• Tidak ada hasil yang ditemukan

Timing Constraints – Delays

N/A
N/A
Protected

Academic year: 2024

Membagikan "Timing Constraints – Delays"

Copied!
18
0
0

Teks penuh

(1)

1

Timing Constraints – Delays

(2)

2

Propagation Delay and Contamination Delay

Propagation Delay – Time from last input change until last output change. (Input at steady state to output at steady state.)

Contamination Delay – Time from first input change until first output change. (Input contaminated to output contaminated)

a

b

t cab t dab

t 1 t 2 t 3 t 4

C L

a b

(3)

Example: Contamination and Propagation Delay of Full Adder

a g'

b

p'

cin

s Q1

Q2

cout

Q3

Q4 Q5

Gate Delay (ps) Nand2 80 OAI21 120

min a,b cin

g ’ 80 -

p ’ 120 -

cout 200 120

U3 200 80

s 240 120

max a,b cin

g ’ 80 -

p ’ 200 -

cout 320 120

U3 280 80

s 400 200

What is t das

t cas

t dcs

t ccc

(4)

a g'

b

p'

cin

s Q1

Q2

cout

Q3

Q4 Q5

Gate Delay (ps) Nand2 80 OAI21 120

min a,b cin

g ’ 80 -

p ’ 120 -

cout 200 120

U3 200 80

s 240 120

max a,b cin

g ’ 80 -

p ’ 200 -

cout 320 120

U3 280 80

s 400 200

What is t das

t cas

t dcs

t ccc

(5)

a g'

b

p'

cin

s Q1

Q2

cout

Q3

Q4 Q5

Gate Delay (ps) Nand2 80 OAI21 120

min a,b cin

g ’ 80 -

p ’ 120 -

cout 200 120

U3 200 80

s 240 120

max a,b cin

g ’ 80 -

p ’ 200 -

cout 320 120

U3 280 80

s 400 200

What is t das

t cas

t dcs

t ccc

(6)

6

What about an n-bit adder?

FA a[0]

b[0]

a

b cin cout

s s[0]

cin

FA a[1]

b[1]

a

b cin cout

s s[1]

c[ 1 ]

FA a[n-1]

b[n-1]

a

b cin cout

s s[n-1]

cout

Assume delay of FA is 1

What is t das

t cas

t dcs

t ccs

(7)

7

D Q

d q

clk

d clk

q

t s t h

t dCQ x

x t cCQ

Edge-Triggered D Flip-Flop

(8)

8

Timing Constraints – Setup and hold

(9)

9

D Q

d q

clk

d clk

q

t s t h

t dCQ x

x t cCQ

Edge-Triggered D Flip-Flop

(10)

Setup Time Constraint

D Q

D Q

Min

Max

clk

a

a b c

c d

clk

a X

b f(X)

t dCQ t dab t s

t slack

s dMax

dCQ

cy t t t

t > + +

(11)

Hold Time Constraint

D Q

D Q

Min

Max

clk

a

a b c

c d t h < t cCQ + t cMin

t cXY – contamination delay t dXY – propagation delay

Unsafe at any speed

clk

c

d

t cCQ t ccd

t h t slack

(12)

t dCQ = t cCQ = t s = 150ps t h = 250ps

t dMax = 850ps t cMin = 100ps

Is hold time constraint met?

What is the minimum cycle time?

Example

D Q

D Q

Min

Max

clk

a

a b c

c d

D Q

D Q

Min

Max

clk

a

a b c

c d

(13)

13

Timing Constraints – Clock skew

(14)

D Q

D Q

Min

Max

clk

a

a b c

c d

t

k

clk

c d

t cCQ

t h t slack

clkd

t ccd

t k

k cMin

cCQ h

k s

dMax dCQ

cy

t t

t t

t t

t t

t

- +

<

+ +

+

>

Clock Skew

(15)

15

t dCQ = t cCQ = t s = 150ps t h = 250ps

t dMax = 850ps t cMin = 100ps t k = 100ps

Is hold time constraint met?

What is the minimum cycle time?

Example

(16)

16

4-bit Prime or one Function in Verilog Code – Result of synthesizing description using case

module prime ( in, isprime );

input [3:0] in;

output isprime;

wire n1, n2, n3, n4;

OAI13 U1 ( .A1(n2), .B1(n1), .B2(in[2]), .B3(in[3]), .Y(isprime) );

INV U2 ( .A(in[1]), .Y(n1) );

INV U3 ( .A(in[3]), .Y(n3) );

XOR2 U4 ( .A(in[2]), .B(in[1]), .Y(n4) );

OAI12 U5 ( .A1(in[0]), .B1(n3), .B2(n4), .Y(n2) );

endmodule

n2 n1

U1 U5

in[1] U2

in[0]

U3 n3

in[3]

U4 n4 in[2]

isprime

001X 0XX1

X101 X01X X011

X10X

(17)

Synthesis Reports

****************************************

Report : area Design : prime Version: 2003.06

Date : Sat Oct 4 11:38:08 2003

****************************************

Library(s) Used:

GS30KA_W_125_1.35_CORE.db (File:

/home/imagine/from_ti/gs30ka_1.3/sun5/synop sys/lib/GS30KA_W_125_1.35_CORE.db)

Number of ports: 5

Number of nets: 9

Number of cells: 5

Number of references: 4 Combinational area: 7.000000 Noncombinational area: 0.000000

Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 7.000000 Total area: undefined

****************************************

Report : timing -path full -delay max -max_paths 1 Design : prime Version: 2003.06

Date : Sat Oct 4 11:38:08 2003

****************************************

Operating Conditions:

Wire Load Model Mode: enclosed Startpoint: in[2] (input port) Endpoint: isprime (output port) Path Group: (none)

Path Type: max

Des/Clust/Port Wire Load Model Library --- prime 2K_5LM

GS30KA_W_125_1.35_CORE.db

Point Incr Path ---

---

input external delay 0.000 0.000 r

in[2] (in) 0.000 0.000 r

U4/Y (EX210) 0.191 0.191 f

U5/Y (BF051) 0.116 0.307 r

U1/Y (BF052) 0.168 0.475 f

isprime (out) 0.000 0.475 f

data arrival time 0.475 ---

---

(Path is unconstrained)

n2 n1

U1 U5

in[1]

U2

in[0]

U3

n3 in[3]

U4 n4 in[2]

isprime

001X 0XX1

X101 X01X X011

X10X

(18)

Summary

• Delays in digital systems – Propagation delay – Contamination delay

• Flip-flop timing constraints – Setup time (t s )

– Hold time (t h )

• Cycle time determined by maximum delay

• Correct operation depends on minimum delay

• Clock skew affects both

s dMax

dCQ

cy t t t

t > + +

cMin cCQ

h t t

t < +

k cMin

cCQ h

k s

dMax dCQ

cy

t t

t t

t t

t t

t

- +

<

+ +

+

>

Referensi

Dokumen terkait

pada Heat Exchanger lebih baik dengan menggunakan GPC karena time delay yang dibutuhkan lebih cepat untuk mencapai kondisi steady state 70 ° C daripada keluaran dari plant

Yaitu waktu yang menyatakan faktor keterlambatan respon output terhadap input, diukur mulai t = 0 hingga respon mencapai 50% dari respon steady state.  Persen

2 Measured characteristics of fabricated low power Schmitt trigger circuit at 3 V supply voltage and input-output characteristics against time a Measured characteristics b

Four examples are presented and explained: ■ Aligning the Clock Edges at a Dedicated Clock Input Pin, a Core Register & an External Clock Output Pin ■ Aligning Clock Edges at a Core

An Optimally Configured HP-GRU Model Using Hyperband for The Control of Wall Following Robot At input, it includes an 𝑿𝒕 and a cell state 𝑪𝒕−𝟏 and at the output, it has cell-state 𝑪𝒕

Mathematical Notations Gp Transfer function of a process G Transfer function of a process without time delay θ Time delay of a process k Steady state gain of a process τ, τ1, τ2

M ATHEMATICAL N OTATIONS k Steady state gain of a process θ Time delay of a process θn Normalised dead time of a process τ,τ1,τ2 Time constants of a process model transfer function

Research Framework INPUT Date and Time Data Heart Rate, and Temperature Data Oxygen Saturation Data PROCESS FINITE STATE AUTOMATA OUTPUT Voice Based Date Information