• Tidak ada hasil yang ditemukan

Transfer Function Approach to Modeling Dynamic Systems

N/A
N/A
Protected

Academic year: 2024

Membagikan "Transfer Function Approach to Modeling Dynamic Systems"

Copied!
17
0
0

Teks penuh

(1)

Transfer Function Approach to

Modeling Dynamic Systems

(2)

The Concept of Transfer Function

Consider the linear time-invariant system defined by the following differential

p

Consider the linear time invariant system defined by the following differential

equation :

( ) ( 1)

0 1 1

( ) ( 1)

0 1 1

( )

n n

n n

m m

m m

a y a y a y a y

b u b u b u b u n m

+ + + +

= + + + + ≥

&

L

&

L

Where y is the output of the system, and x is the input. And the Laplace transform of

the equation is,

1

0 1 1

( a S

0 n

+ a S

1 n

+ + L a

n1

S + a Y s

n

) ( )

(

n n

) ( )

= +

+ + +

(3)

The Concept of Transfer Function

Th i f h L l f f h ( f i ) h L l

p

The ratio of the Lapalce transform of the output (response function) to the Laplace

Transform of the input (driving function) under the assumption that all initial

conditions are Zero.

1

0 1 1

1

0 1 1

( ) ( ) ( )

m m

m m

n n

b S b S b S b

Transfer Function Y s G s

U s a S a S a S a

+ + ⋅⋅⋅⋅ + +

= = =

+ + ⋅⋅⋅⋅ +

0 1 1

( )

( ) ( )

n n

U s a S a S a S a

P s n m

+ +

+

= ( ≥ )

( ) n m

Q s ≥

(4)

Comments on Transfer Function

1 A h i l d l

1. A mathematical model.

2. Property of system itself.

(Independent of the magnitude and nature of the input)

3. Includes the units

(But, no information about the physical structure of the system)

] [

] ) [

) ( (

) (

volt s volt

s G U

s

Y = = Y ( s ) = U ( s ) G ( s )

(5)

Comments on Transfer Function

4. Analytic method and Experimental method

system

u(t) y(t)

U(s) Y(s)

( )

) ) (

( U s

s s Y

G =

U(s) Y(s)

L.T.I

5 Different systems may have identical T F

u = T

5. Different systems may have identical T.F

ex)

J

y = ω

T b

J ω

&

+ ω =

b Js T

U Y

= +

=ω 1

Electrical System (if b=1, J=L/R)

1 1

+ + =

=

R s R L Ls

R U

Y

R

(6)

Block Diagram

I t Si l O t t Si l

g

Input Signal Output Signal

Transfer Function

Pi k Off P i

Summing Point Pick Off Point

(7)

Closed Loop Transfer Function p

( ) ( ) ( ) ( )[ ( ) ( ) ( )]

Y s = G s E s = G s R s − H s Y s [1 + G s H s Y s ( ) ( )] ( ) = G s R s ( ) ( )

1 1

( ) ( )

( ) 1 ( ) ( ) G s

Transfer Function Y s

R s G s H s

∴ = =

+

(8)

Closed Loop Transfer Function

1 1 1

( )

F s + s X s2 ( ) sX s( ) X s( )

p

ex)

m

b

s s

++

m k +

m

1

2

( ) k ( ) b ( ) ( )

F s X s sX s s X s

m − m − m =

[ ]

2

2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ), ( ) ( ) ( )

m m m

F s kX s bsX s ms X s

ms bs X s F s kX s ms bs k X s F s

− + =

+ = − + + =

(9)

Partial Fraction Expansion with MATLAB

1 1

( ) (1) (2) ( 1)

( ) (1) (2) ( 1)

h h

n n

B s num b S b S b h

A s den a S a S a n

+ + ⋅⋅⋅⋅ + +

= =

+ + ⋅⋅⋅⋅ + +

( ) (1) (2) ( 1)

[ (1) (2) ( )], [ (1) (2) ( )]

A s den a S a S a n

num b b b h den a a a h

+ + ⋅⋅⋅⋅ + +

=

L

=

L

[r, p, k] = residue (num, den)

( ) (1) (2) ( )

B s ( ) r r r n

k

>>num=[1 8 16 9 6];

>>den=[1 6 11 6];

( ) ( ) ( ) ( )

( ) k s ( ) (1) (2) ( )

A s = + s p + s p + + s p n

− −

L

ex)

B s ( ) s

4

+ 8 s

3

+ 16 s

2

+ 9 s + 6

>>den=[1 6 11 6];

>>[r,p,k]=residue(num,den) r=

-6.0000

ex)

3 2

( )

( ) 6 11 6

A s = s s s

+ + +

-4.00003.0000

p=

-3.0000 -2.0000 -1.0000 k=

1 2

6 4 3

2 3 2 1

s s s s

− −

= + + + +

+ + +

1 2

(10)

Transient Response Analysis with MATLAB

2

2

( )

d y dy du

m b k y u

dt dt dt

⎛ ⎞

= − ⎜ ⎝ − ⎟ ⎠ − −

ex)

2 2

dt dt dt

d y dy du

or m b ky b ku

dt dt dt

⎝ ⎠

+ + = +

Assume the initial condition is 0,

( ms

2

+ bs + k Y s ) ( ) = ( bs + k U s ) ( )

2

( ) ( )

Y s bs k

Transfer Function

U s ms bs k

= = +

+ +

If, m=10kg, b=20N-s/m, k=100N/m

2 2

( ) 20 100 2 10 1

, ( )

( ) 10 20 100 2 10

Y s s s

U U s

+ +

=

2

=

2

( ) =

( ) 10 20 100 2 10

U s s + s + s + s + s

(11)

Transient Response Analysis with MATLAB Transient Response Analysis with MATLAB

t=0:0.01:8;

num=[2 10];

1.5

Unit Step Response

num [2 10];

den=[1 2 10];

sys=tf(num,den);

step(sys,t)

1

ut

grid

title('Unit Step Response','Fontsize',15') xlabel('t(sec)','Fontsize',15')

l b l('O ' ' i ' 1 ')

0.5

Outpu

ylabel('Output','Fontsize',15')

0

0 1 2 3 4 5 6 7 8

0

t (sec)

(12)

The law of conservation of momentum The law of conservation of momentum

By Newton's 2nd law,

( ) ( )

dv d

F ma m mv F dt d mv

dt dt

= = = → ⋅ =

2 2

1 1

2 1

( )

t v

t v

Fdt = d mv = mv − mv

∫ ∫

And if There is no input force, then we get

( ) 0, .

d mv = mv = const

The law of conservation of momentum And also,
(13)

Impulse Input Impulse Input

A bullet stuck in mass M A bullet stuck in mass M

(0 ) v

v v&

(0 ) v +

(0 ) v

Δ

t t

Δt 0 (0 )

v + Δt

0

A

Sudden change in the velocity and acceleration of bullet

(14)

Impulse Input

( M + m x bx ) && + & + kx = F t ( )

System equation :

Impulse Input

( ) ( ),

F t = − mv & = Δ A t δ t A t Δ

Impulse force :

0 0

: Magnitude of impulse force

0 0

0 0

( ) , (0 ) (0 )

A t δ t dt m v dt A t mv mv

+ +

Δ = − Δ = − − +

∫ ∫ &

Noting that, Magnitude of impulse force is equal to change of momentum!!

(0 ) (0 )

v + = x & + =

Initial velocity of M+m

Thus the system equation becomes

( ) ( )

y
(15)

Impulse Input p p

By taking the Laplace Transform,

[ ]

( M + m ) ⎡ ⎣ s X s

2

( ) − sx (0 ) − − x & (0 ) − + ⎤ ⎦ b sX s ( ) − x (0 ) − + kX s ( ) = mv (0 ) − − mx & (0 ) +

(0 ) (0 ) 0

x & − = x − =

Noting that we obtain

2

(0 ) (0 )

( ) ( )

mv mx

X s M m s bs k

− − +

= + + +

&

[ ]

2

[ ]

0 2

(0 ) (0 ) (0 ) (0 )

(0 ) lim ( ) lim ( ) lim

( )

t s s

s mv mx mv mx

x x t s sX s

M m s bs k M m

m

→ + →∞ →∞

− − + − − +

+ = = = =

+ + + +

& &

& &

(0 ) (0 )

2

x m v

M m

→ + = −

& +

2 2

( ) (0 ) 1 ( ) (0 )

( ) ( ) ( ) 2

M m x M m mv

X s M m s bs k M m s bs k M m

+ + + −

∴ = =

+ + + + + + +

&

(16)

Impulse Input p p

50 0 01 100 / 2500 / (0 ) 800 /

M k k b N k N

ex)

1 50.01 0.01 800 7.9984

( )

X s × ×

= =

50 , 0.01 , 100 / , 2500 / , (0 ) 800 /

M = kg m = kg b = Ns m k = N m v − = m s

0.02

Impulse Response of System

2 2

( ) 50.01 100 2500 50.02 50.01 100 2500

X s = s s = s s

+ + + +

num=[7.9984];

den=[50.01 100 2500];

sys=tf(num,den);

0.01 0.015

x(t)

impulse(sys) grid

title('Impulse Response of System','Fontsize',15')

-0.005 0 0.005

Response x

xlabel('t(sec)','Fontsize',15')

(17)

Ramp Response

M=10kg, b=20Ns/m, k=100N/m

2

( ) 2 10

( ) 2 10

Y s s

U

= +

Ramp Response

4 5

Unit-Ramp Response

num=[2 10];

( )

2

2 10

U s s + s +

( ) : , , 1

u t Unit ramp input u = α t α =

3.5 4 4.5

u(t)=t

num=[2 10];

den=[1 2 10];

sys=tf(num,den);

t=0:0.01:4;

2 2.5 3

t) and Input

u=t;

lsim(sys,u,t) grid

title('Unit-Ramp Response','Fontsize',15)

0.5 1 1.5

Output y(t u

y

( p p , , )

xlabel('t')

ylabel('Output y(t) and Input u(t)=t','Fontsize',15) text(0.8,0.4,'y','Fontsize',12)

text(0 4 0 8 'u' 'Fontsize' 12)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

y

t (sec)

text(0.4,0.8,'u','Fontsize',12) legend('y')

Referensi

Dokumen terkait

TAJUK: Development and Design Analysis of Experimental Rig to Identify Piezoelectric Actuator’s Transfer Function.. SESI PENGAJIAN: 2012/13 Semester2 Saya MUHAMMAD RIDHWAN

In the future research, based on this new power system dynamic model, numerical simulation with more complex system configuration and their control design could

1 Effect of trust of business social responsibility on business performance of mall scale industries: Structural Equation Modeling approach Abdullahi Hassan Gorondutse Department

4, 2001, pages 2196 – 2201 An approach to LEM modeling: construction, collision detection and dynamic simulation Abstract This paper presents an approach to apply the long element

Malaria parasite survey and environmental data assembly To demonstrate the use of the non-stationary geostatistical modeling approach, we use pub- licly available malaria prevalence

It is expected that the system dynamic model based on beer game modification is suitable to describe the condition of the disaster relief system in the humanitarian logistics,

Dynamic Behavior of Thermal Systems 15.2 Scope and Approach of This Chapter Intention Concentration on thermal components Emphasis of behavior in the time domain The translation of

Numerical examples and discussion In the first example, we consider the system with the distributed parameter transfer function, in which exact solution is known to estimate the