and  CoP/CNT  after  H 2 SO 4
Figure 1-1. XRD patterns of (a)Reduced-Co and CoP/CNT, (b) CoP and CoP/CNT after H 2 SO 4

Tungsten Carbide Catalysts as an Oxygen Reduction Reaction

Introduction

After mixing for 24 hours to polymerize aniline to polyaniline and to mix uniformly, the solution was washed with deionized water until the pH of the solution was 7. Preparation of catalyst ink: Catalyst ink was prepared by 5 mg of catalyst, 1 ml of ethanol, and 25 µl of 5 wt% Nafion solution. The Pt/C ink was prepared by dispersing 5mg of catalyst, 5ml of ethanol, 1.5ml of IPA and 25 µl of Nafion solution.

The ink was dried by increasing and maintaining the rotation speed at 700 rpm for 20 min.[20].

Results and discussion

The electrocatalytic activity of the prepared WC/CNT electrocatalysts was measured by rotating disk electrode (RDE) measurement. The 200 mg WC/CNT sample shows the best ORR activity with an onset potential of about 0.89 eV and more positive half-wave potential (E1/2) than the other catalysts. Thus, among these three catalysts, the 200 mg WC/CNT sample was selected as the platinum catalyst support.

However, in the XRD spectra of 3 wt% Pt/WC/CNT, Pt peaks are not identified due to the lower loading amount. Inductively coupled plasma optical emission spectrometry (ICP-OES) was performed to confirm the amount of Pt deposited on WC/CNT. The LSV curve demonstrates the high activities of Pt/WC/CNT catalysts in acidic solution.

As shown in figure 2-10, Pt/WC/CNT catalysts exhibit small E1/2 change as 10 mV for 10 wt% catalysts and 3 wt% catalyst shows no difference between before and after 5000 cycles test. This result indicates that Pt/WC/CNT catalysts possess excellent stability in the acidic medium. Lower concentration of Pt (3 and 10 wt%) were loaded on the WC/CNT support and they showed comparable activity to commercial 20 wt% Pt/C in acid solution.

Moreover, Pt/WC/CNT catalysts showed excellent stability compared to Pt/C, more than 5000 cycles of cyclic voltammetry test.

Figure 2-1. XRD patterns of WC/CNT (0.05, 0.1, 0.2 and 0.4 g) and WC/C.
Figure 2-1. XRD patterns of WC/CNT (0.05, 0.1, 0.2 and 0.4 g) and WC/C.

짧고 긴 석사과정 동안 저에게 도움을 주신 많은 분들께 감사의 말씀을 전하고 싶습니다. 우선, 학부 시절 학부 연구원으로 연구에 참여할 수 있는 기회를 주시고, 석사 과정 동안 연구원으로 성장할 수 있도록 지도해주신 이재성 교수님께 진심으로 감사드립니다. . 그리고 하루의 대부분을 함께 보내주신 ECOCAT 식구들에게도 감사의 말씀을 전하고 싶습니다.

처음 연구실에 들어왔을 때 부족한 점을 챙겨주시고 많은 가르침과 조언을 주시고 챙겨주시고 챙겨주신 승훈오빠. 토론으로 많은 조언도 해주시고, 랩 리더로서 멋진 모습도 보여주신 훈민오빠. 항상 웃으면서 잘 지내냐고 물어보셨어요. 이야기 해주신 주훈오빠, 믿음직한 선배로서 조언도 많이 해주시고, 고민이 많을 때 대화로 챙겨주신 윤정언니, 연구에 대해 의논도 해주시고 조언도 해주신 진현오빠 정말 친절한 말, 편하게 농담도 해주시고 연구도 열심히 하셨습니다. 닮고 싶었던 요한오빠, 잘 챙겨주는 규식오빠. 취업을 준비하면서 힘든 시기에 많은 이야기도 나누고 친절하게 이야기도 해주고, 도와줄 사람이 없을 때 가장 많이 챙겨주고, 힘들 때 아낌없이 도와준 연료전지 선배 윤빈오빠. 연구토론을 해주신 민희오빠, 재치있는 농담으로 기분을 좋게 해주시고 항상 밝은 모습을 보여주시는 병준오빠, 연구실에 들어오기 전부터 여자 후배들을 세심하게 챙겨주신 지혜언니 등등 연구대상 우영오빠, 긍정적인 면이 좋은 경웅오빠, 연구실 엄마처럼 듬직하고 간식과 과일을 챙겨주는 효은오빠, 항상 반 친구들을 먼저 챙기고 어려운 일도 먼저 처리하는 진호오빠, 정훈오빠 항상 열심히 하는 모습이 보기 좋은 영경이, 연구실에서 가장 오래 함께하고, 시간가는 줄 모르고 이야기 나누기 편했던 광영이, 늘 옆에 앉아 격려해주고 행복하게 해준 영경이. 어려울 때 나에게 힘이 되어주고, 오랜 친구처럼 편안하고 배려해줬다. 내 이야기를 잘 들어줘서 고마운 우진이. 내 장난도 받아주고 특유의 귀여움으로 즐겁게 해준 은협. 그리고 묵묵히 어려운 일을 맡아 듬직하고 많은 도움을 준 은철이. 우리는 연료전지를 함께 연구하면서 많은 감정을 공유했습니다. 민경씨와 응원해주신 모든 분들께 진심으로 감사드립니다. 그리고 누구보다 저를 응원해주고 대학생활을 행복하게 해준 친구들에게 고마운 마음을 전하고 싶습니다. 대학원 시절 가장 가까운 사람이자 모든 감정을 공유해 주었고, 믿고 의지할 수 있는 든든한 힘이 되어준 동현오빠에게 이루 말할 수 없이 감사합니다.

마지막으로 제가 세상에서 가장 사랑하는 가족, 어머니, 아버지, 남동생 수빈님께 감사하다는 말씀 전하고 싶습니다. 항상 제 의견을 존중해 주시는 아버지 어머니께서는 저를 믿어주시고 묵묵히 응원해 주시고 계십니다.

Gambar

Figure  1-1.  XRD  patterns  of  (a)Reduced-Co  and  CoP/CNT,  (b)  CoP  and  CoP/CNT  after  H 2 SO 4
Figure 1-2. SEM images of (a) CoP, and (b) CoP/CNT
Figure 1-3. High resolution TEM images of (a) CoP, (b)CoP/CNT and (c) magnified CoP particles in  CoP/CNT
Figure 1-4. XPS spectra of the (a) Co 2p and (b) P 2p region of the CoP catalysts.
+7

Referensi

Dokumen terkait

MATERIALS AND METHODS Alumina catalyst support was loaded with 40% of Zinc with this following technique: Catalyst Preparation by Wet Impregnation Method A precursor solution was