• Tidak ada hasil yang ditemukan

Неравенство типа Бочкарева Бочкарев типтi тесiздiк

N/A
N/A
Protected

Academic year: 2023

Membagikan "Неравенство типа Бочкарева Бочкарев типтi тесiздiк"

Copied!
6
0
0

Teks penuh

(1)

ÓÄÊ 517.51

Ã.Ê. Ìóñàáàåâà

Åâðàçèéñêèé íàöèîíàëüíûé óíèâåðñèòåò èìåíè Ë.Í.Ãóìèëåâà, Ðåñïóáëèêà Êàçàõñòàí, ã. Àñòàíà

E-mail: [email protected] Íåðàâåíñòâî òèïà Áî÷êàðåâà

 ðàáîòå èçó÷àåòñÿ çàâèñèìîñòü ñâîéñòâ ñóììèðóåìûõ ðÿäîâ Ôóðüå è èõ êîýôôèöèåíòîâ, à èìåííî, ÷òî ìîæíî ñêàçàòü î êîýôôèöèåíòàõ Ôóðüå ôóíêöèè, êîòîðûå ïðèíàäëåæàò ïðî- ñòðàíñòâó Ëîðåíöà L

2,r

.  ñòàòüå ïîëó÷åíî íîâîå äîêàçàòåëüñòâî òåîðåìû Áî÷êàðåâà Ñ.Â., êîòîðûé ïîêàçàë, ÷òî íåðàâåíñòâà òèïà Õàðäè- Ëèòòëâóäà, êîòîðûå ïîêàçûâàþò ñâÿçü èíòå- ãðàëüíûõ ñâîéñòâ ôóíêöèé è ñâîéñòâ ñóììèðóåìîñòè åå êîýôôèöèåíòîâ Ôóðüå äëÿ òðèãî- íîìåòðè÷åñêèõ ñèñòåì èìåþò äðóãîé âèä äëÿ ôóíêöèè èç ïðîñòðàíñòâà Ëîðåíöà L

2,r

, ÷åì äëÿ ôóíêöèè èç ïðîñòðàíñòâà L

p,r

ïðè p ̸ = 2, â ñëó÷àå êîãäà r óäîâëåòâîðÿåò ñëåäóþùåìó óñëîâèþ 2 < r ≤ ∞. Ìåòîäû äîêàçàòåëüñòâà Áî÷êàðåâà Ñ.Â. îñíîâûâàëèñü íà ñïåöèôèêå òðèãîíîìåòðè÷åñêèõ ðÿäîâ.  ñòàòüå èñïîëüçóåòñÿ äðóãîé ïîäõîä, áàçèðóþùèéñÿ íà ýêñòðà- ïîëÿöèè ëèíåéíûõ îïåðàòîðîâ. Ýòîò ìåòîä ïîçâîëèë ïîëó÷èòü íîâîå äîêàçàòåëüñòâî íåðà- âåíñòâà òèïà Õàðäè - Ëèòòëâóäà â ñëó÷àå 2 < r ≤ ∞ è äîêàçàòü íîâûé ðåçóëüòàò â ñëó÷àå 1 < r ≤ 2 äëÿ ïðîèçâîëüíûõ îðòîíîðìèðîâàííûõ ñèñòåì â ïðîñòðàíñòâàõ Ëîðåíöà L

2,r

. Êëþ÷åâûå ñëîâà: Ðÿäû Ôóðüå, êîýôôèöèåíòû Ôóðüå, ïðîñòðàíñòâî Ëîðåíöà, íåðàâåíñòâî òèïà Áî÷êàðåâà.

G.K.Mussabayeva Inequality type Bochkarev

CWe study the dependence of the properties of summable Fourier series and their coecients, namely, what can we say about the Fourier coecients of a function that belongs to the Lorentz L

2,r

. In this paper a new proof of S.V. Bochkarev, which showed that the inequalities of Hardy- Littlewood, which show the relationship of integral properties of the functions and properties of summability of its Fourier coecients for trigonometric systems have another view of the Lorentz spaces L

2,r

, in the case when r satises the condition 2 < r ≤ ∞. Methods of proof S.V. Bochkarev based on the specics of trigonometric series. The article takes a dierent approach, based on the extrapolation of linear operators. This method allowed us to obtain a new proof of an inequality of Hardy - Littlewood in the case 2 < r ≤ ∞ and prove a new result in the case 1 < r ≤ 2 for arbitrary orthonormal systems in Lorentz spaces L

2,r

.

Key words: Fourier series, Lorentz space, Fourier coecients, inequality type Bochkarev.

Ã.‰. Ìóñàáàåâà

Áî÷êàðåâ òèïòi òå­ñiçäiê

Á³ë æ³ìûñòà Ôóðüå ©àòàðûíû­ ©îñûíäûëàó ©àñèåòòåði ìåí îëàðäû­ êîýôôèöèåíòòåðiíi­

òºóåëäiëiãi çåðòòåëåäi, ÿ¡íè L

2,r

Ëîðåíö êå­iñòiãiíäåãi ôóíêöèÿíû­ Ôóðüå êîýôôèöèåíòòåði òóðàëû íå àéòó¡à áîëàòûíäû¡û æàéëû. Á³ë ìà©àëàäà L

2,r

, (2 < r ≤ ∞ ) êå­iñòiãiíäåãi ôóíê- öèÿëàð ³øií Õàðäè - Ëèòòëâóä òå­ñiçäiãiíi­ ò³ði L

p,r

êå­iñòiãiíäå áàñ©à áîëóûí ê°ðñåòåòií Ñ.Â.Áî÷êàðåâ òåîðåìàñûíû­ æà­à äºëåëäåìåñi àëûíäû. Áî÷êàðåâòi­ äºëåëäåó ºäiñòåði òðè- ãîíîìåòðèÿëû© ©àòàðëàð¡à íåãiçäåëãåí. Á³ë ìà©àëàäà ñûçû©òû îïåðàòîðëàðäû ýêñòðîïîëÿ- öèÿëàó ºäiñi ©îëäàíûë¡àí. Á³ë ºäiñ àð©ûëû 2 < r ≤ ∞ æà¡äàéûíäà Õàðäè-Ëèòëëâóä òèïòi òå­ñiçäiêòi­ æà­à äºëåëäåói àëûíäû æºíå 1 < r ≤ 2 øàðòû îðûíäàë¡àí êåçäå L

2,r

êå­iñòiãií- äåãi êåç êåëãåí îðòîíîðìàëäàí¡àí æ³éå ³øií æà­à íºòèæåãå ©îë æåòêiçäiê.

Ò³éií ñ°çäåð: Ôóðüå ©àòàðëàðû, Ôóðüå êîýôôèöèåíòòåði, Ëîðåíö êå­iñòiãi, Áî÷êàðåâ òèïòi òå­ñiçäiê.

ISSN 15630285 KazNU Bulletin. Mathematics, Mechanics, Computer Science Series 3(82) 2014

(2)

Ââåäåíèå

Îäíèì èç âàæíûõ çàäà÷ ãàðìîíè÷åñêîãî àíàëèçà ÿâëÿåòñÿ èçó÷åíèå âçàèìîñâÿçè èí- òåãðàëüíûõ ñâîéñòâ ôóíêöèé è ñâîéñòâ ñóììèðóåìîñòè åå êîýôôèöèåíòîâ Ôóðüå. Õîðî- øî èçâåñòíûå íåðàâåíñòâà Õàðäè-Ëèòòëâóäà, êîòîðûå ïîêàçûâàþò ñâÿçü èíòåãðàëüíûõ ñâîéñòâ ôóíêöèé è ñâîéñòâ ñóììèðóåìîñòè åå êîýôôèöèåíòîâ Ôóðüå, áûëè ïîëó÷åíû Õàðäè è Ëèòòëâóäîì äëÿ òðèãîíîìåòðè÷åñêèõ ñèñòåì è äëÿ ôóíêöèé èç ïðîñòðàíñòâà Ëåáåãà. Ïýëè îáîáùèë ýòè ðåçóëüòàòû íà ñëó÷àé ðàâíîìåðíî îãðàíè÷åííîé îðòîíîðìè- ðîâàííîé ñèñòåìû [1]. Àíàëîãè÷íûå ðåçóëüòàòû äëÿ ïðîñòðàíñòâ Ëîðåíöà áûëè ïîëó-

÷åíû Ñòåéíîì (ñì.[2]). Äàëüíåéøåå ðàçâèòèå äàííûå ðåçóëüòàòû ïîëó÷èëè â ðàáîòàõ [3] - [11]. Ñ.Â. Áî÷êàðåâûì áûëî ïîêàçàíî, ÷òî äëÿ ïðîñòðàíñòâà Ëîðåíöà L

2,r

ôîðìà íåðàâåíñòâà îòëè÷àåòñÿ îò êëàññè÷åñêèõ íåðàâåíñòâ òèïà Õàðäè - Ëèòòëâóäà. Èì áûëî äîêàçàíî ñëåäóþùåå óòâåðæäåíèå.

Òåîðåìà. Ïóñòü { ϕ

n

}

n=1

- îðòîíîðìèðîâàííàÿ íà [0, 1] ñèñòåìà êîìïëåêñíîçíà÷íûõ ôóíêöèé,

∥ ϕ

n

≤ M, n = 1, 2, ...,

è ïóñòü ôóíêöèÿ f ∈ L

2,r

, 2 < r ≤ ∞ , òîãäà ñïðàâåäëèâî ñëåäóþùåå íåðàâåíñòâî sup

n∈N

1

| n |

12

(log(n + 1))

121r

n

m=1

a

m

≤ C ∥ f ∥

L2,r

, (1)

ãäå a

n

- êîýôôèöèåíòû Ôóðüå ïî ñèñòåìå { ϕ

n

}

n=1

.

 äàííîé ðàáîòå ïðèâîäèòñÿ íîâîå äîêàçàòåëüñòâî òåîðåìû Áî÷êàðåâà, à òàêæå ïîëó-

÷àåì íåðàâåíñòâî òèïà Õàðäè è Ëèòòëâóäà â ñëó÷àå 1 < r ≤ 2.

Ëåììà. Ïóñòü 1 < q < 2, { ϕ

n

}

n=1

- îðòîíîðìèðîâàííàÿ ñèñòåìà, ∥ ϕ

n

∥ ≤ M, ∀ n = 1, 2, 3, ... f ∼ ∑

m∈N

f(m)ϕ ˆ

m

, òîãäà äëÿ ëþáîãî êîíå÷íîãî ïîäìíîæåñòâà A èç N èìååò ìåñòî íåðàâåíñòâî

1

| A |

1/q

m∈A

f ˆ (m)

≤ (

1 + M

√ 2

) ( q q − 1

)

1q12

∥ f ∥

Lq,2

.

Äîêàçàòåëüñòâî. Âîñïîëüçóåìñÿ òåì, ÷òî îðòîíîðìèðîâàííûå ñèñòåìû îãðàíè÷åíû â ñîâîêóïíîñòè.

m∈A

f ˆ (m)

≤ M | A |∥ f ∥

L1

(2)

è èç ðàâåíñòâà Ïàðñåâàëÿ èìååì

m∈A

f ˆ (m)

≤ | A |

1/2

∥ f ∥

L2

. (3)

Ïóñòü τ ∈ (0, 1)

f

1

(x) =

{ f(x), | f(x) | ≤ f

(τ ),

0, â îñòàëüíûõ ñëó÷àÿõ,

(3)

f

0

(x) = f (x) − f

1

(x).

Òîãäà äëÿ ïðîèçâîëüíîãî 0 < τ < 1, èìååì

f ˆ (m) = ˆ f

0

(m) + ˆ f

1

(m)

m∈A

f(m) ˆ

m∈A

f ˆ

0

(m)

+

m∈A

f ˆ

1

(m)

≤ M | A |

τ 0

f

(s)ds + | A |

1/2

(∫

1

τ

(f

(s))

2

ds )

1/2

. Ïðèìåíÿÿ íåðàâåíñòâî Ãåëüäåðà ê ïåðâîìó ñëàãàåìîìó, ïîëó÷èì

m∈A

f ˆ (m)

≤ M | A | (∫

τ

0

( t

1q

f

(t) )

2

dt t

)

1/2

(∫

τ 0

( t

q′1

)

2

dt t

)

1/2

+

+ | A |

1/2

(∫

τ

t

2q−1

(f

(t))

2

t

1−2q

dt )

1/2

.

Äàëåå, äëÿ âòîðîãî ñëàãàåìîãî ó÷èòûâàÿ , ÷òî ñóïðåìóì âåëè÷èíû t

1−2q

äîñòèãàåòñÿ ïðè t = τ , äëÿ q < 2 èìååì îöåíêó

m∈A

f ˆ (m)

≤ ∥ f ∥

Lq,2

( M

√ 2 | A | τ

1−1q

( q

q − 1 )

1/2

+ | A |

1/2

τ

121q

)

. Ïóñòü òåïåðü τ = (

q−1 q

) / | A | , ïîëó÷èì

m∈A

f ˆ (m)

≤ (

1 + M

√ 2 )

| A |

1/q

( q

q − 1 )

1q12

∥ f ∥

Lq,2

.

Òåîðåìà 1 Ïóñòü { ϕ

n

}

n=1

- îðòîíîðìèðîâàííàÿ ñèñòåìà, ∥ ϕ

n

∥ ≤ M, ∀ n = 1, 2, 3, ...

Òîãäà äëÿ ëþáîãî f ∈ L

2,r

[0, 1], 2 < r ≤ ∞ âûïîëíåíî íåðàâåíñòâî:

sup

N≥8

1

N

1/2

(log

2

(N + 1))

1/2−1/r

N

m=1

f ˆ

(m) ≤ (4 + 2 √

2M ) ∥ f ∥

L2r

.

Äîêàçàòåëüñòâî. Ïóñòü N ≥ 8. Òîãäà äëÿ ïðîèçâîëüíîãî q : 1 < q < 2 è f ∈ L

q,2

âåðíà îöåíêà: ∥ f ∥

Lq2

≤ ∥ f ∥

L2r

∥ 1 ∥

Lpr′

, ãäå

1q

=

12

+

1p

è

r1

=

12

1r

,

∥ 1 ∥

Lpr′

= (

1

0

t

r

p dt

t

)

1/r

= (

1

0

t

r

(

1q12

)

dt

t

)

1/r

= (

1 r

(

1q12

)

)

1/r

≤ (

2q 2−q

)

1/r

. ∥ f ∥

Lq,2

≤ (

2q

2−q

)

1/r

∥ f ∥

L2,r

. Âîñïîëüçóåìñÿ ëåììîé è ïîëó÷èì ñëåäóþùåå 1

N

1/q

N

k=1

f ˆ

(k) ≤ (

1 + M

√ 2

) ( q q − 1

) (

1q12

)

∥ f ∥

Lq,2

(4)

≤ (

1 + M

√ 2

) ( q q − 1

) (

q2

) ( 2q 2 − q

)

1/r

∥ f ∥

L2,r

. Ó÷èòûâàÿ ïðîèçâîëüíîñòü ïàðàìåòðà q, ïîëîæèì q =

log2 log2N

2N+2

< 2,

1

q

12

=

log1

2N

, N

1/q

= 2N

1/2

. 1

| N |

1/2

N

k=1

f ˆ

(k) ≤ 2 (

1 + M

√ 2 ) (

1 1 −

1q

) (

1q12

) ( 1

1 q

12

)

1/r

∥ f ∥

L2,r

≤ 2 (

1 + M

√ 2 )

1 (

1

2

log12N

)

1 log2N

(log

2

N )

1/r

∥ f ∥

L2,r

.

Ó÷èòûâàÿ, ÷òî N ≥ 8, ìû ïîëó÷èì ñëåäóþùóþ îöåíêó 1

| N |

1/2

(log

2

N )

1/2−1/r

N

k=1

f ˆ

(k) ≤ (4 + 2 √

2M ) ∥ f ∥

L2,r

.

Âçÿâ âåðõíþþ òî÷íóþ ãðàíü ïî âñåì N èç N , ïîëó÷èì sup

N≥8

1

N

1/2

(log

2

(N + 1))

1/2−1/r

N

k=1

f ˆ

(k) ≤ (4 + 2 √

2M) ∥ f ∥

L2,r

.

Òåîðåìà 2 Ïóñòü { ϕ

n

}

n=1

- îðòîíîðìèðîâàííàÿ ñèñòåìà, ∥ ϕ

n

∥ ≤ M , ∀ n = 1, 2, 3, ...

f ∼ ∑

k=1

f(k)ϕ ˆ

k

.Òîãäà äëÿ ëþáîãî f ∈ L

2,r

[0, 1], 1 ≤ r ≤ 2 âûïîëíåíî íåðàâåíñòâî:

∥ f ∥

L2,r

≤ C

k=1

f ˆ

(k)k

12

(log

2

(k + 1))

1r12

.

Äîêàçàòåëüñòâî. Èñïîëüçóÿ äâîéñòâåííîå ïðåäñòàâëåíèå íîðìû â ïðîñòðàíñòâå Ëî- ðåíöà L

2,r

, ïîëó÷èì

∥ f ∥

L2,r

= sup

∥g∥L2,r′=1 1

0

f (t)g(t)dt = sup

∥g∥L2,r′=1 N

k=1

f ˆ (k)ˆ g(k).

Èñïîëüçóÿ ñâîéñòâî íåâîçðàñòàþùåé ïåðåñòàíîâêè, îöåíèì ñâåðõó ñëåäóþùóþ íîðìó

∥ f ∥

L2,r

≤ sup

∥g∥L2,r′=1

k=1

f ˆ

(k)ˆ g

(k) ≤ sup

∥g∥L2,r′=1

k=1

( f ˆ

(k) − f ˆ

(k + 1) ) ∑

k

m=1

ˆ

g

(m) =

= sup

∥g∥L 2,r=1

k=1

( f ˆ

(k) − f ˆ

(k + 1) )

k

1/2

(log

2

k)

1/2−1/r

1

k

1/2

(log

2

k)

1/2−1/r

k

m=1

ˆ

g

(m).

(5)

Òàê êàê

sup

∥g∥L2,r′=1

sup

k

1

k

1/2

(log

2

k)

1/2−1/r

k

m=1

ˆ

g

(m) ≤ C,

ïîëó÷èì

∥ f ∥

L2,r

≤ C

k=1

( f ˆ

(k) − f ˆ

(k + 1) )

k

1/2

(log

2

k)

1/2−1/r

≈ C

k=1

f ˆ

(k) (

k

1/2

(log

2

k)

1/2−1/r

− (k − 1)

1/2

(log

2

k)

1/2−1/r

) .

Ïî òåîðåìå Ëàãðàíæà, ïîëó÷èì ñëåäóþùåå

∥ f ∥

L2,r

≤ C

k=1

f ˆ

(k)k

−1/2

(log

2

k)

1/2−1/r

.

Ëèòåðàòóðà

[1] Áåðã É., Ëåôñòðåì É. Èíòåðïîëÿöèîííûå ïðîñòðàíñòâà. // Ìîñêâà. 1980. 264 c. Ñ. 6068.

[2] Stein Elias M. Interpolation of linear operators // Trans. Amer. Math. Soc. 1956. 83, ðð 482 -492.

[3] Áî÷êàðåâ C.Â. Òåîðåìà Õàóñäîðôà - Þíãà - Ðèññà â ïðîñòðàíñòâàõ ëîðåíöà è ìóëüòèïëèêàòèâíûå íåðàâåíñòâà //

Òðóäû ìàòåìàòè÷åñêîãî èíñòèòóòà èì. Â.À.Ñòåêëîâà. 1997.Ò.219. C 103 -114.

[4] Íóðñóëòàíîâ Å. Ä. Î êîýôôèöèåíòàõ êðàòíûõ ðÿäîâ Ôóðüå èç Lp-ïðîñòðàíñòâ // Èçâ. ÐÀÍ. Ñåð. ìàòåì. 2000.

64:1. C.95-122.

[5] Kopezhanova A., Nursultanov E., Persson L.-E. Relations between summability of the Fourier coecients in regular systems and functions from some Lorentz type spaces // Proc. A. Razmadze Math. Inst. 2010. 152. pp 73 -88. 1995.

V.38. P. 26352646.

[6] Æàíòàêáàåâà À.Ì., Íóðñóëòàíîâ Å.Ä. Î ñóììèðóåìîñòè êîýôôèöèåíòîâ Ôóðüå ôóíêöèé èç ïðîñòðàíñòâà Ëîðåí- öà // Ìàòåìàòè÷åñêèé æóðíàë. Àëìàòû. 2013. N 1(47). C. 73-89.

[7] Äüÿ÷åíêî Ì. È., Íóðñóëòàíîâ Å. Ä. Òåîðåìà Õàðäè- Ëèòòëâóäà äëÿ òðèãîíîìåòðè÷åñêèõ ðÿäîâ ñα- ìîíîòîííûìè êîýôôèöèåíòàìè // Ìàòåì. ñá. 2009. 200:11. C.45-60. 10811093.

[8] Zhantakbayeva À.Ì., Dyachenko M.I., Nursultanov E.D. Hardy- Littlewood type theorems Amsterdam : Eurasian Mathematical Journal. 2013. N 2. V 4. pp 140-143.

[9] Nakayama A. and Kuwahara F. A Macroscopic Turbulence Model for Flow in a Porous Medium // ASME J. Fluids Eng.

1999. V. 121. P. 427433.

[10] Òëåóõàíîâà Í.Ò., Ìóñàáàåâà Ã.Ê. Î êîýôôèöèåíòàõ ðÿäîâ Ôóðüå ïî òðèãîíîìåòðè÷åñêèì ñèñòåìàì â ïðîñòðàíñòâå L2,r// Ìàòåì. çàìåòêè. 2013. T.94:6. C.884-888.

(6)

References

[1] J.Bergh, J.L Interpolation spaces// Berlin. 1976. 264 p.

[2] Stein Elias M. Interpolation of linear operators // Trans. Amer. Math. Soc. 1956. 83, ðð 482-492.

[3] S. V. Bochkarev. Hausdor-Young-Riesz Theorem in Lorentz Spaces and Multiplicative Inequalities // Proc. Steklov Inst.

Math.1997. V.219. P.96-107.

[4] E.D. Nursultanov. On the coecients of multiple Fourier series inLp-spaces // Izvestiya: Mathematics. 2000. 64:1. pp 95-122.

[5] Kopezhanova A., Nursultanov E., Persson L.-E. Relations between summability of the Fourier coecients in regular systems and functions from some Lorentz type spaces // Proc. A. Razmadze Math. Inst. 2010. 152. pp 73-88.

[6] A.M. Zhantakbayeva, E.D. Nursultanov. On summability of the Fourier coecients from Lorentz spaces // Mathematical journal. Almaty.2013. N 1(47). pp 73-89.

[7] M.I.Dyachenko, E.D. Nursultanov. Hardy-Littlewood theorem for trigonometric series withα-monotone coecients //

Int. Sbornik: Mathematics.2009. 200:11. pp 45-60.

[8] Zhantakbayeva À.Ì., Dyachenko M.I., Nursultanov E.D. Hardy- Littlewood type theorems : Eurasian Mathematical Journal. 2013. N 2. V 4. pp 140-143.

[9] N. T. Tleukhanova, G. K. Musabaeva. On the coecients of fourier series with respect to trigonometric systems in the spaceL2,r,// Izvestiya: Mathematics. 2000. 64:1. pp 95-122.

[10] E.D. Nursultanov. Net spaces and inequalities of Hardy-Littlewood type // Sbornik: Mathematics. 1998. 189:3. pp 83- 102.

Referensi

Dokumen terkait

Simpulan dari penelitian ini membuktikan bahwa brand trust memiliki pengaruh positif namun tidak signifikan terhadap customer loyalty, ease of

The aim of this study is to find the answer of the problem, “How is the mastery of eleventh year students of SMUN I Wiradesa in using conjunctions but, and, or, before, and after ?―