• Tidak ada hasil yang ditemukan

В Е С Т Н И К - aues.kz

N/A
N/A
Protected

Academic year: 2023

Membagikan "В Е С Т Н И К - aues.kz"

Copied!
13
0
0

Teks penuh

(1)

ДАУКЕЕВА»

ISSN 2790-0886

В Е С Т Н И К

АЛМАТИНСКОГО УНИВЕРСИТЕТА ЭНЕРГЕТИКИ И СВЯЗИ

Учрежден в июне 2008 года

Тематическая направленность: энергетика и энергетическое машиностроение, информационные, телекоммуникационные и космические технологии

2 (61) 2023

Импакт-фактор - 0.095

Научно-технический журнал Выходит 4 раза в год

Алматы

(2)

ВЕСТНИК АЛМАТИНСКОГО УНИВЕРСИТЕТА ЭНЕРГЕТИКИ И СВЯЗИ СВИДЕТЕЛЬСТВО

о постановке на переучет периодического печатного издания, информационного агентства и сетевого издания

№KZ14VPY00024997 выдано

Министерством информации и общественного развития Республики Казахстан

Подписной индекс – 74108

Бас редакторы – главный редактор Стояк В.В.

к.т.н., профессор

Заместитель главного редактора Жауыт Алгазы, доктор PhD Ответственный секретарь Шуебаева Д.А., магистр

Редакция алқасы – Редакционная коллегия

Главный редакторСтояк В.В., кандидат технических наук, профессор Алматинского Университета Энергетики и Связи имени Гумарбека Даукеева, Казахстан;

Заместитель главного редактораЖауыт А., доктор PhD, ассоциированный профессор Алматинского Университета Энергетики и Связи имени Гумарбека Даукеева, Казахстан;

Сагинтаева С.С., доктор экономических наук, кандидат физико-математических наук, профессор математики, академик МАИН;

Ревалде Г., доктор PhD, член-корреспондент Академии наук, директор Национального Совета науки, Рига, Латвия;

Илиев И.К., доктор технических наук, Русенский университет, Болгария;

Белоев К., доктор технических наук, профессор Русенского университета, Болгария;

Обозов А.Д., доктор технических наук, НАН Кыргызской Республики, заведующий Лабораторией «Возобновляемые источники энергии», Кыргызская Республика;

Кузнецов А.А., доктор технических наук, профессор Омского государственного технического университета, ОмГУПС, Российская Федерация, г. Омск;

Алипбаев К.А., PhD, доцент Алматинского Университета Энергетики и Связи имени Гумарбека Даукеева, Казахстан;

Зверева Э.Р., доктор технических наук, профессор Казанского государственного энергетического университета, Российская Федерация, г. Казань;

Лахно В.А., доктор технических наук, профессор Национального университета биоресурсов и природопользования Украины, кафедра компьютерных систем, сетей и кибербезопасности, Украина, Киев;

Омаров Ч.Т., кандидат физико-математических наук, директор Астрофизического института имени В.Г. Фесенкова, Казахстан;

Коньшин С.В., кандидат технических наук, профессор Алматинского Университета Энергетики и Связи имени Гумарбека Даукеева, Казахстан;

Тынымбаев С.Т., кандидат технических наук, профессор Алматинского Университета Энергетики и Связи имени Гумарбека Даукеева, Казахстан.

За достоверность материалов ответственность несут авторы.

При использовании материалов журнала ссылка на «Вестник АУЭС» обязательна.

(3)

39

ЭНЕРГЕТИКА И ЭНЕРГЕТИЧЕСКОЕ МАШИНОСТРОЕНИЕ

УДК 001082 https://doi.org/10.51775/2790-0886_2023_61_2_39

ACTUAL PROBLEMS AND SOLUTIONS FOR THE 6-10 KV POWER GRIDS

V.I. Dmitrichenko, E.N. Zhagyparov*, A.M. Nurseit, M.A. Jetpissov

Non-profit JSC "Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev", Almaty, Kazakhstan

E-mail: dvi2309@mail.ru, e.zhagiparov@aues.kz, m.jetpissov@aues.kz, as.nurseit@aues.kz

Annotation. The features of operation of the 6-10 kV distributionpower grids, which are commonly utilized in the power supply systems of industrial enterprises and cities, are considered and analyzed. It is shown that cabling, high-voltage motors and instrument voltage transformers are very vulnerable to overvoltages. It is noted that the existing systems for limiting overvoltages and protecting against ground faults, using surge arresters, RC-dampers, arc suppressing reactors, the neutral resistors of power grids and relay protection, are characterized by a number of advantages, but are ineffective when used separately. The advantage of the combined system of overvoltage and ground fault protection for power grids is proven and shown, and the results of operational testing are the basis for practical use.

Keywords: protection, ground faults, overvoltages, cable lines, insulation.

Introduction

Power grids with the voltage of 6-10 kV, which are also called distribution power grids, are an important link in the modern power supply systems and account for up to 45% of the length of 0.4-110 kV power grids. The reliable operation of these power grids, functioning in the cities and industrial enterprises, depends on reliable and uninterrupted operation of consumers, energy efficiency and safety of the power systems.

The most frequent damages in such power grids (up to 80%) occur from ground faults (GFs), which are initiated in most cases by switching, induced and resonant overvoltages (OVs). They occur with all sorts of rapid changes in the power grid operation modes due to operations with switching devices (switching on and off individual parts of the power grid, especially during faults), surges on elements of overhead lines, moisture ingress, mechanical damage, etc.

Moreover, with the advent of ground faults, in addition to switching OVs, dangerous arc overvoltages appear, created by the capacitive ground fault current that has arisen in the power grid with an intermittent arc burning pattern, most likely in the initial stage up to a time of 0.1 s. [1].

A particular notice should be given to the problem in the 6-10 kV power grids, which is in the widespread use of an outdated, dangerous, manual, unreasonably long method for determining a feeder with a ground fault by successively switching outgoing feeders off and on.

The indicated reasons for OVs lead to an increase in the fault rate, first of all, in the 6-10 kV power grids with weakened insulation, which is typical in most cases for cable lines (CL) with long service life. In the supply of power grids, there is still a very large number of them and amounts to 70 % of their total length in the Republic of Kazakhstan [2].

In addition, high vulnerability to OVs is also characteristic of modern cables with XLPE insulation (CL-XLPE). This is creation, development and accumulation of defects (treeing) in the insulation from almost every OV pulse, which results in insulation breakdown and damage [2].

It should also be noted that the voltage transformers and windings of high-voltage motors are significantly damaged by OVs. The latter are electrical equipment with reduced insulation [1,4].

(4)

40

OV occurrences are numerous and varied for reasons, so ground fault situations are unavoidable. In this regard, it is vital to register and monitor emerging faults for determining the intensity and sources of overvoltages in order to take preventive measures [3].

If the emerging GF is not localized nor eliminated in a timely manner, then, as a rule, it can turn into more severe faults – phase-to-phase short circuits with the so-called simultaneous rolling outages of several outgoing consumer feeders. This causes unjustified interruptions in the power supply to consumers and the need to perform long-term costly restoration repairs.

Thus, the primary cause of vast majority of GFs in the 6-10 kV power grids, as is known, are OVs and it is required to limit them in order to reduce the fault rate.

Results

There are protections against switching OVs, as well as combined protections (against switching, arc, induced OVs, etc.). Switching OVs are limited by means of non-linear surge arresters (SA) and RC-dampers, which in most cases do not allow insulation breakdown and a ground fault does not occur. It should be noted that RC-dampers are installed, as a rule, directly at high-voltage electric motors, protecting windings and control units from OVs [1].

If a GF has occurred for other reasons (mechanical damage, moisture ingress, etc.) and develops, combined protections will already come into effect. They already limit the joint action of switching OVs (from switching in the power grid, when tripping during phase-to-phase faults) and arc-induced ones initiated by arc discharge processes at the fault location (emergence - extinguishing of a grounding arc, resonant overvoltages). In this case, the combined protection against OVs can be carried out by means of the same surge arresters, RC-dampers starting to function (only when ground fault currents occur) arc-suppressing reactors, resistors in an artificially created neutral of the power grid and relay protection for tripping [3,5].

However, the use of surge arresters in the 6-10 kV power grids to limit surges has, alongside with advantages (fast response time, advancing of huge current pulses, reliability) following disadvantages:

- high levels of operation, completely unacceptable for power grids with weakened insulation, including for XLPE cables;

- it is difficult and problematic to obtain information on cases of limitation and registration of OVs in order to determine the intensity of occurrence and sources of overvoltages [3];

- initiation of its secondary pulse of induced overvoltage in the event of a ground fault, creating a discharge current surge of the damaged phase, the amplitude value of which is up to 7 times of full ground fault currents [7].

Another type of electrical equipment that, as a rule, limits switching OVs in the power grids is RC- dampers that protect electrical equipment with reduced insulation (high-voltage electric motors, converters).

The advantages of RC-dampers include lower levels of protection against OVs, absence of operation thresholds, decrease in the steepness of the overvoltage wave, and reliability. However, it is necessary to note inefficiency of their action with predominance of low frequencies in the spectrum of OV pulses. In addition, absence of operation detection does not make it possible to determine effectiveness of RC-dampers at substations with electrical equipment that initiates higher harmonics - switching by vacuum circuit breakers, surge arresters, transients in arc-suppressing reactors [6].

The presented analysis of functional capabilities for surge arresters and RC-dampers shows feasibility of their use as a preventive measure to limit OVs in the 6-10 kV power grids in order to protect insulation from breakdown and ground faults [5].

Limiting overvoltages, preventing ground faults, surge arresters and RC- dampers, however, do not prevent occurrence of ground faults for other reasons - mechanical damage, moisture ingress, etc. Therefore, in cases of GFs, compensation of capacitive currents by arc-suppressing reactors (ASR), resistive neutral grounding (RN) and relay protection against ground faults with tripping the damaged feeder. Their purpose is to prevent transition of the initial ground fault to phase-to-phase and multiple faults with group, emergency tripping of outgoing feeders [1].

The main functions of these systems are:

- limiting the values of capacitive currents during a ground fault, first of all, to extinguish the arc discharge without tripping the damaged section of the power grid for an acceptable duration;

- limitation of switching and arc OVs initiated by processes during GFs;

- selective tripping of the damaged feeder with a GF with a minimum time delay.

However, implementation of these systems (ASR, RN, relay protection) of their protective functions is accompanied by the following disadvantages [4,9,11]:

(5)

41

- unacceptable in some cases, ASR inertia (delay in operation from the moment of fault), which leads to phase-to-phase and multiple faults and to group outages of outgoing feeders (Figure 1);

- significant residual currents due to ASR detunings and inability to compensate for the currents of minor harmonics (higher harmonics, active and direct components of the current) [2,7];

- unpredictability of ASR operation and a neutral resistor in case of mechanical damage (or moisture ingress) in the cable, accompanied by two-three-phase short circuits and very large and dangerous overvoltages;

- inability to limit switching OVs inevitably leads to the impossibility of using for diagnostic purposes the method of artificial metal ground fault in the power grids with weakened insulation [8] due to the risk of overvoltage and insulation breakdown (Figure 2);

- generation of higher current harmonics into the power grid by arc suppressing reactors during transient processes when limiting the GF capacitive currents, as well as during the operation of surge arresters that cut off overvoltage peaks [6];

- impossibility to register surges emerging in 6-10 kV power grids.

Figure 1 - ASR operation delay (with magnetic biasing by the control system) during capacitive current compensation when phase A is shorted to ground

(6)

42

Figure 2 - Transition of an artificial metal ground fault of phase C into a phase to phase short circuit, tripped by instantaneous protection in a 10 kV power grid with weakened insulation

Thus, the analysis of known surge suppression systems in the 6-10 kV power grids shows their serious shortcomings, especially for power grids with outdated, weakened insulation of traditional cables, as well as for modern cables with XLPE insulation [2]. Moreover, registration and monitoring of OVs in the 6-10 kV power grids are not performed at all [3].

Proposals to reduce fault rates in the 6-10 kV power grids

To reduce fault rates in the 6-10 kV power grids and minimize a negative impact of the presented factors on the power grids, a system for limiting and registering overvoltages - an electrical cabinet ORP-10 was developed at NJSC AUPET and put into operational testing at the Energy Company JSC AZhK, Almaty (Figure 3). The electrical cabinet shown contains a block of RC-dampers and a unit of registration and limitation of OVs at low levels, equipped with their own devices for operation recording. A reduced level of operation (1.73 times lower compared to the standard surge arresters OPN-10 kV) is provided by the installation of surge arresters OPN-6 kV in the 10 kV electric netwrok [12]).

In the normal mode of the power grid, the electrical cabinet ORP-10 is connected and limits OVs.

However, when a ground fault occurs, the additionally appearing arc and induced overvoltages are limited for 0.5 s, after which the electrical cabinet is turned off, otherwise the surge arrester OPN-6 kV at the undamaged phases will be damaged from overheating due to the increased voltage from a phase to phase-to- phase (line) voltage.

Registration of arc OVs is carried out as a result of operation, first of all, of 6 kV surge arresters, which have a lower response voltage compared to numerous standard 10 kV surge arresters installed in the power grid (16-17 kV versus 25-26 kV) [11 ].

(7)

43

Figure 3 – Operational testing of the electrical cabinet ORP-10 at a 110/10 kV substation in the Energy Company JSC AZhK, Almaty

Justification for application of the system for limitation and registration of OVs

As already noted, the electrical cabinet ORP-10 is permanently connected to the substation section and carries out limitation and registration of OVs both in the normal mode of the power grid and for other 0.5 s from the moment of a GF initiation.

At the same time, the known devices for limiting and protecting against OVs (capacitive current compensation, resistive neutral grounding, ground fault protection) begin to function only from the moment of the GF initiation, and the ASR and relay protection have a delay in the range of 0.08-0.5 s [1 ,2]. In addition, in this period, only the ORP-10 device continues to perform the protective function of limiting very dangerous OVs in magnitude and their registration, accelerating the processes of extinguishing the electric arc.

Also, during the specified period of time, the ASR begins to enter the mode of compensation for the GF capacitive current in the damaged feeder to acceptable values much faster. In turn, the GF relay protection, if installed, during the same time will determine the damaged feeder and isolate it from thepower grid. Thus, the transition of the GF into phase-to-phase short circuits is excluded and damage is localized.

Calculation of the current setting for registration of switching OV

Registration of switching OVs is carried out by means of RC-dampers containing capacitors C1 (0.25 μF) and resistors R1 (50 Ohm), shown in Figure 3. Calculations are made for a 10 kV supply of power grid.

Determination of the current setting for registration of switching OV is made from the condition of failure from two factors:

- long-term permissible neutral voltage shifting - up to 15% of the phase voltage;

- unbalance current of RC-dampers, which, as practice shows, is up to 5% of their total capacitive current that occurs during GF:

𝐼𝑅𝑆𝑂𝑉≥ (0.15 + 0.05) · к𝑟· 3𝐼0𝑅𝐶, (1) Where, 𝐼𝑅𝑆𝑂𝑉- current setting for registration of switching OVs, A;

- Кr- reliability coefficient, usually taken 1.2–1.3;

- 3I0RC - total capacitive current of RC-dampers, A.

(8)

44

𝐼0𝑅𝐶 = 3 ·𝑈𝑝

𝑋С, (2)

where, Up - phase voltage 6 kV for a power grid of 10 kV;

- Хс is the capacitance of each capacitor of RC-dampers and is calculated by the well-known expression:

𝑋С=12· 𝜋 · 𝑓 · 𝐶1; (3) 𝑋С=12· 3.143· 50 · 0.25 · 10−6= 12738.9 Ohm.

Since this capacitance is much larger than active R1 (50 ohms), the latter is not considered further.

Wherein:

𝐼0𝑅𝐶 = 3 · 6000

12738.9= 1.41 А.

As a result:

𝐼𝑅𝑆𝑂𝑉≥ (0.15 + 0.05) · 1.3 · 1.41 = 0.36 А.

This is a value of the primary current setting, which is then transformed into a secondary current and applied taking into account the transformer ratio of the zero-sequence current transformer.

Heating calculation and surge arrester sizing

Limitation of OVs at low levels (Figure 3) is carried out by surge arresters FV1 with a rated voltage of 6 kV for a 10 kV power grid.

In the normal mode of the power grid, the specified surge arresters-6 kV are supplied with their nominal phase voltage of the power grid, also 6 kV, at which long-term operation without overheating and damage is possible. However, when a fault occurs, quasi-stationary OVs occur, on which switching, arc, induced and other overvoltages are superimposed, which can lead to overheating of the surge arresters and they can work for a very limited time.

In this regard, for a given duration of OVs, determined by the ground fault protection with isolating the damaged feeder, calculate the characteristics and select the surge arrester.

Initial data.

1. The highest value of quasi-stationary OVs, UHC - 10.5 kV;

2. The duration of applied OV, t - 0.5 s.

3. Preliminarily selected - OPN-P-6/7.2/10/250 UHL 1;

where: - 6 – rated voltage 𝑈𝑁, kV;

- 7.2 - the highest long-term allowable voltage 𝑈𝐻𝐴, kV;

- 10 – rated discharge current IP, kA;

- 250 - switching current pulse (30/60 µs), A;

- 1.52 - allowable multiplicity of T applied OV for t = 0.5 s.

The condition for selecting the surge arrester by heating is made by the expression:

𝑈STOV< 𝑈𝐻𝐴, (4) where, USTOV is the largest short-term overvoltage for t = 0.5 s applied to the surge arrester.

𝑈STOV=𝑈НС

Т ; (5) 𝑈STOV=10.5

1.52= 6.9 𝑘𝑉.

The condition, USTOV < 𝑈𝐻𝐴 (6.9 < 7.2) is fulfilled and the selected OPN-6 kV can be used.

(9)

45

Calculation and selection of a current-limiting resistor for surge arresters

A GF in the power grid, i.e. phase-to-ground shorting, in which limitation and registration of OV s is carried out by a surge arrester at a lower level, leads to a high probability of a surge arrester operation on the undamaged phase. This creates a two-phase short circuit with huge currents destroying the sure arrester. To prevent this, a resistor R2 is installed in the ground circuit, as well as a surge arrester operation recorder - PS1 (Figure 3).

In this regard, it is necessary to determine the resistance value and the power dissipation of the energy of the specified resistor R2.

The condition for choosing the resistance value R2 is the expression:

𝐼𝑅𝑆< 𝐼𝑅2, (6) where, 𝐼𝑅𝑆 is the minimum value of the switching impulse of the operating current of the industrial recorder PS1, 150 A;

- IR2 - switching current pulse through resistor R2, A.

The current through the resistor R2 is created by applying a quasi-stationary voltage equal to 10.5 kV when a two-phase short circuit occurs. This happens when one phase is shorted to ground for a number of reasons. Further, another undamaged phase from the operation of its surge arrester due to the arising OV also is shorted to ground. Moreover, the switching pulse of OVs only opens the surge arrester, which then closes after the pulse of OV decreases below the remaining voltage.

In this case, the resistance of the resistor R2 is determined from the expression:

𝑅2=10500

150 = 70 𝑂ℎ𝑚.

Taking into account the reliability factor equal to 1.2:

𝑅2 = 70

1.2= 58.33 𝑂ℎ𝑚.

Definitively accepted value R2 = 60 Ohm.

In this case, the current through the resistor R2 will be:

𝐼𝑅2=10500

60 = 175 А.

As a result, the condition according to expression (6) (150 < 175) is fulfilled and the resistor R2 with a resistance of 60 Ohm can be used.

The power of energy release on the resistor R2 is determined as the operational testing of the electric cabinet ORP-10 shows, by the value of a single switching current pulse through the resistor IR2 = 175 A, with a duration of 30 μs (with a normalized duration of the switching overvoltage pulse in the form of 30/60 μs) and is calculated from the known expression:

Р𝑅2= 𝐼𝑅22 · 𝑅2· 30 · 10−6; (7) Р𝑅2= 1752· 60 · 30 · 10−6= 55.12 𝑊.

Thus, in the practical application of the electrical cabinet ORP-10, the resistor R2 used in it, should be selected with a resistance of 60 ohms and a dissipation power of at least 55 watts.

Results of operational testing of the overvoltage limiting and recording system

Operational testing of the system for limiting and registering of OVs in the form of electrical cabinet ORP-10 has been performed for more than one year at one of the 110/10 kV substations in AZhK JSC in Almaty on a 10 kV section with the following characteristics:

- power supply mode - isolated neutral;

- mixed cable-overhead line power grid;

- ground fault protection is installed with signaling;

- annual growth of faults is up to 8-10%.

(10)

46

Figure 4 - Efficiency of RC-dampers during GF from closing an additional load in the power grid. There is a smoothing of phase current and zero sequence current ripples in the damaged feeder during the transition period and up to the moment of 0.62 s, and then the RC-dampers are switched off according to the operating

conditions

During operational testing of the electrical cabinet ORP-10, the following results were obtained.

1. The operation of RC-dampers occurs from March to November, 10-12 times a month. The efficiency of using RC-dampers is shown in Figure 4.

This information, as well as the analysis of circuit diagrams and electrical equipment of the power grid, damage statistics, allow us to conclude that the primary cause of up to 80% of OVs and GFs in the power grid under consideration is switching during switching operations, as well as the impact on the elements of overhead power lines by trees, wind, rainy weather.

2. Operation of OPN-6 kV occurred 6 times, which ensured limitation of OVs on the undamaged phases and prevented GF transition into a phase to phase fault.

3. Analysis of damage statistics in many 6-10 kV power grids shows that in addition to the initial ground fault which occurs for a number of reasons, this fault turns into multiple insulation damage, exclusively from secondary OVs, with the so-called rolling (repeated) outages of outgoing feeders. They can be up to 50-150% in relation to the number of initial GF.

4. Cases of GFs with transition to phase-to-phase faults, which occur from high OV during the transition period, indicate the need and practicability to reduce the fault rate to apply a system for limiting and registering OVs in the following combinations:

- with compensation of capacitive currents and ground fault protection with signaling, which will allow to work with GF for an allowable time;

- with ground fault protection with tripping of a damaged feeder, excluding the OV impact on the power grid.

Thus, the conducted studies and results of operational testing are the basis for the practical application of the combined system for protecting power grids from OV and faults in order to reduce fault rates and increase the reliability of consumer power supply.

Conclusions

1. An analysis of the 6-10 kV power grids with a high fault rate showed the lack of efficiency of the existing systems for limiting OVs, which are the cause of ground fault initiation with transition to phase-to- phase faults, as a rule, in the power grids with weakened insulation.

2. Necessity of increasing the sensitivity and reliability of protection for the 6-10 kV power grids from OVs and GFs by using a system for limiting and registering OVs at lower operation voltages based on OPN- 6 kV in a 10 kV power grid and RC-dampers is proven.

(11)

47

3. A system for limiting and recording OVs in the form of an electrical cabinet ORP-10 was developed, manufactured and installed for operational testing, which showed the efficiency of operation and ability to obtain reliable information to determine the intensity of overvoltages and their sources in order to analyze and take preventive measures.

4. Results of the operational testing of the electrical cabinet ORP-10 confirmed the assumption that the main root cause of OVs, initiating faults in the power grids, are high-voltage switching, as well as the impact on the elements of overhead power lines by trees, wind, rainy weather.

5. In order to reduce fault rates in the 6-10 kV power grids, necessity and practicability of using a combined system for limiting and registering OV, acting in conjunction with compensation of capacitive currents, or with ground fault protection with a tripping action (without compromising the reliability of power supply) .

6. Economic effect of the system application will be a significant reduction in the fault rate in the 6-10 kV distribution power grids, reducing the duration and costs of repair activities.

LIST OF REFERENCES

1. Aksenov Y.P., Kassikhin S.D., Slavinskiy A.Z., Ustinov V.N., Yaroshenko I.V. Diagnostika muft dlya KL s polietilenovoy izolyatsiyey. Podkhody i kriterii // Novosti ElektroTekhniki [Diagnostics of couplings for CL with polyethylene insulation. Approaches and criteria // Electrical Engineering News].

2020. №3 (123). S. 36-41.

2. Aksenov Y.P., Kassikhin S.D., Slavinskiy A.Z., Ustinov V.N., Yaroshenko I.V. Sovershen- stvovaniye diagnostirovaniya tekhnicheskogo sostoyaniya izolyatsionnykh konstruktsiy s ispol'zovaniyem analiza elementarnykh yavleniy pri razryade // Energoekspert [Improvement of diagnostics of the technical condition of insulating structures using the analysis of elementary phenomena during discharge //

Energoexpert]. 2020.

3. Bulychev A.V., Dementiy YU.A., Kozlov V.N. Eksperimental'nyye issledovaniya upravlya-emogo zazemleniya neytrali s funktsiyey kompensatsii polnogo toka zamykaniya na zemlyu v setyakh 6-10 kV //

Releynaya zashchita i avtomatizatsiya [Experimental studies of control-neutral grounding with the function of compensation of the total earth fault current in 6-10 kV power grids // Relay protection and automation].

2017. №4 (29). S. 37-41.

4. Bulychev A.V., Dementiy Y.A., Kozlov V.N. Kompensatsiya toka OZZ v raspredelitel'nykh setyakh 6-10 kV. Novyye tekhnologii // Novosti ElektroTekhniki [Compensation of the OZZ current in distribution power grids of 6-10 kV. New technologies // Electrical Engineering News]. 2018. №1 (109). S.

28-30.

5. Dmitriev M.V. Registratsiya chisla srabatyvaniy OPN. Neobkhodimost ili izlishestvo? // Novosti Elektrotekhniki [Registration of the number of actuations of NSL. Necessity or excess? // Electrical Engineering News]. - 2008 - No. 1.

6. Emelyanov N.I, Ilinykh M.V., Sarin L.I. Sredstva i metody ogranicheniya vnutrennikh perenaprya- zheniy // Energetik [Means and methods of limiting internal overvoltages // Energetik]. – 2011 - №10 - s. 6- 10.

7. Goncharov A.F., Yazev V.N., Pavlov B.B. Povyshenie effektivnosti primeneniya RS ogranichiteley kommutatsionnykh pe-renapryazheniy // Informatsionno - analiticheskiy sbornik -

"Krasnoyarskenepgonadzor" [Improving the efficiency of the use of RS limitations of switching overvoltages // Information and analytical collection - " Krasnoyarskenepgonadzor "]. - 2002. - No. 2. - C. 81 - 84.

8. Likhachev F.A. Zamykaniya na zemlyu v setyakh with izolirovannoy neytralyu ic kompen-satsiey emkostnykh tokov, Energiya [Earth faults inpower grids with isolated neutral ic compensation of capacitive currents, Energy], 1971 g, 152 s.

9. Aragova M.A. Ogranichiteli perenapryazheniy v elektroustanovkakh 6-750 kV. Metodicheskoe i spravochnoe posobie [Surge limiters in electrical installations 6-750 kV. Methodological and reference manual]. - M.: "Znak", 2001. - 240 s.

10. Patent of the Republic of Kazakhstan for Useful Model No. 3725 KZ, H02J 3/00. Device for diagnostics and protection of electrical equipment in power grids. / Dmitrichenko V.I., Bashkirov M.V., Bugubaev S.A., Nigmatullin R.M., Zhagyparov E.N.; publ. 03/01/2019, bull. No. 9.

(https://gosreestr.kazpatent.kz).

11. Pravila tekhnicheskoy ekspluatatsii elektricheskikh stantsiy i setey. Republic of Kazakhstan [Rules of technical operation of electric stations and power grids. Republic of Kazakhstan]. – 2015 – c. 160.

(12)

48

12. Rukovodstvo po zashchite elektricheskikh setey 6-1150 kV ot grozovykh i vnutrennikh pere- napryazheniy RD 153-34. 3-35. 125-99. Chast 2. Razdely 5.4, 5.5, 5.6 [Guidelines for the protection of electricalpower grids 6-1150 kV from lightning and internal overvoltages RD 153-34. 3-35. 125-99. Part 2.

Sections 5.4, 5.5, 5.6.].

13.RD 34.20.179. Tipovaya instruktsiya po kompensatsii emkostnogo toka zamykaniya na zemlyu v elektricheskikh setyakh 6-35 kV [Standard instruction for compensation of capacitive earth fault current in 6- 35 kV electricalpower grids].

14. Shirkovets A.I. Klassifikatsiya zamykaniy na zemlyu i otsenka ustoychivosti seti k ferrorezo-nansu na osnove rezultatov registratsii avariynykh sobytiy // Releynaya zashchita i avtomatizatsiya [Classification of earth faults and assessment of thepower grid's resistance to ferroresonance based on the results of emergency event registration // Relay protection and automation]. - 2013. - No. 3 (sentyabr) - s. 26-30.

15. Shirkovets A.I. Issledovanie parametrov vysshikh garmonik v toke zamykaniya na zemlyu i otsenka ikh vliyaniya na gashenie odnofaznoy dugi // Releynaya zashchita i avtomatizatsiya [Investigation of the parameters of higher harmonics in the earth fault current and evaluation of their effect on the quenching of a single-phase arc // Relay protection and automation]. - 2011. - №4.- s. 54-59.

6-10 КВ ЭЛЕКТР ЖЕЛІЛЕРІНДЕГІ ӨЗЕКТІ МӘСЕЛЕЛЕР ЖӘНЕ ОЛАРДЫ ШЕШУ ЖОЛДАРЫ

В.И. Дмитриченко, Е.Н. Жагыпаров*, А.М. Нұрсеит, М.А. Джетписов

«Ғұмарбек Дәукеев атындағы Алматы энергетика және байланыс университеті» КЕАҚ, Алматы, Қазақстан

E-mail: dvi2309@mail.ru, e.zhagiparov@aues.kz, m.jetpissov@aues.kz, as.nurseit@aues.kz

Аңдатпа. Өнеркәсіптік кәсіпорындар мен қалаларды электрмен жабдықтау жүйелерінде кең таралған 6-10 кВ тарату электр желілерін пайдалану ерекшеліктері қарастырылып, талданды. Кабельдік желілер, жоғары вольтты қозғалтқыштар және кернеуді өлшеу трансформаторлары асқын кернеулерге өте осал екендігі көрсетілген. Кернеуді шектегіштерді, RC сөндіргіштерін, доғалық сөндіргіш реакторларын, бейтарап электр желілеріндегі резисторларды мен релелік қорғаныстарды қолданатын қолданыстағы кернеуді шектеу және бір фазалы жерге тұйықталу токтарынан қорғау жүйелері бірқатар артықшылықтармен сипатталатыны, бірақ жеке қолдануда тиімсіз екендігі атап өтілді. Электр желілерін асқын кернеулер мен қысқа тұйықталудан қорғаудың біріктірілген жүйесінің артықшылығы негізделген және көрсетілген, ал тәжірибелік жұмыс нәтижелері практикалық қолдануға негіз болып табылады.

Түйін сөздер: қорғаныс, жерге тұйықталу, асқын кернеулер, кабельдік желілер, оқшаулағыш.

АКТУАЛЬНЫЕ ПРОБЛЕМЫ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ 6-10 КВ И ПУТИ ИХ РЕШЕНИЯ

В.И. Дмитриченко, Е.Н. Жагыпаров*, А.М. Нурсеит, М.А. Джетписов

НАО «Алматинский университет энергетики и связи имени Гумарбека Даукеева», Алматы, Казахстан

E-mail: dvi2309@mail.ru, e.zhagiparov@aues.kz, m.jetpissov@aues.kz, as.nurseit@aues.kz

Аннотация. Рассмотрены и проанализированы особенности использования распределительных электрических сетей 6-10 кВ, распространенных в системах электроснабжения промышленных предприятий и городов. Было показано, что кабельные линии, высоковольтные двигатели и трансформаторы измерения напряжения очень уязвимы для перенапряжений. Было отмечено, что существующие системы ограничения напряжения и защиты от однофазных токов заземления с использованием ограничителей напряжения, RC- выключателей, дуговых реакторов, резисторов в нейтральных электрических сетях и релейных защит характеризуются рядом преимуществ, но неэффективны при индивидуальном применении. Обоснованы и продемонстрированы преимущества интегрированной системы защиты электрических сетей от перенапряжений и коротких замыканий, а результаты опытной работы являются основой практического применения.

Ключевые слова: защита, заземление, перенапряжения, кабельные линии, изолятор.

(13)

49

Басылымның шығыс деректері

Мерзімді баспасөз басылымының атауы «Алматы энергетика және байланыс университетінің Хабаршысы» ғылыми- техникалық журналы

Мерзімді баспасөз басылымының меншік иесі «Ғұмарбек Дәукеев атындағы Алматы энергетика және байланыс университеті»

коммерциялық емес акционерлік қоғамы, Алматы, Қазақстан

Бас редактор Профессор, т.ғ.к., В.В. Стояк

Қайта есепке қою туралы куәліктің нөмірі мен

күні және берген органның атауы № KZ14VPY00024997, күні 17.07.2020,

Қазақстан Республикасының Ақпарат және қоғамдық даму министрлігі

Мерзімділігі Жылына 4 рет (тоқсан сайын)

Мерзімді баспасөз басылымының реттік нөмірі және жарыққа шыққан күні

Жалпы нөмір 61, 2-басылым, 2023 жылғы 30 маусым

Басылым индексі 74108

Басылым таралымы 200 дана

Баға Келісілген

Баспахана атауы, оның мекен-жайы «Ғұмарбек Дәукеев атындағы Алматы энергетика және байланыс университеті»

КЕАҚ баспаханасы, Байтұрсынұлы көшесі, 126/1 үй, А120 каб.

Редакцияның мекен-жайы 0 5 0 0 1 3 , Алм а т ы қ. , «Ғ ұ м а р бе к Дә ук е ев а т ы н да ғы А л м а т ы эн ер г ет и ка ж ә н е ба й ла н ы с ун и в ер с и т ет і » К ЕА Қ, Б а й т ұ р с ы н ұ лы к- с і , 1 2 6 / 1 ү й , ка б. А 2 2 4 , т е л. : 8 ( 7 2 7 ) 2 9 2 5 8 4 8 , 7 08 8 8 0 7 7 9 9 , e - m a i l : v e s t n i k @ a u e s . k z

Выходные данные

Название периодического печатного издания Научно-технический журнал «Вестник Алматинского университета энергетики и связи»

Собственник периодического печатного

издания Некоммерческое акционерное общество «Алматинский университет энергетики и

связи имени Гумарбека Даукеева», Алматы, Казахстан

Главный редактор Профессор, к.т.н., Стояк В.В.

Номер и дата свидетельства о постановке на переучет и наименование выдавшего органа

№ KZ14VPY00024997 от 17.07.2020

Министерство информации и общественного развития Республики Казахстан

Периодичность 4 раза в год (ежеквартально)

Порядковый номер и дата выхода в свет

периодического печатного издания Валовый номер 61, выпуск 2, 30 июня 2023

Подписной индекс 74108

Тираж выпуска 200 экз.

Цена Договорная

Наименование типографии, ее адрес Типография НАО «Алматинский университет энергетики и связи имени Гумарбека Даукеева», ул. Байтурсынулы, дом 126/1, каб. А 120

Адрес редакции 050013, г. Алматы, НАО «Алматинский у ниверситет э нергетики и с вязи имени Гумарбека Даукеева», ул. Байтурсынулы, дом 126/1, каб. А 224, т ел.: 8 (727) 292 58 48, 708 880 77 99, e-mail: vestnik@aues.kz

Issue output

Name of the periodical printed publication Scientific and technical journal "Bulletin of the Almaty University of Power Engineering and Telecommunications"

Owner of the periodical printed publication Non-profit joint-stock company "Almaty University of Power Enginnering and Telecommunications named after Gumarbek Daukeyev", Almaty, Kazakhstan

Chief Editor Professor, candidate of technical sciences Stoyak V.V.

Number and date of the registration certificate and the name of the issuing authority

№ KZ14VPY00024997 from 17.07.2020

Ministry of Information and Social Development of the Republic of Kazakhstan

Periodicity 4 times a year (quarterly)

Serial number and date of publication of a periodical printed publication

Number 61, edition 2, June 30, 2023

Subscription index 74108

Circulation of the issue 200 copies

Price Negotiable

The name of the printing house, its address Printing house of Non-profit joint-stock company "Almaty University of Power Enginnering and Telecommunications named after Gumarbek Daukeyev", 126/1 Baitursynuly str., office A 120, Almaty, Republic of Kazakhstan

Editorial office address 050013, Non-profit joint-stock company "Almaty University of Power Enginnering and Telecommunications named after Gumarbek Daukeyev",

A 2 2 4 , t e l .: 8 (727) 292 58 48, 708 880 77 99, e-mail: vestnik@aues.kz

Referensi

Dokumen terkait

Кузьмина Оксана Николаевна ученый секретарь диссертационного совета Доктор философии PhD по специальности 6D070600 - Геология и разведка месторождений полезных ископаемых НАО