ÓÄÊ 517.51
Ã.Ê. Ìóñàáàåâà
Åâðàçèéñêèé íàöèîíàëüíûé óíèâåðñèòåò èìåíè Ë.Í.Ãóìèëåâà, Ðåñïóáëèêà Êàçàõñòàí, ã. Àñòàíà
E-mail: [email protected] Íåðàâåíñòâî òèïà Áî÷êàðåâà
 ðàáîòå èçó÷àåòñÿ çàâèñèìîñòü ñâîéñòâ ñóììèðóåìûõ ðÿäîâ Ôóðüå è èõ êîýôôèöèåíòîâ, à èìåííî, ÷òî ìîæíî ñêàçàòü î êîýôôèöèåíòàõ Ôóðüå ôóíêöèè, êîòîðûå ïðèíàäëåæàò ïðî- ñòðàíñòâó Ëîðåíöà L
2,r.  ñòàòüå ïîëó÷åíî íîâîå äîêàçàòåëüñòâî òåîðåìû Áî÷êàðåâà Ñ.Â., êîòîðûé ïîêàçàë, ÷òî íåðàâåíñòâà òèïà Õàðäè- Ëèòòëâóäà, êîòîðûå ïîêàçûâàþò ñâÿçü èíòå- ãðàëüíûõ ñâîéñòâ ôóíêöèé è ñâîéñòâ ñóììèðóåìîñòè åå êîýôôèöèåíòîâ Ôóðüå äëÿ òðèãî- íîìåòðè÷åñêèõ ñèñòåì èìåþò äðóãîé âèä äëÿ ôóíêöèè èç ïðîñòðàíñòâà Ëîðåíöà L
2,r, ÷åì äëÿ ôóíêöèè èç ïðîñòðàíñòâà L
p,rïðè p ̸ = 2, â ñëó÷àå êîãäà r óäîâëåòâîðÿåò ñëåäóþùåìó óñëîâèþ 2 < r ≤ ∞. Ìåòîäû äîêàçàòåëüñòâà Áî÷êàðåâà Ñ.Â. îñíîâûâàëèñü íà ñïåöèôèêå òðèãîíîìåòðè÷åñêèõ ðÿäîâ.  ñòàòüå èñïîëüçóåòñÿ äðóãîé ïîäõîä, áàçèðóþùèéñÿ íà ýêñòðà- ïîëÿöèè ëèíåéíûõ îïåðàòîðîâ. Ýòîò ìåòîä ïîçâîëèë ïîëó÷èòü íîâîå äîêàçàòåëüñòâî íåðà- âåíñòâà òèïà Õàðäè - Ëèòòëâóäà â ñëó÷àå 2 < r ≤ ∞ è äîêàçàòü íîâûé ðåçóëüòàò â ñëó÷àå 1 < r ≤ 2 äëÿ ïðîèçâîëüíûõ îðòîíîðìèðîâàííûõ ñèñòåì â ïðîñòðàíñòâàõ Ëîðåíöà L
2,r. Êëþ÷åâûå ñëîâà: Ðÿäû Ôóðüå, êîýôôèöèåíòû Ôóðüå, ïðîñòðàíñòâî Ëîðåíöà, íåðàâåíñòâî òèïà Áî÷êàðåâà.
G.K.Mussabayeva Inequality type Bochkarev
CWe study the dependence of the properties of summable Fourier series and their coecients, namely, what can we say about the Fourier coecients of a function that belongs to the Lorentz L
2,r. In this paper a new proof of S.V. Bochkarev, which showed that the inequalities of Hardy- Littlewood, which show the relationship of integral properties of the functions and properties of summability of its Fourier coecients for trigonometric systems have another view of the Lorentz spaces L
2,r, in the case when r satises the condition 2 < r ≤ ∞. Methods of proof S.V. Bochkarev based on the specics of trigonometric series. The article takes a dierent approach, based on the extrapolation of linear operators. This method allowed us to obtain a new proof of an inequality of Hardy - Littlewood in the case 2 < r ≤ ∞ and prove a new result in the case 1 < r ≤ 2 for arbitrary orthonormal systems in Lorentz spaces L
2,r.
Key words: Fourier series, Lorentz space, Fourier coecients, inequality type Bochkarev.
Ã.. Ìóñàáàåâà
Áî÷êàðåâ òèïòi òåñiçäiê
Á³ë æ³ìûñòà Ôóðüå ©àòàðûíû ©îñûíäûëàó ©àñèåòòåði ìåí îëàðäû êîýôôèöèåíòòåðiíi
òºóåëäiëiãi çåðòòåëåäi, ÿ¡íè L
2,rËîðåíö êåiñòiãiíäåãi ôóíêöèÿíû Ôóðüå êîýôôèöèåíòòåði òóðàëû íå àéòó¡à áîëàòûíäû¡û æàéëû. Á³ë ìà©àëàäà L
2,r, (2 < r ≤ ∞ ) êåiñòiãiíäåãi ôóíê- öèÿëàð ³øií Õàðäè - Ëèòòëâóä òåñiçäiãiíi ò³ði L
p,rêåiñòiãiíäå áàñ©à áîëóûí ê°ðñåòåòií Ñ.Â.Áî÷êàðåâ òåîðåìàñûíû æàà äºëåëäåìåñi àëûíäû. Áî÷êàðåâòi äºëåëäåó ºäiñòåði òðè- ãîíîìåòðèÿëû© ©àòàðëàð¡à íåãiçäåëãåí. Á³ë ìà©àëàäà ñûçû©òû îïåðàòîðëàðäû ýêñòðîïîëÿ- öèÿëàó ºäiñi ©îëäàíûë¡àí. Á³ë ºäiñ àð©ûëû 2 < r ≤ ∞ æà¡äàéûíäà Õàðäè-Ëèòëëâóä òèïòi òåñiçäiêòi æàà äºëåëäåói àëûíäû æºíå 1 < r ≤ 2 øàðòû îðûíäàë¡àí êåçäå L
2,rêåiñòiãií- äåãi êåç êåëãåí îðòîíîðìàëäàí¡àí æ³éå ³øií æàà íºòèæåãå ©îë æåòêiçäiê.
Ò³éií ñ°çäåð: Ôóðüå ©àòàðëàðû, Ôóðüå êîýôôèöèåíòòåði, Ëîðåíö êåiñòiãi, Áî÷êàðåâ òèïòi òåñiçäiê.
ISSN 15630285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series 3(82) 2014
Ââåäåíèå
Îäíèì èç âàæíûõ çàäà÷ ãàðìîíè÷åñêîãî àíàëèçà ÿâëÿåòñÿ èçó÷åíèå âçàèìîñâÿçè èí- òåãðàëüíûõ ñâîéñòâ ôóíêöèé è ñâîéñòâ ñóììèðóåìîñòè åå êîýôôèöèåíòîâ Ôóðüå. Õîðî- øî èçâåñòíûå íåðàâåíñòâà Õàðäè-Ëèòòëâóäà, êîòîðûå ïîêàçûâàþò ñâÿçü èíòåãðàëüíûõ ñâîéñòâ ôóíêöèé è ñâîéñòâ ñóììèðóåìîñòè åå êîýôôèöèåíòîâ Ôóðüå, áûëè ïîëó÷åíû Õàðäè è Ëèòòëâóäîì äëÿ òðèãîíîìåòðè÷åñêèõ ñèñòåì è äëÿ ôóíêöèé èç ïðîñòðàíñòâà Ëåáåãà. Ïýëè îáîáùèë ýòè ðåçóëüòàòû íà ñëó÷àé ðàâíîìåðíî îãðàíè÷åííîé îðòîíîðìè- ðîâàííîé ñèñòåìû [1]. Àíàëîãè÷íûå ðåçóëüòàòû äëÿ ïðîñòðàíñòâ Ëîðåíöà áûëè ïîëó-
÷åíû Ñòåéíîì (ñì.[2]). Äàëüíåéøåå ðàçâèòèå äàííûå ðåçóëüòàòû ïîëó÷èëè â ðàáîòàõ [3] - [11]. Ñ.Â. Áî÷êàðåâûì áûëî ïîêàçàíî, ÷òî äëÿ ïðîñòðàíñòâà Ëîðåíöà L
2,rôîðìà íåðàâåíñòâà îòëè÷àåòñÿ îò êëàññè÷åñêèõ íåðàâåíñòâ òèïà Õàðäè - Ëèòòëâóäà. Èì áûëî äîêàçàíî ñëåäóþùåå óòâåðæäåíèå.
Òåîðåìà. Ïóñòü { ϕ
n}
∞n=1- îðòîíîðìèðîâàííàÿ íà [0, 1] ñèñòåìà êîìïëåêñíîçíà÷íûõ ôóíêöèé,
∥ ϕ
n∥
∞≤ M, n = 1, 2, ...,
è ïóñòü ôóíêöèÿ f ∈ L
2,r, 2 < r ≤ ∞ , òîãäà ñïðàâåäëèâî ñëåäóþùåå íåðàâåíñòâî sup
n∈N
1
| n |
12(log(n + 1))
12−1rn
∑
m=1
a
∗m≤ C ∥ f ∥
L2,r, (1)
ãäå a
n- êîýôôèöèåíòû Ôóðüå ïî ñèñòåìå { ϕ
n}
∞n=1.
 äàííîé ðàáîòå ïðèâîäèòñÿ íîâîå äîêàçàòåëüñòâî òåîðåìû Áî÷êàðåâà, à òàêæå ïîëó-
÷àåì íåðàâåíñòâî òèïà Õàðäè è Ëèòòëâóäà â ñëó÷àå 1 < r ≤ 2.
Ëåììà. Ïóñòü 1 < q < 2, { ϕ
n}
∞n=1- îðòîíîðìèðîâàííàÿ ñèñòåìà, ∥ ϕ
n∥ ≤ M, ∀ n = 1, 2, 3, ... f ∼ ∑
m∈N
f(m)ϕ ˆ
m, òîãäà äëÿ ëþáîãî êîíå÷íîãî ïîäìíîæåñòâà A èç N èìååò ìåñòî íåðàâåíñòâî
1
| A |
1/q∑
m∈A
f ˆ (m)
≤ (
1 + M
√ 2
) ( q q − 1
)
1q−12∥ f ∥
Lq,2.
Äîêàçàòåëüñòâî. Âîñïîëüçóåìñÿ òåì, ÷òî îðòîíîðìèðîâàííûå ñèñòåìû îãðàíè÷åíû â ñîâîêóïíîñòè.
∑
m∈A
f ˆ (m)
≤ M | A |∥ f ∥
L1(2)
è èç ðàâåíñòâà Ïàðñåâàëÿ èìååì
∑
m∈A
f ˆ (m)
≤ | A |
1/2∥ f ∥
L2. (3)
Ïóñòü τ ∈ (0, 1)
f
1(x) =
{ f(x), | f(x) | ≤ f
∗(τ ),
0, â îñòàëüíûõ ñëó÷àÿõ,
f
0(x) = f (x) − f
1(x).
Òîãäà äëÿ ïðîèçâîëüíîãî 0 < τ < 1, èìååì
f ˆ (m) = ˆ f
0(m) + ˆ f
1(m)
∑
m∈A
f(m) ˆ
≤
∑
m∈A
f ˆ
0(m)
+
∑
m∈A
f ˆ
1(m)
≤
≤ M | A |
∫
τ 0f
∗(s)ds + | A |
1/2(∫
1τ
(f
∗(s))
2ds )
1/2. Ïðèìåíÿÿ íåðàâåíñòâî Ãåëüäåðà ê ïåðâîìó ñëàãàåìîìó, ïîëó÷èì
∑
m∈A
f ˆ (m)
≤ M | A | (∫
τ0
( t
1qf
∗(t) )
2dt t
)
1/2(∫
τ 0( t
q′1)
2dt t
)
1/2+
+ | A |
1/2(∫
∞τ
t
2q−1(f
∗(t))
2t
1−2qdt )
1/2.
Äàëåå, äëÿ âòîðîãî ñëàãàåìîãî ó÷èòûâàÿ , ÷òî ñóïðåìóì âåëè÷èíû t
1−2qäîñòèãàåòñÿ ïðè t = τ , äëÿ q < 2 èìååì îöåíêó
∑
m∈A
f ˆ (m)
≤ ∥ f ∥
Lq,2( M
√ 2 | A | τ
1−1q( q
q − 1 )
1/2+ | A |
1/2τ
12−1q)
. Ïóñòü òåïåðü τ = (
q−1 q
) / | A | , ïîëó÷èì
∑
m∈A
f ˆ (m)
≤ (
1 + M
√ 2 )
| A |
1/q( q
q − 1 )
1q−12∥ f ∥
Lq,2.
Òåîðåìà 1 Ïóñòü { ϕ
n}
∞n=1- îðòîíîðìèðîâàííàÿ ñèñòåìà, ∥ ϕ
n∥ ≤ M, ∀ n = 1, 2, 3, ...
Òîãäà äëÿ ëþáîãî f ∈ L
2,r[0, 1], 2 < r ≤ ∞ âûïîëíåíî íåðàâåíñòâî:
sup
N≥8
1
N
1/2(log
2(N + 1))
1/2−1/rN
∑
m=1
f ˆ
∗(m) ≤ (4 + 2 √
2M ) ∥ f ∥
L2r.
Äîêàçàòåëüñòâî. Ïóñòü N ≥ 8. Òîãäà äëÿ ïðîèçâîëüíîãî q : 1 < q < 2 è f ∈ L
q,2âåðíà îöåíêà: ∥ f ∥
Lq2≤ ∥ f ∥
L2r∥ 1 ∥
Lpr′, ãäå
1q=
12+
1pè
r1′=
12−
1r,
∥ 1 ∥
Lpr′= (
1∫
0
t
r′ p dt
t
)
1/r′= (
1∫
0
t
r′(
1q−12)
dtt
)
1/r′= (
1 r′
(
1q−12)
)
1/r′≤ (
2q 2−q
)
1/r′. ∥ f ∥
Lq,2≤ (
2q2−q
)
1/r′∥ f ∥
L2,r. Âîñïîëüçóåìñÿ ëåììîé è ïîëó÷èì ñëåäóþùåå 1
N
1/qN
∑
k=1
f ˆ
∗(k) ≤ (
1 + M
√ 2
) ( q q − 1
) (
1q−12)
∥ f ∥
Lq,2≤
≤ (
1 + M
√ 2
) ( q q − 1
) (
q−2) ( 2q 2 − q
)
1/r′∥ f ∥
L2,r. Ó÷èòûâàÿ ïðîèçâîëüíîñòü ïàðàìåòðà q, ïîëîæèì q =
log2 log2N2N+2
< 2,
1
q
−
12=
log12N
, N
1/q= 2N
1/2. 1
| N |
1/2N
∑
k=1
f ˆ
∗(k) ≤ 2 (
1 + M
√ 2 ) (
1 1 −
1q) (
1q−12) ( 1
1 q
−
12)
1/r′∥ f ∥
L2,r≤
≤ 2 (
1 + M
√ 2 )
1 (
12
−
log12N)
1 log2N
(log
2N )
1/r′∥ f ∥
L2,r.
Ó÷èòûâàÿ, ÷òî N ≥ 8, ìû ïîëó÷èì ñëåäóþùóþ îöåíêó 1
| N |
1/2(log
2N )
1/2−1/rN
∑
k=1
f ˆ
∗(k) ≤ (4 + 2 √
2M ) ∥ f ∥
L2,r.
Âçÿâ âåðõíþþ òî÷íóþ ãðàíü ïî âñåì N èç N , ïîëó÷èì sup
N≥8
1
N
1/2(log
2(N + 1))
1/2−1/rN
∑
k=1
f ˆ
∗(k) ≤ (4 + 2 √
2M) ∥ f ∥
L2,r.
Òåîðåìà 2 Ïóñòü { ϕ
n}
∞n=1- îðòîíîðìèðîâàííàÿ ñèñòåìà, ∥ ϕ
n∥ ≤ M , ∀ n = 1, 2, 3, ...
f ∼ ∑
∞k=1
f(k)ϕ ˆ
k.Òîãäà äëÿ ëþáîãî f ∈ L
2,r[0, 1], 1 ≤ r ≤ 2 âûïîëíåíî íåðàâåíñòâî:
∥ f ∥
L2,r≤ C
∞
∑
k=1
f ˆ
∗(k)k
−12(log
2(k + 1))
1r−12.
Äîêàçàòåëüñòâî. Èñïîëüçóÿ äâîéñòâåííîå ïðåäñòàâëåíèå íîðìû â ïðîñòðàíñòâå Ëî- ðåíöà L
2,r, ïîëó÷èì
∥ f ∥
L2,r= sup
∥g∥L2,r′=1 1
∫
0
f (t)g(t)dt = sup
∥g∥L2,r′=1 N
∑
k=1
f ˆ (k)ˆ g(k).
Èñïîëüçóÿ ñâîéñòâî íåâîçðàñòàþùåé ïåðåñòàíîâêè, îöåíèì ñâåðõó ñëåäóþùóþ íîðìó
∥ f ∥
L2,r≤ sup
∥g∥L2,r′=1
∞
∑
k=1
f ˆ
∗(k)ˆ g
∗(k) ≤ sup
∥g∥L2,r′=1
∞
∑
k=1
( f ˆ
∗(k) − f ˆ
∗(k + 1) ) ∑
km=1
ˆ
g
∗(m) =
= sup
∥g∥L 2,r′=1
∞
∑
k=1
( f ˆ
∗(k) − f ˆ
∗(k + 1) )
k
1/2(log
2k)
1/2−1/r1
k
1/2(log
2k)
1/2−1/rk
∑
m=1
ˆ
g
∗(m).
Òàê êàê
sup
∥g∥L2,r′=1
sup
k
1
k
1/2(log
2k)
1/2−1/rk
∑
m=1
ˆ
g
∗(m) ≤ C,
ïîëó÷èì
∥ f ∥
L2,r≤ C
∞
∑
k=1
( f ˆ
∗(k) − f ˆ
∗(k + 1) )
k
1/2(log
2k)
1/2−1/r≈
≈ C
∞
∑
k=1
f ˆ
∗(k) (
k
1/2(log
2k)
1/2−1/r− (k − 1)
1/2(log
2k)
1/2−1/r) .
Ïî òåîðåìå Ëàãðàíæà, ïîëó÷èì ñëåäóþùåå
∥ f ∥
L2,r≤ C
∞
∑
k=1
f ˆ
∗(k)k
−1/2(log
2k)
1/2−1/r.
Ëèòåðàòóðà
[1] Áåðã É., Ëåôñòðåì É. Èíòåðïîëÿöèîííûå ïðîñòðàíñòâà. // Ìîñêâà. 1980. 264 c. Ñ. 6068.
[2] Stein Elias M. Interpolation of linear operators // Trans. Amer. Math. Soc. 1956. 83, ðð 482 -492.
[3] Áî÷êàðåâ C.Â. Òåîðåìà Õàóñäîðôà - Þíãà - Ðèññà â ïðîñòðàíñòâàõ ëîðåíöà è ìóëüòèïëèêàòèâíûå íåðàâåíñòâà //
Òðóäû ìàòåìàòè÷åñêîãî èíñòèòóòà èì. Â.À.Ñòåêëîâà. 1997.Ò.219. C 103 -114.
[4] Íóðñóëòàíîâ Å. Ä. Î êîýôôèöèåíòàõ êðàòíûõ ðÿäîâ Ôóðüå èç Lp-ïðîñòðàíñòâ // Èçâ. ÐÀÍ. Ñåð. ìàòåì. 2000.
64:1. C.95-122.
[5] Kopezhanova A., Nursultanov E., Persson L.-E. Relations between summability of the Fourier coecients in regular systems and functions from some Lorentz type spaces // Proc. A. Razmadze Math. Inst. 2010. 152. pp 73 -88. 1995.
V.38. P. 26352646.
[6] Æàíòàêáàåâà À.Ì., Íóðñóëòàíîâ Å.Ä. Î ñóììèðóåìîñòè êîýôôèöèåíòîâ Ôóðüå ôóíêöèé èç ïðîñòðàíñòâà Ëîðåí- öà // Ìàòåìàòè÷åñêèé æóðíàë. Àëìàòû. 2013. N 1(47). C. 73-89.
[7] Äüÿ÷åíêî Ì. È., Íóðñóëòàíîâ Å. Ä. Òåîðåìà Õàðäè- Ëèòòëâóäà äëÿ òðèãîíîìåòðè÷åñêèõ ðÿäîâ ñα- ìîíîòîííûìè êîýôôèöèåíòàìè // Ìàòåì. ñá. 2009. 200:11. C.45-60. 10811093.
[8] Zhantakbayeva À.Ì., Dyachenko M.I., Nursultanov E.D. Hardy- Littlewood type theorems Amsterdam : Eurasian Mathematical Journal. 2013. N 2. V 4. pp 140-143.
[9] Nakayama A. and Kuwahara F. A Macroscopic Turbulence Model for Flow in a Porous Medium // ASME J. Fluids Eng.
1999. V. 121. P. 427433.
[10] Òëåóõàíîâà Í.Ò., Ìóñàáàåâà Ã.Ê. Î êîýôôèöèåíòàõ ðÿäîâ Ôóðüå ïî òðèãîíîìåòðè÷åñêèì ñèñòåìàì â ïðîñòðàíñòâå L2,r// Ìàòåì. çàìåòêè. 2013. T.94:6. C.884-888.
References
[1] J.Bergh, J.L Interpolation spaces// Berlin. 1976. 264 p.
[2] Stein Elias M. Interpolation of linear operators // Trans. Amer. Math. Soc. 1956. 83, ðð 482-492.
[3] S. V. Bochkarev. Hausdor-Young-Riesz Theorem in Lorentz Spaces and Multiplicative Inequalities // Proc. Steklov Inst.
Math.1997. V.219. P.96-107.
[4] E.D. Nursultanov. On the coecients of multiple Fourier series inLp-spaces // Izvestiya: Mathematics. 2000. 64:1. pp 95-122.
[5] Kopezhanova A., Nursultanov E., Persson L.-E. Relations between summability of the Fourier coecients in regular systems and functions from some Lorentz type spaces // Proc. A. Razmadze Math. Inst. 2010. 152. pp 73-88.
[6] A.M. Zhantakbayeva, E.D. Nursultanov. On summability of the Fourier coecients from Lorentz spaces // Mathematical journal. Almaty.2013. N 1(47). pp 73-89.
[7] M.I.Dyachenko, E.D. Nursultanov. Hardy-Littlewood theorem for trigonometric series withα-monotone coecients //
Int. Sbornik: Mathematics.2009. 200:11. pp 45-60.
[8] Zhantakbayeva À.Ì., Dyachenko M.I., Nursultanov E.D. Hardy- Littlewood type theorems : Eurasian Mathematical Journal. 2013. N 2. V 4. pp 140-143.
[9] N. T. Tleukhanova, G. K. Musabaeva. On the coecients of fourier series with respect to trigonometric systems in the spaceL2,r,// Izvestiya: Mathematics. 2000. 64:1. pp 95-122.
[10] E.D. Nursultanov. Net spaces and inequalities of Hardy-Littlewood type // Sbornik: Mathematics. 1998. 189:3. pp 83- 102.