• Tidak ada hasil yang ditemukan

nblib.library.kz - /elib/library.kz/jurnal/2020/physical and mathematical_03-2020/

N/A
N/A
Protected

Academic year: 2023

Membagikan "nblib.library.kz - /elib/library.kz/jurnal/2020/physical and mathematical_03-2020/"

Copied!
11
0
0

Teks penuh

(1)

N E W S

OF T H E N A T IO N A L A C A D E M Y OF SC IEN C ES OF THE R EPU BLIC OF K A Z A K H S T A N P H Y S IC O -M A T H E M A T IC A L S E R IE S

IS S N 1 9 91-346Х h ttp s://d o i.o r g /1 0 .3 2 0 1 4 /2 0 2 0 .2 5 1 8 -1 7 2 6 .5 3 V olu m e 3, N um ber 331 (2 0 2 0 ), 191 - 201

U D C 91 0 .1 , 911.9

Z h . Sh. Z h a n ta y e v , S .M . N u r a k y n o v ,

S.V . G a v ru k , B .A . Isk a k o v , N .K . S y d y k , A .A . M e r e k e y ev Institute of Ionosphere JSC "NCSRT", Almaty, Kazakhstan.

E-mail: admion1@mail.ru; nurakynov@gmail.com; mjdagot@gmail.com;

berikiskakov@gmail.com; nurmahambet.s@gmail.com , aiba99@mail.ru

CREATION OF A GEOPORTAL AND ITS ROLE IN OPERATIONAL MONITORING OF THE NATURAL

AND MANMADE EMERGENCY CHARACTER IN THE TERRITORY OF THE REPUBLIC OF KAZAKHSTAN

Abstract. This article discusses the space monitoring system, its composition and functional diagram o f the basic elements o f the system and remote access services to the resources and results o f the space monitoring system.

The composition o f the information support o f the system, its formats and sources, and the frequency o f updates are described. The basic structure o f the geoportal, namely, the subsystem for collecting satellite and ground data, a database, processing and expert interpretation, integration and dissemination o f monitoring data, is briefly described.

The whole cycle o f space monitoring work is described for each priority area, from obtaining raw data to uploading emergency monitoring data to the geoportal in Kazakhstan, including operational data from space monitoring of forest and steppe fires, GPS monitoring of intense movements o f the earth's crust, space monitoring o f floods, space monitoring oil pollution o f the Caspian Sea with the corresponding "screenshots". The geoportal interface is described.

K ey words: Geoportal, space monitoring o f emergency situations, remote sensing, GIS, geodynamics, fires, floods, oil spills.

In tr o d u c tio n . W ith the d evelopm ent o f space and inform ation tech n ology, em ergency m onitoring using satellite data is gaining trem endous relevance. W orld experience sh ow s that the m ain, and often the only source o f inform ation on the basis o f w h ich d ecision s are m ade on m easures to elim inate em ergency situations are space m onitoring system s [1, 2]. A nd am ong them , the m ost popular is operational m onitoring o f em ergencies, such as fires, snow cover, flood s, o il pollution and G PS m onitoring o f m ovem ents o f the earth's crust. Since the m ain em phasis is on efficie n c y , it is n ecessary to take into account tim ely notification o f not only the relevant authorities, but also ordinary citizens o f our country. In this regard, the urgent need to create a single geoportal that contains relevant inform ation on all o f the above em ergen cies arises on its ow n. There are no analogues o f a com plete and com prehensive space em ergency m onitoring system using the latest achievem ents o f rem ote sensing and G IS, not on ly in Kazakhstan, but throughout Central A sia.

C rea tio n of a g eo p o rta l. A t the m om ent, the geoportal has b ecom e the m ain source for transmitting the results o f space m onitoring o f em ergency situations to all interested parties. To achieve this goal, first o f all, it is n ecessary for the geoportal to p h ysically be able to w ork w ith large am ounts o f spatial data and w ith a large number o f users, as w e ll as to develop a tech n o lo g y for updating spatial databases o f the geoportal that ensures optim al and tim ely, including operational, dow nloading o f n ew data. Thus, having studied the w orld experience [3, 4] in the tech n o lo g y o f creating geoportals, it w as decided to develop our ow n product from scratch. This approach has several advantages: creating a product on the basis o f separate o ff-th e -sh e lf software solutions, the licen ses o f w h ich a llow their use to create your ow n software. The source cod e o f such programs is available for v iew in g , studying and changing and allow s

191

(2)

News o f the National Academy o f sciences o f the Republic o f Kazakhstan

y ou to fu lly control the system d evelop m en t process and g et a product that fu lly m eets the requirements; a sim pler opportunity to expand the sy stem ’s functionality on its ow n and significantly save tim e and financial resources necessary for the developm ent o f the system by reducing the am ount o f work; users get a system that fu lly m eets their expectations.

S o ftw a r e c o m p o n e n ts. The m ain com ponent o f the geoportal is a server application w h o se tasks include receiving and processing all incom ing user requests, as w e ll as sending responses to these requests. The server part also includes the industrial Database M anagem ent System (D B M S ), the task o f w h ich is to store user data and spatial inform ation. In addition, to formulate a response to a spatial query, a com ponent com plying w ith OGC specifications [5] is required.

Thus, the d eveloped geoportal is based on the fo llo w in g softw are com ponents:

- operating system - L inux D ebian. D istinctive features o f D ebian are: A dvanced Packaging T ool (A PT ) package m anagem ent system , strict package p olicy, repositories w ith a huge number o f packages, as w e ll as high quality o f released versions. [6];

- D B M S - PostgreSQ L w ith PostG IS exten sion for w orking w ith geom etric data types. PostgreSQ L w as chosen for the fo llo w in g reasons: free; w ide functionality for w orking w ith geom etric objects [7, 8];

support by various geographic inform ation system s (A rcG IS, QGIS, G eoServer); availability o f open a ccess to exten sive docum entation;

- w eb server - A pache. The m ain advantages o f A pache are reliability, configuration flexib ility and cross-platform (the ability to w ork on different operating system s) [9]. It allow s y ou to connect external m odules to provide data, use a D B M S to authenticate users, m o d ify error m essages, etc. A pache HTTP Server supports modularity;

- Python program m ing language. This actively developing program m ing language over tim e has b ecom e virtually the standard language in the field o f scien ce and data processing [10].

- display o f cartographic inform ation on the client side - O penLayers. A n open source library written in JavaScript designed to create m aps based on a softw are interface (A PI) [11]. O penLayers allow s y ou to very quickly and ea sily create a w eb-based interface for displaying cartographic materials presented in various form ats and located on different servers;

- p rocessing o f geospatial data - G D A L library G D A L - an open source library [12] for reading and w riting raster and vector geospatial data formats. The library provides calling applications w ith a single abstract data m odel for all supported formats.

Figure 1 presents a diagram dem onstrating the com p osition and structure o f the softw are o f the developed system , its functional purpose and distribution across the servers.

S p ecialized softw are tools develop ed as p art o f the

project:

C ore softw are com ponents Operating system

Linux Debian DMS PostgreSQL Apache2 web-server

as well as ftp-server Content Management System

(CMS) Word press GDAL

spatial data processing library OpenLayers mapping cartographic

information OpenTileServer tile-server GIS systems QGIS Desktop

and QGIS server

File storage

data loading system WEB server

Igmass.kz website database management systems for remote sensing o f the Earth

and the results o f their processing and analysis (located on the data server):

program website, representing a GIS portal

Figure 1 - Composition and structure of software system under development

In p u t d a ta , p r o c e ssin g an d in te r p r e ta tio n . Processing and interpretation o f data is carried out both m anually in the data interpretation unit, and autom atically in the im age processing unit. The input data is

192

(3)

tabular data and raster im ages in the file storage, the output is vectorized data in the database. The function o f the processing and interpretation lev el is to obtain em ergency inform ation from the source data, for exam ple:

- separation o f vectorized inform ation from raster satellite im agery - hotspots (thermal anom alies), burned areas, flood ed areas, o il spills;

- calculations according to GPS stations o f displacem ent v e lo city vectors and their interpolation;

- processing and vectorization o f hydrom eteorological data necessary for m od elin g and forecasting forest and steppe fires, flo o d s, o il spills.

D a ta b a se f o r m o n ito rin g f i r e s a n d b u r n e d areas. In m odern conditions, the m ost effectiv e and efficien t solution to this problem is achieved using space m onitoring system s. Satellites allow y ou to detect fires ranging from fractions o f a hectare to several tens o f hectares, depending on the intensity o f com bustion and the state o f the atm osphere, w h ich allow s y ou to provide the m ost com plete inform ation about the entire forest and steppe territory and significantly reduce the cost o f the w ork com pared w ith aviation m onitoring o f fires.

During the day over ten (figure 2) rem ote sensing satellites fly over the territory o f K azakhstan. The m ain satellites for the rapid detection o f fires and building m aps o f burned areas are the TE R R A and A Q U A satellites w ith M O D IS (M oderate R esolution Im aging Spectroradiom eter) spectrom eters and N O A A satellites w ith the A V H R R (A dvanced V ery H igh R esolution R adiom eter) spectrom eter. B ased on the data o f these satellites, foci o f fires and burned areas w ith a frequency o f tw ice a day for 0.5-1 hours from the receipt o f satellite im ages are detected. W hen identifying hot spots, the vector o f the fire sources is cleaned from constant sources o f high temperatures, associated m ainly w ith industrial activities.

This m eets the m ain m onitoring requirement - efficien cy. The w h o le process: dow nloading im ages, processing and obtaining the necessary layers and uploading to the geoportal are fu lly automated.

★ S e n tin e l- 3 \ Sentinel 1 Sentinel - 2 NPPVIRS

♦ Terra (MODIS) ^ N O A A 15 Spot 7

О

Aqua (MODIS)

H Landsat 8 ^ Probe V W Spot 6 © М етеор 2

i i r \ i— iA i mk -WHO— i---1---1--- 1— A---1— М И М --- i---i---1--- A © —r© - i---1

0 :0 0 1:00 2 :0 0 3 :0 0 4 :0 0 5 :0 0 6 :0 0 7 :0 0 8 :0 0 9 :0 0 1 0 :0 0 1 1 :0 0 1 2 :0 0 1 3 :0 0 14:00 1 5 :0 0 16:00 1 7 :0 0 1 8 :0 0 1 9 :0 0 2 0 :0 0 2 1 :0 0 2 2 :0 0 2 3 :0 0 0 :0 0

Figure 2 - The pattern of the passage of remote sensing satellites during the day over the territory of Temirtau, Karaganda region

For a m ore detailed analysis o f burned-out territories, im ages from satellites o f the Landsat fam ily and Sentinel-2 are used every seven days. In case o f high cloud cover, radar im ages from the Sentinel-1 satellite are used. A lso , during the fire hazard season, the fo llo w in g tasks are performed:

- m aps o f the dynam ics o f the hot spots and the dynam ics o f the areas affected by the fires are built;

- zoning o f the territory according to the risk o f fire;

- i f necessary, m od elin g and assessm ent o f the risk o f fire hazard is carried out taking into account the characteristics o f the terrain (vegetation, soil m oisture, incline, w ind, slope aspect, distance to the route, settlem ent and fire hydrant) and w eather data. T hese processes are done m anually. Figure 3 and 4 show the hot spots and burned areas, respectively, in the form o f screenshots by displaying the igm ass.k z site (geoportal).

R eceived daily m aps w ith fire sources form a tim e series, the analysis o f w h ich allow s y ou to get a variety o f characteristics o f the dynam ics o f the situation w ith fires, including cartographic, tabular and chart forms.

F lo o d m o n ito rin g d atabase. Space m onitoring o f the passage o f flood waters (figure 5) and the disappearance o f snow cover, as necessary, can be carried out at three lev els [13]. A t the first lev el, daily analysis is carried out using M O D IS low -resolution satellite data (spatial resolution 250 m ). A s an auxiliary, night shots o f N O A A A V H R R and M O D IS in the infrared range are used. Their use is due to the fact that for som e regions there is less cloud cover at night com pared w ith the daytim e period. D espite the lo w resolution, the value o f M O D IS data is that the survey is conducted daily.

193

(4)

News o f the National Academy o f sciences o f the Republic o f Kazakhstan

Figure 3 - Screenshot of the igmass.kz site display and the open hotspot page

О n p o«T t

Мониторинг Мониторинг n o u p o o геодинамически* смещении

Мониторинг Мониторинг

нефтяных р ати н о в наполнении

g

M o H il T 11|)ИНГ Г ч .+ .IS 'fm О

x w t n

2019-10-14[3

* Горечи* точки

А

<

7

~~

«««■«»« Выбор дат* 20190601 b о

--- ^

W u * n

СЭ>/

»

О

UUMWIH j*

/Т&У-

' >

о - А л м а т ы

Figure 4 - Screenshot of the igmass.kz site display and the open burned area monitoring page

Figure 5 - A sample of the operational output of space monitoring of the passage of flood waters

A t the second lev el, as they are received (the survey is perform ed every 7-10 days), m edium - resolution data (spatial resolution 15-70 m ), for exam ple, Landsat data, as w e ll as radar data, in particular im ages o f the European Sentinel 1 satellite, are involved. A feature o f radar data is that it is not affected by cloudiness or the tim e o f day. T h ey allow y ou to see the area covered by clouds, w h ich is important for spring conditions, w hen often the entire territory o f the region is covered w ith dense clouds.

A t the third lev el, i f it is necessary to analyze the situation in esp ecia lly critical cases, optical and radar rem ote sensing arrays o f high and ultrahigh resolutions are used.

U sin g the data from the M O D IS sensor, space-tim e m onitoring o f sn ow and ice cover m elting is perform ed tw ice a day (sn ow cover w ith highlighting sn ow m elting zo n es), once a day m apping o f flood

194

(5)

zones (w ith additional use o f data from Landsat, S entinel-1-2 satellites) 0.5-1 hours after receiving the space im age.

M apping o f total flood zones is carried out once a decade. A nd zoning o f territories according to the degree o f risk o f flood in g u sing hydrom eteorological inform ation for the last 5 years and archival data from Landsat, Sentinel-2 satellites - once a season.

A lso , m odeling and forecasting the d evelopm ent o f large flood s w ou ld be done as n ecessary during the period o f flooding. For this, relevant hydrom eteorological and cartographic inform ation, D E M w ith a resolution o f 10 m , and m aps o f the dynam ics o f the water surface o f reservoirs are used.

O il s p ill m o n ito rin g d a ta b a se. Currently, the issue o f pollution o f the Caspian Sea, w h ich is saturated w ith o il industry facilities, is h igh ly relevant. O f great im portance for Kazakhstan is the control o f such objects and phenom ena that pose a potential and real threat o f natural and m an-m ade em ergencies, such as accidental o il spills that entail significant dam age to the environm ent [14].

Oil spills are m onitored using data from the S entinel-1A , B satellites, European Earth rem ote sensing satellites, w h ich are part o f the space group o f satellites for the Copernicus G lobal Environm ental and Safety M onitoring. Sentinel-1 products are available in real tim e, free o f charge for all data users, including the general public, scientific and com m ercial users. Shooting is perform ed in the C-band (w avelength 6 cm ) in one polarization (H H or V V ) and double polarization (H H + H V or V H + V V ). To verify the results obtained, optical im ages o f the satellites o f the Landsat and Sentinel-2 fam ily are used.

In the period from March 1 to D ecem ber 31, after processing the data o f the aforem entioned satellites, w e g e t a m ap o f o il pollution o f the Caspian Sea, taking into account the temperature data o f the water surface, speed and direction o f the driving w ind, m aps - sch em es o f the m ain sources o f o il pollution in the sea, in particular: ship routes , as w e ll as the epicenter o f earthquakes 1 tim e in 3 days for 0.5-1 hours from the m om ent the data are received. The attributive inform ation contains data on tim e, satellite, area, perimeter, and m ost importantly, on the coordinates o f pollution (figure 6); m aps o f the dynam ics o f changes in the total area o f o il pollution over the w eek and month; m aps o f the intensity o f oil pollution o f the Caspian Sea per m onth, per decade, per year.

М о н и т о р и н г М о н и т о р и н г М о н и т о р и н г М о н и то р и н г

О п р о е к т е п о ж а р о в г е о д и н а м и ч е с к и х с м е щ е н и й н е ф т я н ы х р а з л и в о в н а в о д н е н и й

X Д а та : 2019-06-07T00 00 00.

С п у т н и к: Sentinel • 1.

П ло щ а дь: 6 26 km 2.

П е р и м е тр : 182 45 km.

К о о р д и н а т ы : 43* 57' 37" N 4 9 е 26' 4 6 ' E

Figure 6 - An example of obtaining attribute information

U sin g data processing from the M O D IS sensor and the Landsat satellite, w e obtain m aps o f the ice conditions o f the Caspian Sea for a decade.

A s necessary and / or in case o f m ajor accidents associated w ith an o il spill, m odeling o f the m ovem ent o f oil pollution using temperature data o f the w ater surface, speed and direction o f the driving w ind is carried out.

D a ta b a se o f m o n ito rin g o f g e o d y n a m ic d isp la cem e n ts. To calculate the geodynam ic displacem ents o f the surface, data from a high-precision satellite navigation netw ork (S V S K RK ) from 112 G PS stations, com m ission ed in 2 0 1 6 by JSC “N C “ Kazakhstan Karysh Sapary ”JSC, L eica G eosystem Kazakhstan JSC,

---195---

(6)

News o f the National Academy o f sciences o f the Republic o f Kazakhstan

and TRIM BLE G EO TR O N IC S LLP, are used. D ata collection , transm ission and archiving is carried out v ia G SM com m unication channels on the servers o f service organizations.

The input inform ation is presented in the form o f tex t files and includes the fo llo w in g data: GPS station hardware characteristics, digital elevation m odel (in m eters), M oho sole digital m odel (km ), tectonic faults (vectors), digital heat flo w m od el, surface v e lo c ity com ponents (m m / year) in the directions SN , W E , U p and the m odule o f horizontal speed. Schem atic m aps o f the distribution o f the v elo cities o f the earth’s surface and the parameters o f the stress-strain state o f the earth’s crust o f the seism ica lly active region (A lm aty test site) have been com piled.

A fter processing data from 49 perm anent GPS stations in Kazakhstan, including 19 TRIM BLE stations (G eotronics LLP), 20 LEIC A stations (LEIC A Kazakhstan JSC), 10 stations in the A lm aty seism ic test site (D T O O Ionosphere Institute and Institute S eism o lo g y o f the M inistry o f Education and S cience o f the R epublic o f Kazakhstan) once a quarter, a map o f the displacem ent v e lo city o f G PS stations o f the territory o f Kazakhstan is calculated (figure 7) (vector, v e lo city field).

50 55 6 0 6 5 70 7 5 80 85

Figure 7 - Vectors of horizontal speeds of GPS stations

T w ice a year, the geom echanical state o f the earth's crust o f earthquake-prone areas o f Kazakhstan is assessed using satellite m onitoring o f m odern earth surface m ovem ents u sing the fo llo w in g data: seism ic data; digital elevation m odel; digital sole m odel (M oho); tecton ic faults; com ponent o f the speed o f the earth's surface W est-E ast (m eters per year); com ponent o f the surface speed o f the earth South-North (meters per year); vertical com ponent o f speed (meters per year); absolute value o f speed (meters per year); parameters o f the stress and strain field o f the earth's crust.

In addition, data such as:

- adm inistrative boundaries; - settlem ents; - data on em ergency facilities (fire brigades, hospitals, em ergency co llectio n points, etc.); - data on hydrology (rivers, lakes, hydro-network); - sea routes and bathymetry o f the Caspian Sea; - data on G PS stations o f geodynam ic m onitoring. Thus, under the control o f the database m anagem ent system there are 4 databases for each o f the topics, and a database o f auxiliary layers:

- firedb - database for m onitoring fires and burned out areas;

- geod in am ic - database o f m onitoring o f geod yn am ic displacem ents;

- oilsp ills - oil spill m onitoring database;

- w ater - database for flood and flood monitoring;

- auxiliarylayers - a database o f auxiliary layers.

R esu lts an d its d isc u ssio n s. A n em ergency space m onitoring database m anagem ent system has been developed. A geospatial database o f operational em ergency m onitoring on the territory o f Kazakhstan has been created, including operational data for space m onitoring o f forest and steppe fires, G PS m onitoring o f intense m ovem ents o f the earth's crust, space m onitoring o f flood s and flood s, space m onitoring o f oil pollution o f the Caspian Sea. A n experim ental sam ple o f a w eb-G IS portal (geoportal) for space

--- 1 9 6 ---

(7)

m onitoring o f em ergency situations in the R epublic o f K azakhstan has been d eveloped and is undergoing testing.

Further briefly on the m ain results o f each area:

- G eodynam ic GPS m onitoring o f intensive m ovem ents o f the earth's crust is aim ed primarily at solvin g the fo llo w in g problems: primary processing o f satellite inform ation data, special post-processing for operational and short-term forecast o f earthquakes and seism ic-related p rocesses (landslides, landslides, m u d flow s) and transm ission o f m onitoring data to control centers in crisis situations.

In the course o f solvin g these problem s w ith the use o f n ew G PS m onitoring stations, a n ew result w as obtained for the first tim e that has predictive value. B ased on the results o f processing the v elo city field, a local anom aly o f the displacem ent v e lo city to the south o f A lm aty w as identified. N o anom aly w as p reviously observed.

Calculations o f the crust strength criterion (C oulom b-M ohr) (figure 8) show ed the form ation o f the region o f p ossible destruction o f the rock m ass due to the achievem ent o f shear (shear) stress o f the ultim ate ten sile strength o f the soil.

For stations o f the A lm aty seism ic test site, the errors in determ ining the v elo cities are sligh tly higher than the w orld ones and am ount to ± 0.3 m m / year in plan and ± 1.3 m m / year in the vertical direction.

| у ____________ Т у | Т у

о * -о л о о * о т О в -©« • 0 4 O I

4 5 -

те

^ ---•

4 4 -

4 3 - ОТ И М '* М ч « К 'O N H M - I I *

Figure 8 - Strength criterion o f the Earth's crust o f the Northern Tien Shan according to GPS observations until 2018 (left) and as o f July 2019 (right)

- B ased on the results o f space m onitoring o f o il spills, a prelim inary database o f foci o f o il pollution in the Kazakhstan part o f the Caspian Sea w as created using data from radar and optical surveys. The prelim inary database contains 1304 scen es received by the S A R Sentinel-1A satellite, as w e ll as 50 and 20 scen es received by the optical S entinel-2A and L A N D S A T -8 satellites, respectively.

M apping o f the m ain sources o f oil pollution in the sea w as carried out, in particular: ship routes, w ells, o il islands, oil pipeline, oil and gas structures, as w e ll as earthquake epicenters, w h ich consequently affect the eruption o f m ud v o lcan oes located on the bottom o f the Caspian Sea.

A ccording to the results o f m onitoring o f oil spills on the sea surface from A pril 1, 20 1 8 to July 31, 2 0 1 9 , the total area o f detected o il spills in the K azakhstani part o f the Caspian Sea reached 60.4 km 2.

- M ethods for m onitoring forest and steppe fires and burned out areas have been developed.

Preliminary results have been obtained from m onitoring active fires and assessin g the areas affected by fires according to M O D IS data covering the territory o f K azakhstan. A ccording to the results o f space m onitoring, the database o f fire centers and areas affected by fires is continuously being filled. The content, structure and type o f an online report on the results o f m onitoring o f fires and burned out areas have been d eveloped for presentation in the form o f separate graphs and charts for a selected period o f tim e in the geoportal itself.

E m ergency com m ittee facilities have been prepared and digitized, such as fire brigades, fire hydrants, em ergency rescue services, hospitals, airspace, operational rescue squad, collection points and fire trains to assess the real danger o f fires for settlem ents and prompt decision-m aking.

- The data o f space flood m onitoring w ere generated for 16 regions o f Kazakhstan. The com position o f the data includes: tw o-year series o f data from space-based m onitoring o f flood s o f various tem poral averaging (daily, ten-day and seasonal);

---197---

(8)

News o f the National Academy o f sciences o f the Republic o f Kazakhstan The current state o f the geoportal and its unique features:

The current state o f the hardware and software im plem entation and the p ilot version o f the G eoportal are available at h ttp://igm ass.kz/. The geoportal allow s so lv in g tw o m ain problem s - tim ely electronic exchange o f spatial data b etw een interested organizations and com panies o f different p rofiles, as w e ll as providing m ass access to cartographic em ergency m onitoring products based on m odern inform ation and com m unication tech n ologies.

In addition, one o f the unique capabilities o f the system is not only the receipt o f the above inform ation, but also the provision o f various to o ls to users to conduct their ow n analysis and generate reports by constructing graphs and charts based on m onitoring results (figure 9).

T hese to o ls allo w , in particular:

- analyze various spatial inform ation;

- generate sp ecialized reports, including their analysis, refinem ent and reliability control;

- provide various graphical representations o f inform ation to ensure the con ven ien ce o f its analysis;

- carry out processing and analysis o f satellite inform ation (including for assessin g areas covered by fire using satellite data o f various spatial resolutions);

- provide the ability to analyze historical inform ation, including m aking con ven ien t com parisons w ith operational inform ation.

Thus, the system provides users w ith the opportunity to obtain a su fficien tly large am ount o f inform ation o f a high le v e l o f processing and m eans for its analysis.

Figure 9 - An example of displaying a web portal for generating a report of fire outbreaks

W hen analyzing the dynam ics o f the situation for any particular tim e period, the user dow nloads all or selectiv ely available inform ation for a certain period. S uch an analysis m ay be accom panied by appropriate tabular and other inform ation characterizing the developm ent o f the situation for the selected period. The analytical unit also generates overview inform ation for decades, m onths and years, w h ich is available to users. Sim ilarly, w ork is carried out w ith cartographic and analytical inform ation w hen analyzing the developm ent o f the situation over a long period.

C o n clu sio n . The created geoportal o f geospatial data for operational m onitoring o f em ergencies in Kazakhstan, including operational data for space m onitoring o f forest and steppe fires, G P S m onitoring o f intense m ovem ents o f the earth's crust, space m onitoring o f flood s, space m onitoring o f oil pollution o f the Caspian S e a and operational coverage o f these data on the geoportal w ith the p ossib ility access from

198

(9)

anywhere in the w orld w ill a llow y ou to tim ely respond and reduce critical dam age in hum an life, flora, fauna and even com p letely prevented.

T hese w orks are carried out w ith financial support by the CS M ES RK, in the fram ework o f the scientific and technical program 0 .0 7 8 2 “D evelop m en t o f a m ulti-purpose aerospace forecast m onitoring system (M A K SM ), as w e ll as the creation on its basis o f services for the com prehensive presentation o f em ergency and natural-generated em ergency inform ation in conjunction w ith sem antic and geospatial data”.

Ж. Ш. Жантаев, С. М. Нуракынов, С.В. Гаврук, Б.А.Искаков, Н.К. Сыдьщ, А. А. Мерекеев Ионосфера институты, «YF3T0» А^, Алматы, ^азакстан;

ГЕОПОРАТАЛ Ц¥РУ ЖЭНЕ ОНЫН, ЦР АУМАГЫНДА ТАБИГИ ЖЭНЕ ТЕХНОГЕНД1К СИПАТТАГЫ ТЖ ЖЕДЕЛ МОНИТОРИНГ1НДЕ Р0Л 1

Аннотация. Fарыштык жэне акпараттык технологиялардыц дамуымен спутниктж деректердщ KeMeriMeH тетенше жагдайлар мониторинг! Yлкен eзектiлiкке ие. 0лемдiк тэжiрибе негiзiнде ТЖ жою жeнiндегi шаралар туралы шешiмдер кабылданатын негiзгi, ал кебшесе жалгыз аппарат Ke3i гарыштык мониторинг жYЙесi болып табылатынын куэландырады. ТЖ режимiнде жеделдiкке басты кещл бeлiнгендiктен, тек тиiстi органдарды гана емес, сонымен катар елiмiздщ карапайым тургындарын да дер кезiнде хабардар ету кажет. 0кiнiшке орай, к ^ р п уакытта бiрнеше багыт бойынша деректер бар бiрьщFай жуйе жок. Осыган байланысты, аса eткiр турган табиги жэне техногендiк апаттар бойынша eзектi акпаратты камтитын бiрьщFай геопортал курудыц аса каж етттп eздiгiнен пайда болады. ЖК^З мен ГАЖ жаца жетастжтерш пайдалана отырып, курылган тeтенше жагдайлар гарыштык мониторинпнщ тутас жэне теп бейiндi ж ^ е с ш ^ баламасы К^азакстанда гана емес, 6y m Орта Азияда да жок.

Бул макалада гарыш мониторинг! жYЙесi, оныц курамы жэне гарыш мониторинг жуйесimц ресурстары мен жумыс нэтижелерше кашыктыктан кол жеткiзу жYЙесi мен сервистерiнiц базалык элементтерiнiц функционалдык сулбасы карастырылады. Авторлар OGC спецификациясына сэйкес келетiн негiзгi багдарламалык компоненттерге жалпыланган сипаттама бередi: Операциялык жYЙе, деректер корын баскару жYЙесi (ДКрЖ), веб-сервер, багдарламалау т т , GDAL кггапханасы, картографиялык материалдарды кeрсетуге арналган web-интерфейс.

Сондай-ак, мыналар сипатталады: спутниктiк деректердi жинаудыц кiшi жYЙесi; eцдеу жэне интерпретациядау колмен жYзеге асырылатын деректердi интерпретациялау блогы жэне барлыгы автоматтандырылган суреттердi eцдеу блогы; жYЙенi акпараттык камтамасыз ету курамы, оныц форматтары мен кeздерi, жацарту жиiлiгi, мониторинг деректерш интеграциялау жэне тарату.

Шию деректердi алудан бастап тeтенше жагдайлардыц бiрнеше тYрлерi бойынша деректердi гепорталга жYктегенге дейiн гарыштык мониторинг жумыстарыныц барлык циклi сипатталады. Басым багыт ретшде тeрт багыт тацдап алынды: орман жэне дала eрттерiнiц жедел гарыштык мониторинг; жер кыртысыныц каркынды козгалыстарыныц GPS мониторингi; кар жамылгысыныц, су таскыны мен су басу каушнщ гарыштык мониторингi;

Каспий тецiзi акваториясыныц мунай eнiмдерiмен ластануыныц гарыштык мониторинг!

Орман жэне дала eрттерiнiц мониторингi Yш негiзгi мiндеттен турады. Бiрiншi, температуралык аномалиялардыц жедел мониторинг! Бул рэсiм тэулiгiне екi рет, Ж^З деректерiн алганнан кейiн 0,5-1 сагат iшiнде орындалады. Екiншi, eртенген аудандардыц карталарын куру - жедел режимде тeмен шешiмдi ЖК^З мэлiметтерiнен тэулiгiне екi рет, егжей-тегжейлi турде, орташа шешiмдi мэлiметтерден жетi ^ н сайын орындалады. Yшiншiден, жергiлiктi жердщ ^ ^ м дж жамылгысы, топырак ылгалдылыгы, телбеулж, жел, беткей экспозициясы, трассага, елдi мекенге жэне eрт гидрантына дешнгг кашыктык) жэне метеодеректердi ескере отырып eрт кауiптiлiк тэуекелiн модельдеу жэне багалау.

Таскын судыц eтуiне жэне кар жамылгысыныц тYсуiне гарыштык мониторинг Yш децгейде жYргiзiлуi мумкiн.

Бiрiншi децгейде тэулiгiне екi рет тeмен шешiмдi спутниктiк деректер бойынша кар жэне муз жамылгысыныц жылжуына талдау жургiзiледi. Екiншi децгейде су басу аймактарын карталау Yшiн орташа шешiмдi деректер тартылады. Yшiншi децгейде, жагдайды талдау кажет болган жагдайда, аса киын жагдайларда жогары жэне аса жогары шешiмдi оптикалык жэне радарлык ЖК^З деректерi пайдаланылады. Сондай-ак, су басу кезещнде кажеттiлiгiне карай iрi су таскындарыныц дамуын модельдеу жэне болжау жасалады.

Мунай ластануыныц гарыштык мониторинг 01 наурыз-31 желтоксан аралыгында жYргiзiледi. Спутниктiк деректердi eцдегеннен кешн бiз - су бетiнiц температуралык деректерш ескере отырып, Каспий тецiзi акваториясыныц мунаймен ластану картасын, су бетшдеп желдiц жылдамдыгы мен багытын, тецiз акваториясындагы мунаймен ластанудыц непзп кeздерiнiц карта -сызбасын, атап айтканда: кемелер трассаларын, сондай-ак жер сшкшсшщ эпицентрлерiн деректердi алган сэттен бастап 0.5-1 сагат ш ш де 3 тэулште 1 рет аламыз.

Жер бетшщ геодинамикалык жылжуын есептеу Yшiн дэлдщ жогары спутниктiк навигация желiсiнiц деректерi пайдаланылады. Казакстан аумагында 49 перманент GPS станциясыныц деректерiн eцдегеннен кешн,

199

(10)

News o f the National Academy o f sciences o f the Republic o f Kazakhstan

оньщ шшде - 19 TRIMBLE станциясы, 20 LEICA станциясы, Алматы сейсмополигоныньщ аумагында 10 станция токсанына 6ip рет Казакстан аумагындагы GPS станцияларыныц ыгысу жылдамдыгыныц картасы (вектор, жылдамдык eрiсi) есептелiнедi. Жылына ею рет Казакстанныц сейсмикалык каушт аумагыныц жер кыртысыныц геомеханикалык жай-^шне мынадай дeрeктeрдi пайдалана отырып, жер бетшщ казiрri замангы козгалыстарыныц спутниктж мониторингшщ дeрeктeрi бойынша багалау жYргiзiлeдi: сейсмикалык деректер; рельефтщ сандык моделц табанныц сандык модeлi (Мохо); тектоникалык сыныктар; Батыс-Шыгыс жер бeтi жылдамдыгыныц компонeнтi (жылына метр); ОщYстiк-СолтYстiк жер б ет жылдамдыгыныц компонeнтi (жылына метр);

жылдамдыктыц тiк компонeнтi (жылына метр); жылдамдыктыц абсолюттiк шамасы (жылына метр); жер кыртысыныц кeрнeуi жэне деформациясы.

Будан баска, жYЙeнiц бiрeгeй мумюнджтершщ бiрi жогарыда аталган акпаратты алу гана емес, сонымен катар пайдаланушыларга мониторинг нэтижeлeрi бойынша Графиктер мен диаграммаларды куру аркылы жеке талдау жYргiзугe жэне eсeптeрдi калыптастыруга мумюндж бeрeтiн тYрлi куралдарды усыну болып табылады.

Тушн свздер: Геопортал, ТЖ гарыштан бакылау, ЖКБ, ГАЖ, геодинамика, ерт, су таскыны, мунай теплулер^

Ж. Ш. Жантаев, С. М. Нуракынов, С.В. Гаврук, Б. А. Искаков, Н.К. Сыдык, А. А. Мерекеев Институт ионосферы АО «НЦКИТ», Алматы, Казахстан;

СОЗДАНИЕ ГЕОПОРТАЛА И ЕГО РОЛЬ В ОПЕРАТИВНОМ МОНИТОРИНГЕ ЧС ПРИРОДНОГО И ТЕХНОГЕННОГО ХАРАКТЕРА НА ТЕРРИТОРИИ РК

Аннотация. С развитием космических и информационных технологий мониторинг чрезвычайных ситуаций с помощью спутниковых данных набирает огромную актуальность. Мировой опыт свидетельствует, что основным, а зачастую и единственным источником информации, на основе которой принимаются решения о мерах по ликвидации ЧС, являются системы космического мониторинга. И так как в режиме ЧС основной упор делается на оперативность, необходимо учитывать и своевременное оповещение не только соответствующих органов, но и простых жителей нашей страны. Но, к сожалению, на данный момент не существует единой системы с данными по нескольким направлениям. В связи с этим, крайняя необходимость создания единого геопортала, который содержал бы актуальную информацию по ряду наиболее остро стоящим природным и техногенным катастрофам зарождается само по себе. Аналогов созданной цельной и многопрофильной системы космического мониторинга чрезвычайных ситуаций с использованием новейших достижений ДЗЗ и ГИС нет не только в Казахстане, но и во всей Средней Азии.

В данной статье рассматривается система космического мониторинга, его состав и функциональная схема базовых элементов системы и сервисов удаленного доступа к ресурсам и результатам работы системы космического мониторинга. Авторы дают обобщенную характеристику основным программным компонентам подходящим спецификациям OGC: операционная система, система управления базами данных (СУБД), веб-сервер, язык программирования, библиотека GDAL, web-интерфейс для отображения картографических материалов.

Также описываются: подсистема сбора спутниковых данных; блок интерпретаций данных, где осуществляется обработка и интерпретация вручную и блок обработки снимков, где все автоматизировано; состав информационного обеспечения системы, его форматы и источники, частота обновления, интеграция и распространения данных мониторинга.

Описывается весь цикл работ космического мониторинга от получения сырых данных до загрузки на геопортал данных по нескольким видам чрезвычайных ситуаций. В качестве приоритетных было выбрано четыре направления: оперативный космический мониторинг лесных и степных пожаров; GPS мониторинг интенсивных подвижек земной коры; космический мониторинг снежного покрова, наводнений и паводков; космический мониторинг загрязнения нефтепродуктами акватории Каспийского моря.

Мониторинг лесных и степных пожаров состоит из трех основных задач. Первое, оперативный мониторинг температурных аномалий. Это процедура выполняется два раза в сутки за 0,5-1 часа после получения данных ДЗЗ.

Второе, построение карт выгоревших площадей - в оперативном режиме выполняется два раза в сутки из данных ДЗЗ низкого разрешения, в детальном раз в семь дней из данных среднего разрешения. Третье, моделирование и оценки риска пожароопасности с учетом характеристик местности (растительный покров, влажность почвы, наклонность, ветер, экспозиция склона, дистанция до трассы, населенного пункта и пожарного гидранта) и метеоданных.

Космический мониторинг прохождения паводковых вод и схода снежного покрова может проводиться в три уровня. На первом уровне два раза в сутки проводится анализ схода снежного и ледяного покрова по спутниковым данным низкого разрешения. На втором уровне привлекаются данные среднего разрешения для картирования зон затопления. На третьем уровне при необходимости анализа ситуации в особо критических случаях используются оптические и радарные ДДЗ высокого и сверхвысокого разрешения. Также, в период затопления по мере необходимости делается моделирование и прогноз развития крупных наводнений.

200

(11)

Космический мониторинг нефтяных загрязнений проводится в период 01 марта по 31 декабря. После обработки спутниковых данных получаем - карту нефтяного загрязнения акваторий Каспийского моря с учетом температурных данных водной поверхности, скорости и направление приводного ветра, карты - схемы основных источников нефтяного загрязнения в акватории моря, в частности: трасс судов, а также эпицентры землетрясений 1 раз в 3 сутки за 0.5-1 часа с момента получения данных.

Для расчета геодинамических смещений поверхности используются данные сети высокоточной спутниковой навигации. После обработки данных 49 перманентных GPS станций на территории Казахстана, в том числе - 19 станций TRIMBLE, 20 станций LEICA, 10 станций на территории Алматинского сейсмополигона один раз в квартал высчитывается карта скорости смещений GPS станций территории Казахстана (вектор, поле скоростей).

Два раза в год проводится оценка геомеханического состояния земной коры сейсмоопасных территории Казахстана по данным спутникового мониторинга современных движений земной поверхности с использованием следующих данных: сейсмические данные; цифровая модель рельефа; цифровая модель подошвы (Мохо);

тектонические разломы; компонента скорости поверхности земли Запад-Восток (метры в год); компонента скорости поверхности земли Юг-Север (метры в год); вертикальная компонента скорости (метры в год);

абсолютная величина скорости (метры в год); параметры поля напряжений и деформаций земной коры.

Кроме того, одной из уникальных возможностей системы является не только получение перечисленной выше информации, но и предоставление пользователям различных инструментов, позволяющих проводить собственный анализ и формировать отчеты с помощью построения графиков и диаграмм по результатам мониторинга.

Ключевые слова: Геопортал, космический мониторинг ЧС, ДЗЗ, ГИС, геодинамика, пожары, наводнение, нефтеразливы.

Information about authors:

Zhantayev Zhu.Sha., Institute of Ionosphere, JSC NCSRT, Almaty, Kazakhstan, Director, Doctor of Geological and Mineralogical Sciences, Corresponding member of NAS RK; admion1@mail.ru; https://orcid.org/0000-0002-9189-9546;

Nurakynov S.M., Institute of Ionosphere, JSC NCSRT, Almaty, Kazakhstan, head of the Cartography and GIS Laboratory, PhD doctor student; nurakynov@gmail.com; https://orcid.org/0000-0001-9735-7820;

Gavruk S.V., Institute of Ionosphere, JSC NCSRT, Almaty, Kazakhstan, head of the sector, mjdagot@gmail.com;

Iskakov B.A. Institute of Ionosphere, JSC NCSRT, Almaty, Kazakhstan, head of the department of Geodynamics, berikiskakov@gmail.com;

Sydyk N.K. Institute of Ionosphere, JSC NCSRT, Almaty, Kazakhstan, head of the Cartography and GIS sector, PhD doctor student; nurmahambet.s@gmail.com; https://orcid.org/0000-0003-1429-2393;

Merekeyev A.A. Institute of Ionosphere, JSC NCSRT, Almaty, Kazakhstan, engineer, aiba_99@mail.ru;

https://orcid.org/0000-0002-9227-4695

REFERENCES

[1] Kondratiev K.Ya., Shumakov F.E. The physical basis of space monitoring of water bodies in the visible and near infrared zones of the spectrum // Earth exploration from space. 1990. №6. P. 44-48 (in Russian).

[2] Lopes S., Gonzales F., Llop R., Cuevas M. An evaluation of the utility of NOAA-AVHRR images for monitoring forest fire risk in Spain // International Journal of Remote Sensing. 1991. Vol. 12. Р. 1841-1851.

[3] Usage of web servers [Electronic resource] / Q-Success. https://w3techs.com/technologies/overview/web_server/all [4] Portal Development Guide // BEA WebLogic Portal. BEA Systems, Inc., 2008. 38 p.

[5] Shashi Sh., Sanjay Ch. Fundamentals of spatial databases. Moscow:, 2004. 336 p (in Russian).

[6] Debian. The universal operating system [Electronic resource] / Software in the Public Interest, Inc.

https://www.debian.org/. загл. с экрана.

[7] PostGIS [Electronic resource] / Spatial and Geographic objects for PostgreSQL PostGis.

https://postgis.net/documentation/

[8] Smith L. What PostgreSQL has over other open source SQL databases: Part I. [Electronic resource] / Compose, an IBM Company. https://www.compose.com/articles/what-postgresql-has-over-other-open-source-sql-databases/

[9] Apache HTTP Server [Electronic resource] / The Apache Software Foundation. https://httpd.apache.org/

[10]Python [Electronic resource] / Python Software Foundation. https://www.python.org/

[11]Open layers [Electronic resource] / CC BY 3.0. https://openlayers.org.

[12]GDAL [Electronic resource] / Frank Warmerdam, Even Rouault, and others. https://gdal.org/

[13]Arkhipkin O.P., Sagatdinova G.N., Assessment of the potential development of floods based on the analysis of long­

term time series of remote sensing data // Modern problems of remote sensing of the Earth from space. 2014. T. 11. №4.

P.127-136 (in Russian).

[14]Kostianoy A.G., Kosarev A.N. The Caspian Sea Environment: The Handbook of Environmental Chemistry / ed.

Hutzinger O. V. 5: Water Pollution. Pt. P. / volume eds. Kostianoy A.G., Kosarev A.N. Springer, 2005. 271 p.

[15]Izrael Yu.A., Tsiban A.V. Anthropogenic Ocean Ecology. M.: Flint: Nauka, 2009. 529 p (in Russian).

201

Referensi

Dokumen terkait

The total cross sections o f the radiative proton capture on 8Li at astrophysical energies are considered in the framework o f the modified potential cluster model with forbidden

As a whole spectral and photometric characteristics o f the object IRAS 22023+5249 correspond to its status as a low-excitation planetary nebula.. The only HI emission lines are