Phase Transformation of Materials Phase Transformation of Materials
Eun Eun Soo Soo Park Park
Office: 33-316
Telephone: 880-7221 Email: [email protected]
2009 fall
09.08.2009
2
Gibbs Free Energy as a Function of Temp. and Pressure
- Single component system Chapter 1
= 0 dG
P V S G
T G
T P
⎟ =
⎠
⎜ ⎞
⎝
⎛
∂
− ∂
⎟ =
⎠
⎜ ⎞
⎝
⎛
∂
∂ ,
Tm
T G = LΔ Δ
Thermondynamics and Phase Diagrams
- Equilibrium
- Driving force for solidification - Classification of phase transition
2 1
0
G G G
Δ = − <
- Phase Transformation
Contents for previous class
Lowest possible value of G No desire to change ad infinitum
First order transition: CDD/Second order transition: CCD
VT H dT
dP
eq
eq Δ
= Δ
) (
Clausius-Clapeyron Relation:
Contents for today’s class
- Chemical potential and Activity
- Gibbs Free Energy in Binary System - Binary System
Ideal solution and Regular solution
4
*
Binary System (two component)Æ A, B
- Mixture ; A – A, B – B ; Æ 각각의 성질 유지, boundary는 존재, 섞이지 않고 기계적 혼합
A B
- Solution ; A – A – A ; Æ atomic scale로 섞여 있다. Random distribution A – B – A Solid solution : substitutional or interstitial
- compound ; A – B – A – B ; Æ A, B의 위치가 정해짐, Ordered state B – A – B – A
*
Single component system One element (Al, Fe), One type of molecule (H2O):
평형 상태 압력과 온도에 의해 결정됨:
평형 상태 압력과 온도 이외에도 조성의 변화를 고려1.3 Binary Solutions
- Mixture ; A – A, B – B ; Æ 각각의 성질 유지, boundary는 존재, 섞이지 않고 기계적 혼합
A B
1.3 Binary Solutions
6
- Solution ; A – A – A ; Æ atomic scale로 섞여 있다. Random distribution A – B – A Solid solution : substitutional or interstitial
1.3 Binary Solutions
- Compound ; A – B – A – B ; Æ A, B 의 위치가 정해짐, Ordered state B – A – B – A
MgCNi3
1.3 Binary Solutions
ruthenium 루테늄 《백금류의 금속 원소;기호 Ru, 번호 44》 8
Solid Solution vs. Intermetallic Compounds
Crystal structure
Surface
Pt0.5Ru0.5 – Pt structure (fcc) PtPb – NiAS structure
partial or complete solid solution Alloying: atoms mixed on a lattice
1.3 Binary Solutions
Solid Solution vs. Intermetallic Compounds
Pt0.5Ru0.5 – Pt structure (fcc) PbPt – NiAS structure
1.3 Binary Solutions
10
• Solid solution:
– Crystalline solid
– Multicomponent yet homogeneous
– Impurities are randomly distributed throughout the lattice
• Factors favoring solubility of B in A
(Hume-Rothery Rules) – Similar atomic size: ∆r/r ≤ 15%– Same crystal structure for A and B
– Similar electronegativities: |χA – χB| ≤ 0.6 (preferably ≤ 0.4) – Similar valence
• If all four criteria are met: complete solid solution
• If any criterion is not met: limited solid solution
1.3 Binary Solutions
complete solid solution limited solid solution
1.3 Binary Solutions
Binary Solutions
12
* Composition in mole fraction XA, XB XA + XB = 1
1. bring together XA mole of pure A and XB mole of pure B
2. allow the A and B atoms to mix together to make a homogeneous solid solution.
Gibbs Free Energy of Binary Solutions
1.3 Binary Solutions
Gibbs Free Energy of The System
In Step 1
- The molar free energies of pure A and pure B pure A;
pure B;
;X
A, X
B(mole fraction
) ), (T P GA
) , (T P GB
G
1= X
AG
A+ X
BG
BJ/mol
1.3 Binary Solutions
14
Gibbs Free Energy of The System
In Step 2
G
2= G
1+ Δ G
mixJ/mol
Since G
1= H
1– TS
1and G
2= H
2– TS
2And putting ∆ H
mix= H
2- H
1∆ S
mix= S
2- S
1∆ G
mix= ∆ H
mix- T ∆ S
mix∆ H
mix: Heat of Solution i.e. heat absorbed or evolved during step 2
∆ S
mix: difference in entropy between the mixed and unmixed state
.How can you estimate Δ H
mixand Δ S
mix?
1.3 Binary Solutions
Mixing free energy Δ G
mix가정
1 ; ∆ H
mix=0 :
; A
와B
가complete solid solution ( A,B ; same crystal structure)
; no volume change
- Ideal solution
w k
S = ln
w : degree of randomness, k: Boltzman constant Æ thermal; vibration ( no volume change )Æ Configuration; atom 의 배열 방법 수 ( distinguishable )
Δ G
mix= -T Δ S
mixJ/mol
∆ G
mix= ∆ H
mix- T ∆ S
mixEntropy can be computed from randomness by Boltzmann equation, i.e.,
= + S S S
1.3 Binary Solutions
16
)]
ln (
) ln
( ) ln
[(
,
,
1
! ln
!
)!
ln (
0 0
0
o B o
B o
B o
A o
A o
A o
o o
B A
B B
A A
B A
B before A
after mix
N X N
X N
X N
X N
X N
X N
N N
k
N N
N N
X N
N X N
N k N
N k N
S S
S
−
−
−
−
−
=
= +
=
=
→
+ −
=
−
= Δ
이므로 N
N N
N ! ≈ ln − ln
Excess mixing Entropy
) , _(
_
!
!
)!
(
) _
_(
_
1
B A B
A B A
config config
N N solution after
N N
N w N
pureB pureA
solution before
w
+ →
=
→
=
If there is no volume change or heat change,
Number of distinguishable way of atomic arrangement
kN
0R =
using Stirling’s approximation and
1.3 Binary Solutions
Ideal solutionExcess mixing Entropy
) ln
ln
(
A A B Bmix
R X X X X
S = − +
Δ
) ln
ln
(
A A B Bmix
RT X X X X
G = +
Δ Δ G
mix= -T Δ S
mix1.3 Binary Solutions
Ideal solution18
Since Δ H = 0 for ideal solution,
Compare G
solutionbetween high and low Temp.
G2 = G1 + ΔGmix
1.3 Binary Solutions
Ideal solutionG1 ΔGmix
Chemical potential
= μ
A AdG ' dn
The increase of the total free energy of the system by the increase of very small quantity of A, dn
A, will be proportional to dn
A.
소량 첨가에 의한 내부 에너지 변화 계산
(T, P, n
B: constant )
G =
H-TS = E+PV-TS
For A-B binary solution, dG' = μ
Adn
A+ μ
Bdn
BFor variable T and P
1) Ideal solution
1.3 Binary Solutions
μ
A:
partial molar free energy of A or chemical potential of A⎛ ∂ ⎞
μ = ⎜A ⎝ ∂ A ⎟⎠T, P, nB
G' n
⎛ ∂ ⎞
μ = ⎜B ⎝ ∂ B ⎟⎠T, P, nA
G' n
20
−1
= μ
A A+ μ
B BG X X Jm ol
A A B B
dG = μ dX + μ dX
B AB
dG
dX = μ − μ
A BB
dG μ = μ − dX
( 1 )
B A B B
B
B A A B B
B
B A
B
B B
B
G dG X X
dX
X dG X X
dX dG X dX
dG X dX
⎛ ⎞
= μ − ⎜ ⎟ + μ
⎝ ⎠
= μ − + μ
= μ −
= μ − −
B A
B
G dG X μ = + dX
For 1 mole of the solution (T, P: constant )
Chemical potential 과 Free E 와의 관계 1) Ideal solution
μ
A’
μ
B’
X
B’
1.3 Binary Solutions
B B
B A
A
A
RT X X G RT X X
G ln ) ( ln )
( +
Chemical potential
+ +
=
22
Ideal solution : ΔH
mix= 0
Quasi-chemical model assumes that heat of mixing, ΔH
mix, is only due to the bond energies between adjacent atoms.
Structure model of a binary solution
Regular Solutions
1.3 Binary Solutions
∆
Gmix =∆
Hmix - T∆
SmixBond energy Number of bond A-A ε
AAP
AAB-B ε
BBP
BBA-B ε
ABP
AB=
AA AAε +
BB BBε +
AB ABε
E P P P
Δ = ε ε = ε − 1 ε + ε
H P where ( )
Internal energy of the solution
Regular Solutions
1.3 Binary Solutions
24
Δ H
mix= 0
Completely random arrangement
ideal solution
AB
=
a A B aP N zX X bonds per mole N : Avogadro ' s number
z : number of bonds per atom
∆ H
mix= Ω X
AX
Bwhere Ω = N
az ε
Δ H
mix= P
ABε
Regular Solutions
= 0
ε ( )
2 1
BB AA
AB
ε ε
ε = +
↑
→
< 0 P
ABε ε > 0 → P
AB↓
≈ 0 ε
Ω >0 인 경우
1.3 Binary Solutions
Regular Solutions
Reference state
Pure metal
G
A0= G
B0= 0
) ln
ln
(
A A B BB A B
B A
A
G X G X X RT X X X X
X
G = + + Ω + +
G
2= G
1+ Δ G
mix∆ G
mix =∆ H
mix- T ∆ S
mix∆
Hmix -T∆
Smix26
Phase separation in metallic glasses
−1
= μ
A A+ μ
B BG X X Jmol
For 1 mole of the solution (T, P: constant )
G
=E+PV-TS G
=H-TS
A B B
A B
AX X X X X
X = 2 + 2
2) regular solution
B B
B B
A A
A A
X RT
X G
X RT
X G
ln )
1 (
ln )
1 (
2 2
+
− Ω
+
=
+
− Ω
+
= μ μ
) ln
ln
(
A A B BB A B
B A
A
G X G X X RT X X X X
X
G = + + Ω + +
) ln
) 1
( (
) ln
) 1
(
(
A A 2 A B B B 2 BA G +Ω − X + RT X + G +Ω − X + RT X
=
μ μ
μ = +
μ = +
A A A
B B B
G RT ln X G RT ln X
Chemical potential 과 Free E 와의 관계
Ideal solution
28
Activity, a : mass action 을 위해 effective concentration
ideal solution regular solution
μ
A= G
A+ RTlna
Aμ
B= G
B+ RTlna
Bμ = + μ = +
A A A
B B B
G RT ln X G RT ln X
B B
B B
A A
A
A = G + Ω (1 − X )2 + RT ln X
μ
= G + Ω (1 − X )2 + RT ln Xμ
γ =
B BB
a X
)
21 ( )
ln(
BB
B
X
RT X
a Ω −
=
Solution 에서 a 와 X 와의 관계
조성 따른 activity 변화 aB aA
Line 1 : (a) a
B=X
B, (b) a
A=X
Aideal solution…Rault’s law Line 2 : (a) a
B<X
B, (b) a
A<X
A ΔHmix<0Line 3 : (a) a
B>X
B, (b) a
A>X
A ΔHmix>0γ =B B ≅
B
a cons tan t (Henry ' s Law) X
a
• For a dilute solution of B in A (XB→0)
30
μ
A= G
A+ RTlna
A⎛ ⎞ = Ω −
⎜ ⎟
⎝ ⎠
B
B B
ln a (1 X ) X RT
Activity는 solution의 상태를 나타내는
조성 과 Chemical potential 과 상관관계 가짐.
→
AA
a
degree of non-ideality ?
X
A= γ
A A= γ
A AA
a , a X
X
γ
A: activity coefficient
Chemical Equilibrium (μ, a) → multiphase and multicomponent
(μ
iα= μ
iβ= μ
iγ= …), (a
iα= a
iβ= a
iγ= …)
Contents for today’s class
- Chemical potential and Activity
- Gibbs Free Energy in Binary System - Binary System
Ideal solution
Regular solution
mixture/ solution / compound
G
2= G
1+ Δ G
mixJ/mol G
1= X
AG
A+ X
BG
BJ/mol
( ∆ H
mix=0)
) ln ln
( A A B B
mix RT X X X X
G = +
Δ
mix=
ABε
Δε = ε −
AB1 ε + ε
AA BBH P where ( )
2
) ln
ln
(
A A B BB A B
B A
A
G X G X X RT X X X X
X
G = + + Ω + +
⎛ ∂ ⎞
μ = ⎜ G'
•
μA= G
A+ RTlna
A