• Tidak ada hasil yang ditemukan

Mathematical Modeling of Dynamic Systems in State Space II

N/A
N/A
Protected

Academic year: 2024

Membagikan "Mathematical Modeling of Dynamic Systems in State Space II"

Copied!
21
0
0

Teks penuh

(1)

Mathematical Modeling

of Dynamic Systems in State Space II

(2)

Transfer Function and State Equation

( )( 2) 3 ( ) z s s   u s

( ) 2 ( ) 3 ( ) z t   z t  u t

1 1

1 1

1

( ), 2 ( )

2 3 ( )

x z t x z z t

x x u t

y x

   

  

 

  

 

 

1. 

2.

( ) 3

( ) 2

z s u ss

1 1 1

1 1

1

1 1

1

( ) 5 3 5( 2) 7 7

( ) 2 2 5 2

( ) 5 ( ) 7 ( ) 2

( ) 7 ( ), 2 7

2

2 7

, 5

5

z s s s

u s s s s

z s u s u s

s

let z s u s z z u

s

x x u

y z u

let x z

x u

  

   

  

 

  

  

 

    

  

    

 

(3)

Another way,

( ) 5 3

( ) 2

z s s u s s

 

1 1

1

1

( ) ( ) 5 3 2 ( )

2 ( )

( ) 5 3

5( 2 ) 3

5 7

, 2

7 5

z s u s s s Q s

q q u t

z t q q

q u q

u q

x x u

let x q

y x u

 

 

 

 

   

 

  

 

       

(4)

2

nd

order systems

(5)

ex1) Consider a system defined by

 y  6  y  11 y   6 y  6 u

1 2 3

x y

x y

x y



Choose state variables,

Then we obtain, 1 2

2 3

3 1 2 3

,

6 11 6 6

x x

x x

x y x x x u

     

 

 

1 1 1

2 2 2

3 3 3

0 1 0 0

0 0 1 0 , 1 0 0

6 11 6 6

x x x

x x u y x

x x x

         

         

             

            

         

State Equation and Transfer Function

Phase variables (each subsequent state variable is defined to be the derivative of the previous state variable.)

(6)

( ), k b b

my ky b y u y y y u

m m m

       

     

1 2

,

2

k

1

b

2

b

x x x x x u

m m m

    

 

The right side includes term. To explain the reason we should not include differentiation of u, assume

u 

1

,

2

x  y x  y 

Choose state variables,

( ) ( )

u   t unit impulse function

2

k b k ( )

x y dt y t

m m m 

    

ex2) Consider a mechanical system,

includes term. It means and cannot be accepted as a state variable.

x

2

( / ) ( ) k m  t x

2

(0)  

That’s why the standard form is

x   Ax  Bu y  Cx  Du

State Equation and Transfer Function

x   Ax  Bu

"udisplacement"

(7)

2 1 2

2

1 2

b k b b b k b b

x y u y y u u x x u

m m m m m m m m

k b b

x x u

m m m

   

                  

         

     

1 1

2

2 2

0 1 b

x x m

k b u

x x b

m m

m

 

   

       

                             

term has been eliminated.

u 

To eliminate term,

1

,

2

b

x y x y u

    m

u 

2

k b b b k b

y y y u y u y y

m m m m m m

d b k b b b

y u y y u u

dt m m m m m

        

           

     

     

     

 

So we choose state variables as,

Method 1: Choose a state variable that includes

u

State Equation and Transfer Function

(8)

1 2 0 1 2

y  a y  a y  b u  b u  b u

   

Consider a second-order system,

2

0 1 2

2

1 2

( ) ( )

Y s b s b s b

U s s a s a

 

  

2

0 1 2

2

1 2

( ) 1 ( )

( ) , ( )

Z s Y s

b s b s b U s s a s a Z s

    

 

1 2

0 1 2

z a z a z u y b z b z b z

  

  

 

 

1 2

, ,

let x  z x  z 

0 1 2 0

(

2 1 1 2

)

1 2 2 1

b z   b z   b z  b  a x  a x   u b x  b x  y

1 2

,

2 2 1 1 2

x x x a x a x u

       

Method 2: Include the input derivates in the output equation

2

1 2

1

s  a s  a b s

0 2

 b s b

1

2

( )

U s Z s ( ) Y s ( )

2 2 0 1 1 1 0 2 0

( ) ( )

y  b  a b x  b  a b x  b u

1 2

2 2 1 1 2

x x

x a x a x u

   

State Equation and Transfer Function

(9)

 

1 1 1

2 2 0 1 1 0 0

2 2 1 2 2

0 1 0

1 ,

x x x

u y b a b b a b b u

x a a x x

         

     

             

        

( ) ( 1)

1 1

( ) ( 1)

0 1 1

n n

n n

n n

n n

y a y a y a y

b u b u b u b u

   

    

 

 

1 1

2 2

1 1

1 2 1

0 1 0 0 0

0 0 1 0 0

,

0 0 0 1 0

1

n n

n n n n n

x x

x x

u

x x

x a a a a x

       

       

       

         

       

       

             

     

 

 

      

 

 

 

1 2

0 1 1 0 1 1 0 0

n n n n

n

x

y b a b b a b b a b x b u

x

   

      

   

 

   

 N-th order differential equation,

Method 2: Include the input derivates in the output equation

State Equation and Transfer Function

(10)

( ),

my     ky b y u    my   by   ky  bu 

2 2

( ) ( ) 1 ( )

, ,

( ) ( ) ( )

Y s b s Z s Y s

U s  ms bs k U s  ms bs k Z s  bs

   

( ms

2

 bs  k Z s ) ( )  U s ( ), bs Z s ( )  Y s ( )

ex2) Consider this mechanical system again,

2

1

( ) ( ) b ( ) k ( )

s Z s U s s Z s Z s

m m m

  

1 2

2 1 2

2

1 x x

k b

x x x u

m m m

y b x

   

State variables,

1

,

2

x  z x  z 

0 1

k b

m m

 

 

    

 

A

0 1 m

   

  

  B

 0 b 

 C

  0

D 

Draw Block Diagram,

System Matrices:

State Equation and Transfer Function

2 2

( ) ( ) ( )

, ( )

( ) ( )

Y s bs Y s u s

cU s  ms bs k b s  ms  Q s

 

(11)

ex) Consider a spring-mass-damper system

2 2

2 2

( )

d y dy du

m b k y u

dt dt dt

d y dy du

or m b ky b ku

dt dt dt

 

      

 

   

2

( ) ( )

Y s bs k

Transfer Function

U s ms bs k

  

 

1 1 1

2 2 2

0 1

0 u, 1

x x k b x

k b y

x x m m x

m m

 

              

                 

       

2 2 0

1 1 0

0 0

k k k

b a b

m m m

b b b

b a b

m m m

    

    

m

0 1 2

1 2

0, ,

,

b b b b k

b k

a a

m m

  

 

State variables:

State Eq:

Output Eq:

Rewrite equations:

State Equation and Transfer Function

(12)

0 1 2 3 4 5 6 7 8 0

0.5 1 1.5

Unit-Step Response (Method 2)

t(sec)

Output y(m)

t=0:0.02:8;

A=[0 1;-10 -2];

B=[0;1];

C=[10 2];

D=[0];

sys=ss(A,B,C,D);

[y,t]=step(sys,t);

plot(t,y) grid

title('Unit-Step Response (Method 2)','Fontsize',15) xlabel('t(sec)','Fontsize',15)

ylabel('Output y(m)','Fontsize',15)

If, m=10kg, b=20N-s/m, k=100N/m

 

1 1 1

2 2 2

0 1 0

u, 10 2

10 2 1

x x x

x x y x

         

  

               

     

Matlab Example

(13)

Transformation of Mathematical Models with MATLAB

( ) ( )

Y s numerator polynomial in s num U s  denominator polynomial in s  den

MATLAB command, [A, B, C, D] = tf2ss(num,den) ex) Consider,

3 2

( )

( ) 14 56 160

Y s s

U s  s s s

  

 

1 1

2 2

3 3

1 2 3

14 56 160 1

1 0 0 0

0 1 0 0

0 1 0 [0]

x x

x x u

x x

x

y x u

x

 

       

         

       

       

       

   

   

   

One of many possible state-space representations is,

gives a state space representation.

>> num=[0 0 1 0];

>> den=[1 14 56 160];

>> [A,B,C,D]=tf2ss(num,den) A =-14 -56 -160

1 0 0 0 1 0 B =1

00

C =0 1 0 D =0

(14)

x = Ax+ Bu y = Cx+ Du

can be written as,

ˆ ˆ

Px = AP x+ Bu y = CP x+ Du ˆ

or

x = P A P x+ P Bu ˆ

-1

ˆ

-1

y = CP x+ D u ˆ

- Since infinitely many n x n matrices can be a transformation matrix P, there are infinitely many state-space models for a given system.

I A 0

  

 Eigenvalues of an n x n matrix A are the roots of the characteristic equation.

The eigenvalues are also called the characteristic roots.

ex)

0 1 0

A 0 0 1 ,

6 11 6

 

 

  

    

 

3 2

1 0

I A 0 1 6 11 6

6 11 6

( 1)( 2)( 3) 0

    

  

      

    

Transformation of a State-Space Models into Another One

(15)

1 2 1

0 1 0 0

0 0 1 0

A

0 0 0 1

n n n

a a a a

 

 

 

 

 

 

    

 

   

Diagonalization of State Matrix A

Consider an n x n state matrix A :

1 2

2 2 2

1 2

1 1 1

2 2

1 1 1

x = Pz, P

n n

n n n

n

where

  

  

 

 

 

 

  

 

 

 

  

If matrix A has distinct eigenvalues and the state vector x is transformed into another state vector z by use of a transformation matrix P ,

1 1 2

0 P AP

0

n

 

 

 

  

 

 

is a canonical matrix and each column of P is an eigenvector of matrix A

P AP

1
(16)

Jordan Canonical Form

3 2 1

0 1 0

A 0 0 1

a a a

 

 

  

    

 

If matrix A involves multiple eigenvalues, diagonalization is not possible but matrix A can be transformed into a Jordan Canonical Form.

Consider the 3 x 3 matrix A :

1

,

2

,

3

where

1 2 3

       

Assume that matrix A has eigenvalues

1 1 2 3 1 2 3

( I   A) v  0 A : 3 3  matrix ,    , , v v v , ,

1 1 1

,

2 1 2

,

3 3 3

Av   v Av   v Av   v

1

I A  1 rank   

1 2 3

 

1 2 3

1 1 -1 1 1

3 3

0 0 0 0

A 0 0 , P AP 0 0

0 0 0 0

v v v v v v

 

 

 

   

   

     

   

   

can determine two eigenvectors .

v v

1

,

2

Case 1.

(17)

Jordan Canonical Form

1 3

2 2

1 1 3

1 0 1

x S z S 1

2

where  

  

 

 

   

 

 

will yield

1 1

1 3

1 0

S AS 0 0 J

0 0

 

 

   

 

 

This is in the Jordan Canonical Form.

1

I A  2 rank   

1 1 1 3 3 3

A v   v , A v   v

1 2 1

A   I v  v

1 2 3

 

1 2 3

1 1 3

1 0

A 0 0

0 0

v v v v v v

 

 

  

 

 

can determine one eigenvector .

v

1

Case 2.

2 1 1 2

A v   v  v

Find such that

v

2
(18)

Canonical Forms

Case 3. Complex Roots

• Diagonal (or Jordan) Canonical Form

(Partial Fraction Expansion)

Complex case의 diagonalization

방법 이용 x x bu

y Cx

  

0 0

j

j

 

 

  

    

1

2 2

1

2 2

j

K j

  

 

  

 

 

 

1 2 2 2

1 1 2 2 j j

K j

 

 

  

 

 

 

K KJ

 

J

 

 

 

  

Note : Complex Roots, Complex State x

J  K

1

 K

1 1

K P APK

AP   P

(19)

Canonical Forms

Case 3. Complex Roots

• Diagonal (or Jordan) Canonical Form

(Partial Fraction Expansion)

 

1 2

1 0

z z b u

b

y z

 

 

   

      

Ex)

( ) Y s

1 / s

1 / s b

1

( ) u s

b

2

( )

u s 

(20)

Canonical Forms

Case 3. Complex Roots

• Diagonal (or Jordan) Canonical Form

(Partial Fraction Expansion)

x   Ax  Bu

let

: diagonal

1 1

x P

P AP P Bu

 

 

let

1 1 1

J

Kz

z K K z K P Bu

  

 

1 2

z b u b

 

 

 

 

      

1 1 1

J

x P PKz

z K K z K P bu y CPKz

  

    

 

  

  

Step 1 Step 2

Step 3

(21)

End of Lecture 5(II)

Referensi

Dokumen terkait

For locally organized hierarchical collectives of intelligent dynamic systems, we have found necessary conditions of coordinability both with respect to the Coordinator’s task and in

In this study we develop the program to generate linearized state space model of multimachine power systems that is necessary for the study of both small signal stability analysis,

In this study we develop the program to generate linearized state space model of multimachine power systems that is necessary for the study of both small signal stability

In this paper, the dynamic change in the CoG location of a quadrotor will be developed in mathematical and physical model when the quadrotor carries a payload at hover.. The physi-

Dynamic output feedback control for a class of switched delay systems under asynchronous switching Rui Wanga,⇑, Zhi-Gang Wua, Peng Shib,c aSchool of Aeronautics and Astronautics,

For advanced process control, a state-space model is usually preferable to deal with high-order, multiple-mput multiple-output MIMO systems Thus, in this paper we aim al combining a

Conclusion Based on the results of research on the ability to solve problems with mathematical modeling strategies in terms of students' Mathematics Self-Efficacy through Generative

Using the freeze quantifier, we design a new temporal logic, half-order dynamic temporal logic HDTL to specify the properties of dynamic systems.. Then we revise the tableau method [9]