FF usion Reactor Technology I usion Reactor Technology I
FF usion Reactor Technology I usion Reactor Technology I
(459.760, 3 Credits) (459.760, 3 Credits)
P f D Y S N Prof. Dr. Yong-Su Na (32-206, Tel. 880-7204)
( , )
Contents Contents
Week 1 Magnetic Confinement
Contents Contents
Week 1. Magnetic Confinement
Week 2-3. Fusion Reactor Energetics
Week 4 Basic Tokamak Plasma Parameters Week 4. Basic Tokamak Plasma Parameters Week 5. Plasma Heating and Confinement Week 6 Plasma Equilibrium
Week 6. Plasma Equilibrium
Week 8. Particle Trapping in Magnetic Fields Week 9 10 Plasma Transport
Week 9-10. Plasma Transport
Week 11. Energy Losses from Tokamaks Week 12 The L and H modes
Week 12. The L- and H-modes Week 13-14. Tokamak Operation
2
Contents Contents
Week 1 Magnetic Confinement
Contents Contents
Week 1. Magnetic Confinement
Week 2-3. Fusion Reactor Energetics
Week 4 Basic Tokamak Plasma Parameters Week 4. Basic Tokamak Plasma Parameters Week 5. Plasma Heating and Confinement Week 6 Plasma Equilibrium
Week 6. Plasma Equilibrium
Week 8. Particle Trapping in Magnetic Fields Week 9 10 Plasma Transport
Week 9-10. Plasma Transport
Week 11. Energy Losses from Tokamaks Week 12 The L and H modes
Week 12. The L- and H-modes Week 13-14. Tokamak Operation
Fusion
Fusion Reactor Reactor EnergeticsEnergetics Fusion
Fusion Reactor Reactor EnergeticsEnergetics
• Fundamental requirement of a fusion reactor system
* 0
*
* = out − in >
net E E
E
∫ ∫
∫⎜⎛ ⎟⎞ τ ⎜⎛ ⎟⎞ τ ⎜⎛ ⎟⎞
τ
dE d dE d
dE d
* 0
*
* ∫ ∫
∫⎜⎝⎛ ⎟⎠⎞ = ⎜⎝⎛ ⎟⎠⎞ − ⎜⎝⎛ ⎟⎠⎞ >
o out o in
o net
dt dt dt dt
dt dt 0
• Fusion Plasma Energy Balance
∫
∫b dEdtth dt =Eaux +Efu −En −Erad −τb Eth dt
τ
τ*
*
*
*
*
*
*
• Fusion Plasma Energy Balance
Time variations of power considered
∫
∫
o E
o dt τ
*
*
in in
aux E
E =η E*
power considered
c fu
n f
E
E* =1− E*fu − En* = fcE*fu
*
*
fu
fu E
Q = E = Plasma Q-value
4
*
*
in in aux
p E E
Q η Plasma Q-value
Fusion
Fusion Reactor Reactor EnergeticsEnergetics Fusion
Fusion Reactor Reactor EnergeticsEnergetics
∫
∫b dE ⎜⎛ ⎟⎞ τb E
τ * *
1 ∫
∫ ⎟⎟ − −
⎠
⎞
⎜⎜
⎝
⎛ +
=
o E
th rad
fu p
c o
th E dt
E Q E
f dt dt
dE
τ*
*
1 *
τb
) 0 ( )
( *
*
*
th b
th o
thdt E E
dE
b = −
∫ τ
b *
τ
o E
th rad
fu
f
E dt E
E
b
1
*
*
*
*
+ +
= τ∫ τ
If, steady state
p
c Q
f +
• if Q →∞ the fusion energy delivered to the plasma
• if, Qp→∞, the fusion energy delivered to the plasma via the charged reaction products is seen to balance the total energy loss from the plasma
Fusion
Fusion Reactor Reactor EnergeticsEnergetics Fusion
Fusion Reactor Reactor EnergeticsEnergetics
⎤
⎡
b b b
t
τ τ τ E
) (G Considering a D-T plasma with Qp→∞,
∫ ∫ ∫ ∫
∫ ⎥⎥
⎦
⎤
⎢⎢
⎣
⎡ + +
=
b b b
o o E
th o
net cyc br
V dt
dt V
dt
c dt
t r
t r dt E
P P
r d dt
Q t r R r d
f τ ( , )
) , ) (
( )
,
( 3
3
, G G
kT Z
N N A
P 2 − ⎜⎛ m J ⎟⎞
A
3
10 38
6
1 Why effect of ions
e e
i br
br A N N Z kT
P = 2 ≈ × ⎜⎜⎝ ⎟⎟⎠
s Abr 1.6 10 38 eV
eψ
e cyc net
cyc A N B kT
P = 2 Acyc ≈ 6.3×10−20(JeV−1T−2s−1)
Why effect of ions not included in Pbr and Pcyc?
Homework
) (
) ( )
, (
) , (
*
* 3
t t E t
r t r r E
d
E th E
th
V∫ τ GG =τ Volume integrated
e e i
i e
e net cyc e
e i br i
i dt dt c
kT N kT T N
N P
T N N P T
N P
f ( )
2 ) 3 , ( )
, , ( )
,
, (
+ + +
=
In a steady state, homogeneous plasma
E
y 2 τ
,
e i j kT N
Eth j j j , , 2
3
. = =
complex interrelation between the plasma density and its
6
• complex interrelation between the plasma density and its temperature as required for ignition
Fusion
Fusion Reactor Reactor EnergeticsEnergetics Fusion
Fusion Reactor Reactor EnergeticsEnergetics
• Lawson criterion
recoverable energy from a fusion reactor must exceed the energy supplied
d l
*
*
*
* E E E
E =η +η +η
during a representative time interval
– reactor criterion: energy viability of the entire plant
th th rad
rad fu
fu
out E E E
E =η +η +η
*
*
*
th rad
in
inE = E + E
η
in th rad
th th rad
rad fu
fu
E E E
E
E η η η
η * + * + * > * + * ηin
*
*
*
*
* )
( fu rad th rad th
out
inη E + E + E > E + E
η
th rad fu
E l E
l
l l
out = , = , ,
∑
∑η
η Average conversion
efficiency
El
∑ efficiency
Fusion
Fusion Reactor Reactor EnergeticsEnergetics Fusion
Fusion Reactor Reactor EnergeticsEnergetics
∫
= E l
l P r d r
E* τ * (G) 3 Global energy terms
V
) 3
( )
3
( 3
3r P P NT d r P NT
d + + >∫ +
∫ τ τ τ
η η
Assuming, Bremsstrahlung only
) 3
( )
3
( *P *P NT d r *P NT
r
d E br
V V
br E fu
E out
inη ∫ τ +τ + >∫ τ +
η
NT T
N T
N r
Eth ( i i e e) 3 2
) 3
(G = + =
e e i
i
th ( )
) 2 (
⎞
⎛
Assuming, homogeneity throughout the plasma volume V
NT T
N A NT
T N
A Q
N v N
E br
E br
E ab ab ab
b a out
in 3 3
1 *
2
* 2
* ⎟⎟⎠ > +
⎜⎜ ⎞
⎝
⎛ < > + +
+ σ τ τ τ
η δ η
Kronecker d introduced to account for the case of indistinguishable reactants
Q T v
N T
b b
out in
E ( )
) 1
( 3
* σ η η
τ > < > −
Kronecker-d introduced to account for the case of indistinguishable reactants
3 /
≈1
out inη η
8
T Q A
T v
out br in ab
ab ab
out
in (1 )
) 1
( 4
)
( η η
δ η σ
η − −
+
>
<
Fusion
Fusion Reactor Reactor EnergeticsEnergetics Fusion
Fusion Reactor Reactor EnergeticsEnergetics
• Ignition
Energy viability of the fusion plasma
NT P
P P
fc,dt dtτE* ≥ ( br + cycnet)τE* +3 Energy viability of the fusion plasma
N
T B T A
T A Q v
f N T
cyc dt br
dt dt dt
E σ ψ
τ * 2
) ( ) 3
(
−
> −
≥ <
No energy conversion efficiency contained
T N A
Q
fc,dt dt br
4
• Break-evenBreak even
The total fusion energy production amounts to a magnitude equal to the effective plasma energy input.
* 1
*
=
= p
in in
fu Q
E E η
Fusion
Fusion Reactor Reactor EnergeticsEnergetics
What is required to light a fire in a
Fusion
Fusion Reactor Reactor EnergeticsEnergetics
What is required to light a fire in a stove?
Fuel: D, T
n
Amount/density:
Heat insulation:
T
Deuterium
Ignition temperature:
≥ ?
⋅
⋅ T τ
n
Tritium
≥ ?
⋅
⋅ T τ
n
Criterion requiredLawson Criterion Criterion
10
Fusion
Fusion Reactor Reactor EnergeticsEnergetics Fusion
Fusion Reactor Reactor EnergeticsEnergetics
S h f G l d
• A.A. Harms, K.F. Schoepf, G.H. Miley, D.R. Kingdon,
„Principles of Fusion Energy“, Ch. 8 Homework: Problems 8.6
Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research
Q=1 14 Q=1.14
Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research
Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research
Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research
• Present machines produce significant fusion power:
- TFTR (USA) ~10 MW in 1994 TFTR (USA) ~10 MW in 1994
Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research
• DT-Experiments only in - JET
TFTR - TFTR
• with world records in JET:
- Pfusion = 16 MW - Q = 0.65
Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research Status of the Tokamak Research
• Progress in fusion can be compared with the computingProgress in fusion can be compared with the computing