FF usion Reactor Technology I usion Reactor Technology I
FF usion Reactor Technology I usion Reactor Technology I
(459.760, 3 Credits) (459.760, 3 Credits)
P f D Y S N Prof. Dr. Yong-Su Na (32-206, Tel. 880-7204)
( , )
Contents Contents
Week 1 Magnetic Confinement
Contents Contents
Week 1. Magnetic Confinement
Week 2-3. Fusion Reactor Energetics
Week 4 Basic Tokamak Plasma Parameters Week 4. Basic Tokamak Plasma Parameters Week 5. Plasma Heating and Confinement Week 6 Plasma Equilibrium
Week 6. Plasma Equilibrium
Week 8. Particle Trapping in Magnetic Fields Week 9 10 Plasma Transport
Week 9-10. Plasma Transport
Week 11. Energy Losses from Tokamaks Week 12 The L and H modes
Week 12. The L- and H-modes Week 13-14. Tokamak Operation
Contents Contents
Week 1 Magnetic Confinement
Contents Contents
Week 1. Magnetic Confinement
Week 2-3. Fusion Reactor Energetics
Week 4 Basic Tokamak Plasma Parameters Week 4. Basic Tokamak Plasma Parameters Week 5. Plasma Heating and Confinement Week 6 Plasma Equilibrium
Week 6. Plasma Equilibrium
Week 8. Particle Trapping in Magnetic Fields Week 9 10 Plasma Transport
Week 9-10. Plasma Transport
Week 11. Energy Losses from Tokamaks Week 12 The L and H modes
Week 12. The L- and H-modes Week 13-14. Tokamak Operation
3
Objectives of the Tokamak
Objectives of the Tokamak OperationOperation Objectives of the Tokamak
Objectives of the Tokamak OperationOperation
Hi h /
• High <ne>/nGW
• High βN
• High H98(y,2)
• Pulse length
Objectives of the Tokamak
Objectives of the Tokamak OperationOperation
Ip (MA) Dα
Objectives of the Tokamak
Objectives of the Tokamak OperationOperation
PNBI (MW)
α
High <n >/n
4xli
• High <ne>/nGW
• High βN
Hi h H ( 2)
βN
H98(y 2)
• High H98(y,2)
• Pulse length
1 0
H98(y,2)
<ne>/nGW 0.0
1.0 H98(y,2)
<ne>/nGW
0.0 1.0
-1.0
Even n
Odd n
0 2 4 6 8
Time (s)
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Cylindrical and local coordinates for a tokamak
• Aspect ratio: R0/a ~ 3-5 ex) KSTAR: 3.6, ITER: 3.1
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Separation of plasma from wall by a limiter and a divertor
Strike point
• Advantage of the divertor configuration
- First contact with material surface at a distance from plasma boundary R d i th i fl f i i d i iti i t th i t i f th l
7
- Reducing the influx of ionized impurities into the interior of the plasma by diverting them into an outer „SOL“
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Plasma equilibrium parameters
• Elongation: k
• Triangularity: d
• Triangularity: d
• Squareness: ζ
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Plasma equilibrium parameters
Elongation
• Elongation
• Triangularity
= b
κ δ = c + d
g y
= a
κ δ = 2a
9
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Plasma equilibrium parameters
• Outer and inner squareness: ζζo,io,i What is the squreness?
) i i
(θ 1δ θ
R
R −
) 2 sin sin(
) sin sin
cos(
,
1 0
θ ζ
θ κ
θ δ
θ
i
a o
Z
a R
R
+
=
+ +
=
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Plasma equilibrium parameters
Parameters KSTAR ITER • Plasma shape
Major Radius, R0 Minor Radius, a Plasma Current I
1.8 m 0.5 m 2 0 MA
6.2 m 2.0 m 15 MA Plasma Current, IP
Elongation, κx Triangularity, δx T id l Fi ld B
2.0 MA 2.0 0.8 3 5 T
15 MA 1.85 0.5 5 3 T Toroidal Field, B0
Pulse Length Fuel
3.5 T 300 s H, D
5.3 T 500 s D, T
11
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Beta
plasma pressure magnetic
p
magnetic pressure
2 0 / 2μ p B β =
z The ratio of the plasma pressure to the magnetic field pressure
z A measure of the degree to which the magnetic field is holding f
a non-uniform plasma in equilibrium.
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Beta
r B NI
π μ
= 2
2 0 / 2μ p B β =
z The power output for a given magnetic field and plasma assembly is proportional to the square of beta.
13
z In a reactor it should exceed 0.1 – economic constraint
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Beta
2 a
Assuming that the magnetic surfaces have concentric, circular CXs and that conditions are independent of ϕ.
∫ ∫ = ∫
= a p r rdr
dS a pdS
p
0
2 ( )
/ 2
π π G
G
0 0
0
' ' ) ' (
, )
1 ( μ μ
μ
ϕ θ
ϕ θ
r
dr r r j B
j rB
j B
∫
=
∂ =
∂
=
×
∇G G G
Ampère’s law
0 0
0
/ 2
2π ϕ π θ μ
ϕ ϕ
a a
p j rdr aB
I
r r
r
∫
∫
=
=
∂
0
2 2 2 2
0 2
0 2 8
2 ,
p
t I
p a B
p B
p
μ π β μ
β = μ = =
0 p
a I
B
Bϕ θ μ
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Normalized beta – stability limit
p t t
N I
β aB β =
• Fundamental elements for the β limit
for the βN-limit 1. Current profile 2 Pressure profile 2. Pressure profile 3. Plasma shape 4. Stabilising wall
5. Resistive instability
15
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Normalized beta – stability limit
• High βN in KSTAR
1. Strong plasma shaping 2. Passive stabilizers
3. PF/CS system capability 4 High heating power
4. High heating power 5. RWM control coils
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Safety factor q = number of toroidal orbits per poloidal orbit
ϕ
θ B
BK G +
∫
= r j r r dr Bθ μr0 ϕ( ') ' '
r 0
Magnetic field lines Magnetic flux surfacesg
number of toroidal windings b f l id l i di
=
q number of poloidal windings
q
17
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Safety factor q = number of toroidal orbits per poloidal orbit
q-profile
Baseline scenario
q95
5
Advanced scenario Baseline scenario
4
Hybrid scenario
3
1 2
0 0 5 1
1
0 0.5 1
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Safety factor q = number of toroidal orbits per poloidal orbit
ϕ ε
) rB (
Large aspect ratio tokamak with a circular CX
• General definition
θ θ ϕ
ε B μ j r r dr
r s
s B
r R q
r 0 0
' ' ) ' ( )
(
=
≡
≡
=
=
∫
B ds R q = ∫ B
θ ϕ 0
ϕ ϕ
ϕ ϕ
ϕ
π ε
j I B
a q aB
dr r r rB j
s B R
p 2
0 0
2
) (
,
=
=
=
=
≡
≡ ∫ Integral is along a closed path
enclosing the minor axis and lying on a specific magnetic
θ 0
ϕ ϕ
ϕ θ
μ
π μ
q B j B
j a R
I B
q R
p a
a
0 0
2 0
0 0
, 2 2
,
=
=
=
=
=
Derive this!
y g p g
surface; thus q is a surface quantity.
ϕ
ϕ
ϕ μ
μ
q j
R q j
q j R
a
a 0
0 0 0 0
0
0 ,
=
Homework
Current profile peakedness
jϕ
q0 p p
19
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Z-effective: a convenient measure of the extent to which the plasma contaminated to which the plasma contaminated
2 , ∑
∑ =
= s s e s s
eff
eZ n Z n n Z
n ∑ ∑ Zs : charge number for the s-type ion
s s
ff
• Zeff = 1 in a pure hydrogen plasma
• Method to determine Zeff
-Impurity concentration determined by analyzing resonance line
intensities in the vacuum UV supplemented by measurements of soft intensities in the vacuum UV, supplemented by measurements of soft X-ray spectra; this data, coupled with a theory for ionization rates - visible Bremsstrahlung radiation
- Spitzer’s formula for the parallel resistivity
Basic Tokamak Variables Basic Tokamak Variables
Temperature
Basic Tokamak Variables Basic Tokamak Variables
• Energy confinement time
Temperature
Time
21
Basic Tokamak Variables Basic Tokamak Variables
Temperature
Basic Tokamak Variables Basic Tokamak Variables
• Energy confinement time
Temperature
1/e
τE
Time
• τE is a measure of how fast the plasma looses its energy.
• The loss rate is smallest, τE largest
if the fusion plasma is big and well insulated if the fusion plasma is big and well insulated.
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Energy confinement time r rd T n T
n k pdS
W
a
i i e e
∫ B
∫ = +
=
0
) 2 (
3 2
3 2
1
π ~ total thermal energy in the torus
p h
p u
L E
j Q
hv r r
r t
u
r
D + = − = =
∂ + ∂
∂
∂ )
2 5
2 , ( 3
)}
( 1 {
)
(ρ ρ ρ ρ
ϕ ϕ
total heat flux radiation energy loss rate
t W
r r t
R E E
E
−
=
∂ +
∂
∂
∂
*
1 1
) 1 (ln
2 2
τ τ
τ
internal
energy enthalpy density
r Lrd
W r
rd E j
W Q
pv r
W
a R a E
E r
D
E ∫ ∫
≡
≡
⎥⎦
⎢ ⎤
⎣
⎡ ⎟
⎠
⎜ ⎞
⎝
⎛ +
≡ , * ,
2
5 τ τ
τ
ϕ
jϕ a
r ∫ ∫
⎥⎦
⎢⎣ ⎝ 2 ⎠ = 0 ϕ ϕ 0
Energy
confinement Energy
replacement Radiation loss
time p
time time
23
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Energy confinement time
d d
power heating
applied
energy stored
*
=
≈
∂
− ∂
=
∂
− ∂
=
in in E
E P
W t
P W W t
W W
W τ
τ In steady conditions,
neglecting radiation loss, Ohmic heating replaced by
total input power
∂
E ∂t t
τ p p
• To predict the performance of future devices, the energy confinement time is one of the most important parameter.
• Since tokamak transport is anomalous, empirical scaling laws for energy confinement are necessary
for energy confinement are necessary.
• Empirical scaling laws: regression analysis from available experimental database. p
ακ αε
α α
α α
α
α ε κ
τthfit,E = CI I B BP Pn nM M R R
in engineering variables
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
78 0 58 0 97 1 19 0 41 0 69 0 15 0 93 0 )
2 (
98 y 0 0562 I B P M R
IPB −
• Energy confinement time
78 . 0 58 . 0 97 . 1 19 . 0 41 . 0 69 . 0 15 . 0 93 . 0 )
2 (
98 y, 0.0562 I B P n M R a
IPB
th,E ε κ
τ = −
i KSTAR d ITER?
25
τE in KSTAR and ITER?
Why should ITER be large?
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Particle confinement time )
( )
1 (
r S v
r rn r
t n
e D
e
e =
∂ + ∂
∂
∂ electron number density source
*
a a
p p =τ
τ In steady state
[ 0 ] , * 0
d S
r rd n v
rn
r rd n
a e p
D e
e
p ∫
∫
∫ ≡
≡ τ
τ [ ]
0
r rd Se
a D r
e = ∫
particle
confinement particle replacement confinement
time replacement
time
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Momentum confinement time
⋅
=
⋅ Π
⋅
∇
∂ + + ∂
∂
∂
b
rv F
v r r
v r
t 1 ( )
)
(ρ ϕ ρ ϕ ϕ ϕ Momentum equation having
the toroidal component
=
H a
R H
H 2 2 2
*
2
ϕ
ϕ τ
τ In steady state
[ ] ∫ ∫
∫
≡
=
⋅
≡ +
⋅ Π
⋅
∇
≡
=
a a
a b r r
a R a H H v rdr
r rd F
H v
v r r rd
H
0 2
2 0 2
* ,
torque Beam
2
, ϕ ϕ ϕ ϕ ϕ
ϕ ϕ
ϕ π ρ
ϕ τ
ρ ϕ
τ
0 0
Toroidal momentum confinement
Toroidal momentum replacement
time p
time
27
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Momentum confinement time
• Toroidal angular momentum confinement time of thermal particles during NBI versus simultaneously measured energy confinement time for steady state L-mode and ELMy H-mode discharges (crosses), and for for steady state L mode and ELMy H mode discharges (crosses), and for transient ELM free phase of hot ion H-mode discharges (squares) in JET
Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables Basic Tokamak Variables
• Intrinsic rotation
J E Ri t l N l F i 47 1618 (2007)
29
J. E. Rice et al, Nucl. Fusion 47 1618 (2007)