CHAPTER 4 CHAPTER 4
4.4 INCIDENT SIMULATION
Using the data obtained the software ADIOS2 is used to model the spill scenario. The fate of oil can be predicted therefore the necessary efficient response action can be taken.
a) Open the application.
c "an: - tiyltl f. -Mu
a s. e-. + a++ n+
? ý-ý
__ 1IIIIIIIII
"a iw.
. ýrrý... drr. Toeýue, pav. n
.ý rý. ýr gkovvm. dD, VÖbýYWn
tiý
Feiensr -IývýVýMa
ýýa. e.. yý.. arearas_ä w0ýl1lr
-rew
ymw. rrr. amson.
Figure 6: ADIOS2 with no data input b) Insert the data input
. ei
i) Oil type - Specify the type of oil that has spilled. The standard oil in the library already has the Fuel Oil No 2 (High Aromatic Content Heating Oil). This is the diesel fuel oil and also known as Furnace Oil or Heating Oil.
The pictures shown are the basic information and properties of this oil.
"w. o
--- _.. .»---
ý
;I II
SdedaidapadrAleetlehl Neme Nome FUEL OIL NO. 2 FUEL OIL NO. 2 DIESEL) FUEL OIL NO. 2 OIIGH AROMATIC CO FUEL OIL NO. 2 OIO/OIESEU FUEL OIL NO. 6 FUHRMIN-MASOIO FULLERTON FULMAR FULMAR FURRIAL FURRIAL 41
H.
ý wearuýrowncoo. ýn ý WAMw
Rdav¢e AMOCO STAR EN DON BOON
OIL L GAS QTGO SHELL Oll
ADIOS OIL LIBRARY Wray vwsrm 2.0 8/15100 rune: FUEL OIL NO. 2 (HIGH AROMATIC CONTENT
HEATING OILJ 6ansd Info 1
vrcpe, tbs 1 ol#Mt4,1 we rravsues 1
Pot Type R6Fied O Oess Gap 3 ADIOS ID AD02139
Locati- rcrc lsted
Feld Nana FiE. OIL NO. 2 ORGH AROMATIC CONTENT HEATBMG OIL) go-r$- FL NACE OIL, "OW HEATING OIL
Refer- Jake, P., NAYk3. S.. Wan1 Z., Figas, M., FlNquse. 8., leabat. P., Mlm, J. 1999. Prapertlas d Cnde Oh ad Cd Pruduts. Masmipt Rot EE-165, Fm+onaartd Rotedlui 5m1ie, EnNeraesr[ Canada. Ott-, O'tb.
ýý "+ýIýIýýI
Cumenls nvie
Mw
ý
al trin..
Figure 7a: Oil properties; the general info
Shuwr. weeb. 41i
7. -- -- -=
w. A
IlRRq2 FU1m1020F5FL Ma1021fa1NO7N2C0) M4202lOA[S[11 MLL106 PlONwNW10 HüFR10M RL"
N12Wt NpVI
0
laos OL LARW imms I
"I
LL161S amco SIELL6O
-14 ..:. r, ý. ý:. ý ý: ý.: ý
. -ft
Ru1Yrt Sig M.. kEed to( S
L 2A 4-
at IpC % LIA Y-
1. um u- i- y_ __
l_ --4. _
i
Figure 7b: Oil properties
-- --ý___. _
! ý,. d... dýwr ýý
I' ý Iýý
NI101M01 Moo
R[101NDZasEU SWDfl
DF10lILL2IBIMMOMi[DI IIQDiIrttM. UFSEL DOOI xnaNoE
ruww/«. wo RLuaia DAMN
DLYA OL, uc
NfAM DI®
ý VIEU21
IIILI
!ý1 a- SI'. Srtledýpýnvi. N I
r-
I-
i
R$OLNU2 RUAl101pE4U RBAlN02NRIMUWCfA RALLN0116R5H1 R8LLIC1 Rf/MRWO RUE=
RlNR RUOR RlRN RIWL
i
0I- L aw,
_J
_ý_.. _ý__ý___f
I
i
Mn pD50. lHWN trnmu wo
lmx ý naaNuNGNno«caneit «may
i16K
ýad
w.. , lnom lIIwlIbpp"!
WloCm
wkar. M Aljtf 401+ wv. a. %.
1.1 nyc l1 M+yc n. 817C L1 I1+pC 7.1E S6qC m is Ri1C
3E IDw l6 syc ö1 ä11C
ý1 2681C 1.1 a/bC K1 3211C
14 IDi1C it E E46C a" m41C
-I Figure 7c: Distillation
iLI. M
raosaUFwar rn..:. u mAo ý waawDIhwworucaan[r
IEimau
G.. +w. Iftýw IWAý b. ftp. l
IYAM -
,,.., _ ýýý rr. wý -
lrtrYl. fý
md4w -ppm -
ULi. Oi -
MA6W aw -
Msb Q 11kf -
Mbw - ww -
4Mýs - SIv 1
Nia - IYý -
Figure 7d: The extra properties information
0
ii) Wind and wave conditions for the northern region of Malacca Straits were obtain from Malaysia Meteorological Department. The typical pattern on October days, shows the wind speed ranging from 10 - 20 km/h in East direction and the wave height can be up to 0.5 to 1.0 meters.
I
ý I
ýrL.
ýlý.. "Le . "\. t. l`/-} .d.
1 ý1...,
Rsese drools anc G ConMert was r' Variable M nd
w., d
Speed W-
mhec - o: ecem [9-0 avave.
Fmm the diectian ndceted N
Help Unoe, lengl...
Wave Wave Hei*g Known Wave Heght..
ý
Heipht '' ýý
ý
I OK
I
N
i i
Figure 8: Wind and wave data
iii) Water properties in this region is average on 29.60°C with the salinity of 3l . 22ppt.
1
: l. it- w
F4opasties GeqPie4 Temperah+e
Eýaple values
ý Alesks s*vii er 53' F, widd 41' GuM Coast sumw 82' F, witer 68' '. SaGiigl it ppt (dKd
32lavg. occarrc)
Wets Sedn ent load (mg/9 15 (ocea)
Cmrerit taptianeq speed ae
Dieetion 135 degees Curent fbws towards the diection indicated
N
I
i
Help Cancel
y
OK
ý.. vass
Figure 9: Water and current properties
iv) Release information - the only information available was the amount of release. Thus, an assumption is made that is the duration is 3 hours. This is because the fuel tanker system is multiple tank thus the it will not be flowing out for too long before it dries up.
ý ý---
--- --
ý; o. dý.. dýý. i... ao. wrwýdrýn: ae. nw. oaýo. ýrw ýý, ., dww. o. eýeýoý. ý, w.. w.. ý. ýowoý. aýe. w i! r Imuýl.. a. Ri«.
li ýI
ý> [ýý 1, I ý :pn:: c+ýrý -
! ha
. ý.... ýý. I. ýi"wv_ýr...
ýcrocme"M
Figure 10: Release information
c) the overall data input - the picture shows the overall data input just before the simulation is run.
e- "_r. :K o1rw.
r. , iý : oe... as w":: :: n-[v vra; " i. ,
tiýýý. {w: nv ýYnýn+ýýVeYýv, vunwYY.
YIwYý1Yýwfýlw
w__
ýAwý Movr
ý rýM ýýYw
-ws n, 11
ý, ý ý/ . ý.. ý...
-I
a,.. 1n.. W ý #1
I/ .,.. -, -.
: n.. . ý. ý
r fv ýemv-d ýren. r . ".;; uA" ^r.
... ýmr_.
ýý,,... _ _, ý, ý . ý.
Figure 11: The ADIOS2 when all the data has been keyed-in
d) Run the simulation by click on solve button. It will take some times to calculate the output and generate the graph.
ý ýýý),:
.
OiRnnsiglpacsil 100
gp
ýýý
100 01 Bldyilpatasi)_
® Rwn.:: w ý Evapoaoad
ý-
100 OiWamdlllcSO10
0
1200 1201) 1200
0026 Oct 28 Oa 30
0
1200 1200 1200
Oct 26 Oa 2B Oa30
1
1200 1210 1200
Oct 26 Oct 28 Oct 30
07 Dirpmsed Ipatý. aa) 100
. +..:, ybane Rersvn Coctabalixr IpprJ
1 01 Dtaniy OWw m)
1000
50 __ .... O1 900
0'
1200 1200 12x0
Oct 26 Oct 28 Oct 30
not
1200 1200 1200
Oa 26 Oct 28 Oa 30
B00
1200 1200 1200
Oa 26 oa 28 Oct 30
li Erepoattrd Iparcaril 48
20 ý
e
1200 1200 12011
Oa26 Oct 2B Oct 30
WaM Corbi n Oil IDatcatr0
WA
1
To beild o spill scantvio:
1) In any order, dick the td)w, itg links in the bolba.
Oil tgpaddeprdaaapisd
-eeatlrotartiEOrts ý Wnd/Weve
ý
ater -ýýpn)per6ea W
Release /rowtarrchdr. eeapiad 1. /
Figure 12: The output (multiple graph mode)
I
Figure 12a: Oil Budget Figure 12b: Oil evaporated
Figure 12c: Oil dispersed Figure 12d: Oil remaining
The Figure 12a shows the oil budget information. The evaporation, as further detailed in Figure 12b occur on the first day as much as 45%. The dispersion also rapidly occur up until the second day of the incident
Thus, the remaining oil is theoretically not significance because of those two physical reactions.
Figure 13: Oil density
Oil density information is important with respect to the comparison with ocean water density. Generally the lower density oil floats on water, however, the emulsification may occur and increase the density.
The figure shows the rapid increment at the early period. This is because a large percentage of the oil has already evaporated and dispersed.
Ul. rcýT ýý
IJ
1 I: tA.
U"w (aap U, ]]
"yp . ý. ý
AU. t.
f. ýT U"
ü ült
." t1": '"
'; }1 . 1"
Jl).! 1
fýýb p"
ý ü/!
n t1.1
Figure 14: Oil viscosity
The viscosity also shows the same pattern as the density. This follows the general rule; the lower the density the more viscous a fluid is. The process that takes place and affect this property is also the evaporation and dispersion.
i
Figure 15: Airborne Benzene
The airborne benzene is significant due to the toxic property that normally released by hydrocarbon, either crude oil or fuel oil. Excessive exposure to benzene can affect the health. As evaporation is rapidly takes place, the presence of benzene also not significance thus the area is not harmful.