Transfer Function Approach to
Modeling Dynamic Systems
The Concept of Transfer Function
Consider the linear time-invariant system defined by the following differential
p
Consider the linear time invariant system defined by the following differential
equation :
( ) ( 1)
0 1 1
( ) ( 1)
0 1 1
( )
n n
n n
m m
m m
a y a y a y a y
b u b u b u b u n m
−
−
−
−
+ + + +
= + + + + ≥
&
L
&
L
Where y is the output of the system, and x is the input. And the Laplace transform of
the equation is,
1
0 1 1
( a S
0 n+ a S
1 n−+ + L a
n−1S + a Y s
n) ( )
(
n n) ( )
= +
−+ + +
The Concept of Transfer Function
Th i f h L l f f h ( f i ) h L l
p
The ratio of the Lapalce transform of the output (response function) to the Laplace
Transform of the input (driving function) under the assumption that all initial
conditions are Zero.
1
0 1 1
1
0 1 1
( ) ( ) ( )
m m
m m
n n
b S b S b S b
Transfer Function Y s G s
U s a S a S a S a
−
−
−
+ + ⋅⋅⋅⋅ + +
= = =
+ + ⋅⋅⋅⋅ +
0 1 1
( )
( ) ( )
n n
U s a S a S a S a
P s n m
+ +
−+
= ( ≥ )
( ) n m
Q s ≥
Comments on Transfer Function
1 A h i l d l
1. A mathematical model.
2. Property of system itself.
(Independent of the magnitude and nature of the input)
3. Includes the units
(But, no information about the physical structure of the system)
] [
] ) [
) ( (
) (
volt s volt
s G U
s
Y = = Y ( s ) = U ( s ) G ( s )
Comments on Transfer Function
4. Analytic method and Experimental method
system
u(t) y(t)
U(s) Y(s)
( )
) ) (
( U s
s s Y
G =
U(s) Y(s)
L.T.I
5 Different systems may have identical T F
u = T
5. Different systems may have identical T.F
ex)
J
y = ω
T b
J ω
&+ ω =
b Js T
U Y
= +
=ω 1
Electrical System (if b=1, J=L/R)
1 1
+ + =
=
R s R L Ls
R U
Y
R
Block Diagram
I t Si l O t t Si l
g
Input Signal Output Signal
Transfer Function
Pi k Off P i
Summing Point Pick Off Point
Closed Loop Transfer Function p
( ) ( ) ( ) ( )[ ( ) ( ) ( )]
Y s = G s E s = G s R s − H s Y s [1 + G s H s Y s ( ) ( )] ( ) = G s R s ( ) ( )
1 1
( ) ( )
( ) 1 ( ) ( ) G s
Transfer Function Y s
R s G s H s
∴ = =
+
Closed Loop Transfer Function
1 1 1
( )
F s + s X s2 ( ) sX s( ) X s( )
p
ex)
m
b
s s
++
−
m k +
m
1
2( ) k ( ) b ( ) ( )
F s X s sX s s X s
m − m − m =
[ ]
22 2
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ), ( ) ( ) ( )
m m m
F s kX s bsX s ms X s
ms bs X s F s kX s ms bs k X s F s
− + =
+ = − + + =
Partial Fraction Expansion with MATLAB
1 1
( ) (1) (2) ( 1)
( ) (1) (2) ( 1)
h h
n n
B s num b S b S b h
A s den a S a S a n
−
−
+ + ⋅⋅⋅⋅ + +
= =
+ + ⋅⋅⋅⋅ + +
( ) (1) (2) ( 1)
[ (1) (2) ( )], [ (1) (2) ( )]
A s den a S a S a n
num b b b h den a a a h
+ + ⋅⋅⋅⋅ + +
=
L=
L[r, p, k] = residue (num, den)
( ) (1) (2) ( )
B s ( ) r r r n
k
>>num=[1 8 16 9 6];
>>den=[1 6 11 6];
( ) ( ) ( ) ( )
( ) k s ( ) (1) (2) ( )
A s = + s p + s p + + s p n
− −
L−
ex)
B s ( ) s
4+ 8 s
3+ 16 s
2+ 9 s + 6
>>den=[1 6 11 6];
>>[r,p,k]=residue(num,den) r=
-6.0000
ex)
3 2
( )
( ) 6 11 6
A s = s s s
+ + +
-4.00003.0000p=
-3.0000 -2.0000 -1.0000 k=
1 2
6 4 3
2 3 2 1
s s s s
− −
= + + + +
+ + +
1 2
Transient Response Analysis with MATLAB
2
2
( )
d y dy du
m b k y u
dt dt dt
⎛ ⎞
= − ⎜ ⎝ − ⎟ ⎠ − −
ex)
2 2
dt dt dt
d y dy du
or m b ky b ku
dt dt dt
⎝ ⎠
+ + = +
Assume the initial condition is 0,
( ms
2+ bs + k Y s ) ( ) = ( bs + k U s ) ( )
2
( ) ( )
Y s bs k
Transfer Function
U s ms bs k
= = +
+ +
If, m=10kg, b=20N-s/m, k=100N/m
2 2
( ) 20 100 2 10 1
, ( )
( ) 10 20 100 2 10
Y s s s
U U s
+ +
=
2=
2( ) =
( ) 10 20 100 2 10
U s s + s + s + s + s
Transient Response Analysis with MATLAB Transient Response Analysis with MATLAB
t=0:0.01:8;
num=[2 10];
1.5
Unit Step Response
num [2 10];
den=[1 2 10];
sys=tf(num,den);
step(sys,t)
1
ut
grid
title('Unit Step Response','Fontsize',15') xlabel('t(sec)','Fontsize',15')
l b l('O ' ' i ' 1 ')
0.5
Outpu
ylabel('Output','Fontsize',15')
0
0 1 2 3 4 5 6 7 8
0
t (sec)
The law of conservation of momentum The law of conservation of momentum
By Newton's 2nd law,
( ) ( )
dv d
F ma m mv F dt d mv
dt dt
= = = → ⋅ =
2 2
1 1
2 1
( )
t v
t v
Fdt = d mv = mv − mv
∫ ∫
And if There is no input force, then we get
( ) 0, .
d mv = mv = const
The law of conservation of momentum And also,Impulse Input Impulse Input
A bullet stuck in mass M A bullet stuck in mass M
(0 ) v
v v&
(0 ) v +
(0 ) v −
Δ
t t
Δt 0 (0 )
v + Δt
0
−A
Sudden change in the velocity and acceleration of bullet
Impulse Input
( M + m x bx ) && + & + kx = F t ( )
System equation :
Impulse Input
( ) ( ),
F t = − mv & = Δ A t δ t A t Δ
Impulse force :
0 0
: Magnitude of impulse force
0 0
0 0
( ) , (0 ) (0 )
A t δ t dt m v dt A t mv mv
+ +
− −
Δ = − Δ = − − +
∫ ∫ &
Noting that, Magnitude of impulse force is equal to change of momentum!!
(0 ) (0 )
v + = x & + =
Initial velocity of M+mThus the system equation becomes
( ) ( )
yImpulse Input p p
By taking the Laplace Transform,
[ ]
( M + m ) ⎡ ⎣ s X s
2( ) − sx (0 ) − − x & (0 ) − + ⎤ ⎦ b sX s ( ) − x (0 ) − + kX s ( ) = mv (0 ) − − mx & (0 ) +
(0 ) (0 ) 0
x & − = x − =
Noting that we obtain
2
(0 ) (0 )
( ) ( )
mv mx
X s M m s bs k
− − +
= + + +
&
[ ]
2[ ]
0 2
(0 ) (0 ) (0 ) (0 )
(0 ) lim ( ) lim ( ) lim
( )
t s s
s mv mx mv mx
x x t s sX s
M m s bs k M m
m
→ + →∞ →∞
− − + − − +
+ = = = =
+ + + +
& &
& &
(0 ) (0 )
2
x m v
M m
→ + = −
& +
2 2
( ) (0 ) 1 ( ) (0 )
( ) ( ) ( ) 2
M m x M m mv
X s M m s bs k M m s bs k M m
+ + + −
∴ = =
+ + + + + + +
&
Impulse Input p p
50 0 01 100 / 2500 / (0 ) 800 /
M k k b N k N
ex)
1 50.01 0.01 800 7.9984
( )
X s × ×
= =
50 , 0.01 , 100 / , 2500 / , (0 ) 800 /
M = kg m = kg b = Ns m k = N m v − = m s
0.02
Impulse Response of System
2 2
( ) 50.01 100 2500 50.02 50.01 100 2500
X s = s s = s s
+ + + +
num=[7.9984];
den=[50.01 100 2500];
sys=tf(num,den);
0.01 0.015
x(t)
impulse(sys) grid
title('Impulse Response of System','Fontsize',15')
-0.005 0 0.005
Response x
xlabel('t(sec)','Fontsize',15')
Ramp Response
M=10kg, b=20Ns/m, k=100N/m
2
( ) 2 10
( ) 2 10
Y s s
U
= +
Ramp Response
4 5
Unit-Ramp Response
num=[2 10];
( )
22 10
U s s + s +
( ) : , , 1
u t Unit ramp input u = α t α =
3.5 4 4.5
u(t)=t
num=[2 10];
den=[1 2 10];
sys=tf(num,den);
t=0:0.01:4;
2 2.5 3
t) and Input
u=t;
lsim(sys,u,t) grid
title('Unit-Ramp Response','Fontsize',15)
0.5 1 1.5
Output y(t u
y
( p p , , )
xlabel('t')
ylabel('Output y(t) and Input u(t)=t','Fontsize',15) text(0.8,0.4,'y','Fontsize',12)
text(0 4 0 8 'u' 'Fontsize' 12)
0 0.5 1 1.5 2 2.5 3 3.5 4
0
y
t (sec)
text(0.4,0.8,'u','Fontsize',12) legend('y')