• Tidak ada hasil yang ditemukan

Due to lack of time, a comprehensive research on the kinetics model of ISA reactor cannot be carried out. Thus, a complete research focusing on the kinetics modelling should be design with longer period of research and varies organic loading. This is to ensure a more accurate and comprehensive result is obtain.

Moreover, the reactor can be further improved with the addition of a clarifier. This is to prevent biomass washout from the aerobic zone. Due to the flow from bottom to top at the anoxic part, sometimes the bacteria been wash out together with the effluent thus compromising the result of the research.

In addition, the design of influent and internal recycle inlet to the bottom of the anoxic part can be further improve. A small tube covering large area of the anoxic zone may result in more complete mix in comparison to now which only one (Reactor B) or two (Reactor A) big inlet at the middle of the anoxic zone. This may provide more effective mixing in the zone.

This study has great benefit to society and the environment. The integrated sequential anoxic-aerobic (ISA) reactor may be an effective solution in integrating two treatment methods of different environments (aerobic and anoxic) into a single entity. From the overall result, this reactor proves to be efficient in removing organic matter and nutrients. However, since this study was carried out using low and medium strength of wastewater, further studies could be conducted using high strength of wastewater to determine whether it is achievable to produce an effluent within the D.O.E Malaysia Environmental Quality (Sewage) Regulations 2009 discharge standards.

32

References

Anglin, M. (2014, February 6). What is Wastewater Treatment? Retrieved from wiseGEEK: http://www.wisegeek.com/what-is-wastewater-treatment.htm Anthonisen, A. C., Loehr, R. C., Prakasam, T. B., & Srinath, E. G. (1976). Inhibition of

Nitrification by Ammonia and Nitrous Acid. Water Pollution Control Federation, 48(5), 835-852.

Carrera, J., Bazeza, J. A., Vicent, T., & Lafuente, J. (2003). Biological Nitrogen

Removal of High-Stregth Ammonium Industrial Wastewater with Two-Sludege System. Water Research, 37, 4211-4221.

Chan, Y. J., Chong, M. F., & Law, C. L. (2012). An integrated anaerobic-aerobic bioreactor (IAAB) for the treatment of palm oil mill effluent (POME): Start-up and steady state performance. Process Biochemistry, 485-495.

Chen, F. Y., Liu, Y. Q., Tay, J. H., & Ning, P. (2013). Alternating Anoxic/oxic

Condition Combined with Step-feeding Mode for Nitrogen Removal in Granular Sequencing Batch Reactors (GSBRs). Separation and Purification Technology, 105, 63–68.

Ding, A., Qu, F., Liang, H., Ma, J., Han, Z., Yu, H., & Li, G. (2013). A Novel Integrated Vertical Membrane Bioreactor (IVMBR) for Removal of Nitrogen from

Synthetic Wastewater/Domestic Sewage. Chemical Engineering Journal, 223, 908-914.

Ding, D., Feng, C., Jin, Y., Hao, C., Zhao, Y., & Suemura, T. (2011). Domestic Sewage Treatment in a Sequencing Batch Biofilm Reactor (SBBR) with an Intelligent Controlling System. Desalination, 276, 260–265.

33

Du, R., Peng, Y., Cao, S., Wu, C., Weng, D., Wang, S., & He, J. (2014). Advance nitrogen removal with simultaneoues Anammox and denitrification in sequencing batch reactor. Bioresource Technology, 162, 316-322.

Duchene, P., Cotteus, E., & Capela, S. (2001). Applying Fine Bubble Aeration to Small Aeration Tanks. Water Science and Technology, 44(2-3), 203-210.

El-Bourawi, M., Khayet, M., Ma, R., Ding, Z., Li, Z., & Zhang, X. (2007). Application of Vacuum Membrane Distillation for Ammonia Removal. Journal of Membrane Science, 301, 200-209.

Goldstein, e., & Peterson, R. (2006, July). Understanding Algae. Retrieved from Natural Environmental Systems, LLC:

http://www.naturalenviro.com/Article.php?ArticleSKU=Understanding-Algae Halling-Sorensen, B., & Jorgensen, S. (1993). The Removal of Nitrogen Compounds

from Wastewater. Amsterdam, The Netherlands: Elsevier Science Publishers B.V.

Jetten, M. S., Logemann, S., Muyzer, G., Robertson, L. A., Vries, S., Loosdrecht, M. C.,

& Kuenen, J. G. (1997). Novel Principles in the Microbial Conversion of Nitrogen Compounds. Antonie van Leeuwenhoek, 71, 75-93.

Karahan, Ö. (2010). Inhibition Effect of Linear Alkylbenzene Sulphonates on the Biodegradation Mechanisms of Activated Sludge. Bioresource Technology, 101, 92-97.

Knobeloch, L., Saina, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blur Babies and Nitrate-Contaminated Well Water. Environmental Health Perspective, 108(7), 675-678.

Lee, H.-J., Bae, J.-H., & Cho, K.-M. (2001). Simultaneous Nitrification and

Denitrification in a Mixed Methanotrophic Culture. Biotechnology Letters, 23, 935-941.

34

Madigan, Martinko, & Parker. (2000). Biology of Micoorganisms, 9th edition. Saddle River, NJ: Prentice Hall.

Metcalf & Eddy, Inc. (2013). Wastewater Engineering: Treatment and Reuse, 4th ed.

New York: McGraw-Hill.

Moura, R. B., Damianovic, M. H., & Foresti, E. (2012). Nitrogen and Carbon Removal from Synthetic Wastewater in a Vertical Structured-Bed Reactor Under

Intermittent Aeration. Journal of Environmental Management, 98, 163-167.

Muller, A., Wentzel, M., Loewenthal, R., & Ekama, G. (2003). Heterotroph Anoxic Yield in Anoxic Aerobic Activated Sludge Systems treating Municipal Wastewater. Water Res, 37(10), 2435-2441.

Rieger, L., Alex, J., Gujer, W., & Siegrist, H. (2006). Modelling of Aeration Systems at Wastewater Treatment Plants. Water Science and Technology, 53(4-5), 439-447.

S.R.M.Kutty, M.H.Isa, & L.C.Leong. (2011). Removal of Ammonia-Nitrogen and Nitrate by Modified Conventional Activated-Sludge System to Meet New D.O.E Regulations. IPCBEE, 12, 103-107.

Strous, M., Heijnen, J., Kuenen, J. G., & Jetten, M. (1998). The Sequencing Batch Reactor as a Powerful Tool for the Study of Slowly Growing Anaerobic Ammonium-Oxidizing Microorganisms. Appl Microbiol Biotechnol, 50, 589- 596.

Tan, X., Tan, S., Teo, W., & Li, K. (2006). Polyvinylidene FLuoride (PVDF) hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 271, 59-68.

Vaiopoulou, E., Melidis, P., & Aivasidis, A. (2007). An Activated Sludge Tratment Plant for Integrated Removal of Carbon, Nitrogen and Phosphorus.

ScienceDirect, 211, 192-199.

Wang, L. K., Hung, Y.-T., & Shammas, N. K. (2007). Advanced Physicochemical Treatment Processes. New Jersey: Humana Press Inc.

35

Washington State Department of Health. (2005). Nitrogen Reducing Technologies for Onsite Wastewater Treatment System. Washington: Puget Sound Action Team.

Xiuhong, Z., Jiti, Z., Haiyan, G., Yuanyuan, G., Guangfei, L., & Lihong, Z. (2007).

Nitrogen removal performance in a novel combined biofilm reactor. Process Biochemistry, 42, 620-626.

Yao, Y.-C., Zhang, Q.-L., Liu, Y., & Liu, Z.-P. (2013). Simultaneous Removal of Organic Matter and Nitrogen by Heterotrophic Nitrifying- Aerobic Denitrifying Bacterial Strain in a Membrane Bioreactor. Bioresource Technology, 143, 83-87.

Yoo, H., Ahn, K.-H., Lee, H.-J., Lee, K.-H., Kwak, Y.-J., & Song, K.-G. (1999).

Nitrogen Removal from Synthetic Wastewater by SImultaneous Nitrification and Denitrification (SND) Via Nitrite in an Intermittently-Aerated Reactor. Water Res., 33, 145-154.

Zinatizadeh, A., Mohamed, A., Najafpour, G., Hasnain Isa, M., & Nasrollahzadeh, H.

(2006). Kinetic evaluation of palm oil mill effluent digestion in a high rate up- flow anaerobic sludge fixed film bioreactor. Process Biochemistry, 41, 1038- 1046.

36 APPENDIX

37

APPENDIX

Appendix A: Influent/Effluent Characteristics Appendix B: Analysis of Data

38 Appendix A: Influent/Effluent Characteristics

COD

NO DATE

Influent COD, mg/L

Effluent COD , mg/L (Reactor A)

Effluent COD , mg/L (Reactor B)

1 20-05-14 118 38 28

2 21-05-14 218 102 84

3 22-05-14 236 104 81

4 23-05-14 225 69 77

5 26-05-14 229 12 41

6 27-05-14 280 21 18

7 28-05-14 296 4 4

8 29-05-14 283 13 12

9 30-05-14 230 12 16

10 02-06-14 287 4 6

11 03-06-14 268 5 2

12 04-06-14 280 2 1

13 05-06-14 245 6 4

14 06-06-14 262 6 6

15 09-06-14 246 12 9

16 10-06-14 220 9 14

17 11-06-14 277 7 7

18 12-06-14 294 10 15

19 13-06-14 307 12 14

20 16-06-14 242 13 14

21 17-06-14 237 12 12

22 18-06-14 284 14 11

23 19-06-14 244 21 16

24 20-06-14 237 24 14

25 23-06-14 241 19 18

26 24-06-14 278 23 15

27 25-06-14 291 21 15

28 26-06-14 247 19 9

29 01-07-14 271 22 17

30 02-07-14 269 24 14

31 03-07-14 248 22 15

32 04-07-14 269 25 14

33 07-07-14 459 105 96

34 08-07-14 507 108 87

39

35 09-07-14 523 94 77

36 10-07-14 496 86 81

37 11-07-14 550 73 74

38 14-07-14 513 54 49

39 15-07-14 510 65 43

40 16-07-14 493 56 46

41 17-07-14 518 48 50

42 18-07-14 488 42 41

43 21-07-14 488 40 50

44 22-07-14 513 40 43

45 23-07-14 495 41 47

46 24-07-14 536 40 33

47 25-07-14 462 35 30

48 28-07-14 541 34 35

49 29-07-14 512 34 35

50 30-07-14 530 30 34

51 31-07-14 468 37 35

52 01-08-14 530 40 30

53 04-08-14 479 36 39

54 05-08-14 497 40 39

55 06-08-14 546 37 39

56 07-08-14 516 30 32

57 08-08-14 549 33 39.00

NH3-N

No Date

Influent NH3-N, mg/L

Effluent NH3-N, mg/L (Reactor A)

Effluent NH3- N, mg/L (Reactor B)

1 20-05-14 31.25 5.4 6.1

2 21-05-14 25.4 6.5 8

3 22-05-14 20 7 10

4 23-05-14 18 7 10.25

5 26-05-14 14.5 6.25 10.5

6 27-05-14 23.5 6 8.25

7 28-05-14 11.75 7 9.3

8 29-05-14 19.5 6.25 9.25

9 30-05-14 23 6.75 9.25

10 02-06-14 23.75 8.5 10

40

11 03-06-14 21.25 9 10.75

12 04-06-14 26.5 8 10.5

13 05-06-14 24 8.5 10.25

14 06-06-14 29.54 8.5 10

15 09-06-14 21.5 7.25 8

16 10-06-14 26 7.5 8.5

17 11-06-14 28.5 7.75 8.5

18 12-06-14 25.25 7.25 8.5

19 13-06-14 26 7.75 7.25

20 16-06-14 12.25 6.75 7.25

21 17-06-14 15.5 7 7.75

22 18-06-14 10.75 6.5 7.5

23 19-06-14 8.25 6.5 7.75

24 20-06-14 7.25 6.5 7.25

25 23-06-14 9 6.75 6.75

26 24-06-14 8.5 5.5 5.5

27 25-06-14 9.25 6.5 6.5

28 26-06-14 7.75 6 6

29 01-07-14 9 8.5 7.75

30 02-07-14 8.25 7.5 7

31 03-07-14 9 6 6

32 04-07-14 8.25 6.25 6.25

33 07-07-14 22.5 9.5 9.50

34 08-07-14 25.25 8.25 8.25

35 09-07-14 22.75 8.75 8.75

36 10-07-14 21.75 9.75 8.75

37 11-07-14 21 8 8.5

38 14-07-14 27.5 8.25 7.5

39 15-07-14 23.5 8.25 8

40 16-07-14 25.25 7.75 8

41 17-07-14 24 8 8.75

42 18-07-14 25 9 7.25

43 21-07-14 22.75 8.5 7.5

44 22-07-14 24 8.25 9

45 23-07-14 24.5 9.25 8

46 24-07-14 26.75 8.5 8.25

47 25-07-14 23.25 7.75 9

48 28-07-14 24 8 7

49 29-07-14 26.25 7.75 8

50 30-07-14 25 9 8.25

51 31-07-14 23 9 9

41

52 01-08-14 22.5 9 8

53 04-08-14 25 9.75 9.5

54 05-08-14 24 7.25 8.25

55 06-08-14 27 7.5 9

56 07-08-14 25.75 9.5 8

57 08-08-14 25.25 9.25 9

NO3-N

No Date

Influent Nitrate, mg/L

Effluent Nitrate, mg/L (Reactor A)

Effluent Nitrate, mg/L (Reactor B)

1 20-05-14 0.4 12.6 9.6

2 21-05-14 0.2 12.8 9.7

3 22-05-14 0.5 10.3 5.8

4 23-05-14 0.1 11.3 6.2

5 26-05-14 1.8 6.6 6

6 27-05-14 0.6 5.3 7.2

7 28-05-14 0.2 6.8 5

8 29-05-14 0.4 5.7 4.2

9 30-05-14 0.2 6.3 4.1

10 02-06-14 0.1 5.4 5

11 03-06-14 0.39 4.6 4.4

12 04-06-14 0.89 4.7 4.5

13 05-06-14 0.2 4.4 4.2

14 06-06-14 0.4 3.9 3.8

15 09-06-14 0.64 3.1 2.4

16 10-06-14 0.4 3.3 2.2

17 11-06-14 0.5 3.1 2.7

18 12-06-14 0.3 1.2 2.4

19 13-06-14 0.6 1 2.6

20 16-06-14 1.2 1 2.8

21 17-06-14 0.2 1.3 2.4

22 18-06-14 0.1 1.3 2

23 19-06-14 0.7 1.1 2.4

24 20-06-14 0.7 1.2 2.9

25 23-06-14 0.4 1.4 2.7

26 24-06-14 0.7 1.1 2.7

27 25-06-14 0.6 1.3 2.3

28 26-06-14 0.9 1 2.8

42

29 01-07-14 0.6 2.5 2.4

30 02-07-14 0.2 2.9 2.3

31 03-07-14 0.01 1.2 2.2

32 04-07-14 0.6 1.1 2.8

33 07-07-14 0.0 8.9 8.5

34 08-07-14 0.76 9.0 8.7

35 09-07-14 0.46 8.2 8.2

36 10-07-14 0.4 7.7 8.1

37 11-07-14 0.15 8.0 7.3

38 14-07-14 0.97 8.0 7.4

39 15-07-14 0.4 8.7 7.6

40 16-07-14 0.1 7.4 7.3

41 17-07-14 0.50 6.1 6.4

42 18-07-14 0.57 4.5 6.6

43 21-07-14 0.3 5.6 4.7

44 22-07-14 0.92 4.4 5.5

45 23-07-14 0.8 5.5 5.0

46 24-07-14 0.57 4.4 3.7

47 25-07-14 0.72 4.0 3.4

48 28-07-14 0.86 2.4 3.9

49 29-07-14 0.96 3.0 3.1

50 30-07-14 0.8 3.1 3.6

51 31-07-14 0.42 2.4 3.7

52 01-08-14 0.7 2.3 3.9

53 04-08-14 0.17 3.8 2.8

54 05-08-14 0.4 3.0 3.6

55 06-08-14 0.10 3.6 2.7

56 07-08-14 0.75 3.8 3.1

57 08-08-14 0.8 3.7 2.8

PHOSPHORUS

No Date

Influent Phosphorus,

mg/L

Effluent Phosphorus , mg/L (Reactor A)

Effluent Phosphorus , mg/L (Reactor B)

1 20-05-14

2 21-05-14

3 22-05-14 36 25.25 30.25

4 23-05-14

5 26-05-14

43

6 27-05-14

7 28-05-14

8 29-05-14 28 16 21

9 30-05-14

10 02-06-14

11 03-06-14

12 04-06-14

13 05-06-14 24 17 17

14 06-06-14

15 09-06-14

16 10-06-14

17 11-06-14

18 12-06-14 29.84 19.64 21

19 13-06-14

20 16-06-14

21 17-06-14

22 18-06-14

23 19-06-14 26.5 17 19

24 20-06-14

25 23-06-14

26 24-06-14

27 25-06-14

28 26-06-14 32 23 24

29 01-07-14

30 02-07-14

31 03-07-14

32 04-07-14 27.5 18.25 20.25

33 07-07-14

34 08-07-14

35 09-07-14

36 10-07-14

37 11-07-14 39 30.25 32

38 14-07-14

39 15-07-14

40 16-07-14

41 17-07-14

42 18-07-14 34.5 28.5 30

43 21-07-14

44 22-07-14

45 23-07-14

46 24-07-14

44

47 25-07-14 38 26.5 26

48 28-07-14

49 29-07-14

50 30-07-14

51 31-07-14

52 01-08-14 37 22 25.5

53 04-08-14

54 05-08-14

55 06-08-14

56 07-08-14

57 08-08-14 39 25.25 27

45 Appendix B: Analysis of Data

COD Removal Efficiency

No Date

Reactor A Removal Efficiency

Reactor B Removal Efficiency 1 20-05-14 67.79661 76.27119 2 21-05-14 53.21101 61.46789 3 22-05-14 55.9322 65.67797 4 23-05-14 69.33333 65.77778 5 26-05-14 94.75983 82.09607

6 27-05-14 92.5 93.57143

7 28-05-14 98.64865 98.64865 8 29-05-14 95.40636 95.75972 9 30-05-14 94.78261 93.04348 10 02-06-14 98.60627 97.90941 11 03-06-14 98.13433 99.25373 12 04-06-14 99.28571 99.64286 13 05-06-14 97.55102 98.36735 14 06-06-14 97.70992 97.70992 15 09-06-14 95.12195 96.34146 16 10-06-14 95.90909 93.63636 17 11-06-14 97.47292 97.47292 18 12-06-14 96.59864 94.89796 19 13-06-14 96.09121 95.43974 20 16-06-14 94.6281 94.21488 21 17-06-14 94.93671 94.93671 22 18-06-14 95.07042 96.12676 23 19-06-14 91.39344 93.44262 24 20-06-14 89.87342 94.09283 25 23-06-14 92.11618 92.53112 26 24-06-14 91.72662 94.60432 27 25-06-14 92.78351 94.84536 28 26-06-14 92.30769 96.35628 29 01-07-14 91.88192 93.72694 30 02-07-14 91.07807 94.79554 31 03-07-14 91.12903 93.95161 32 04-07-14 90.70632 94.79554 33 07-07-14 77.12418 79.08497 34 08-07-14 78.69822 82.84024

46

35 09-07-14 82.02677 85.27725 36 10-07-14 82.66129 83.66935 37 11-07-14 86.72727 86.54545 38 14-07-14 89.47368 90.44834 39 15-07-14 87.2549 91.56863 40 16-07-14 88.64097 90.66937 41 17-07-14 90.73359 90.34749 42 18-07-14 91.39344 91.59836 43 21-07-14 91.80328 89.7541 44 22-07-14 92.20273 91.61793 45 23-07-14 91.71717 90.50505 46 24-07-14 92.53731 93.84328 47 25-07-14 92.42424 93.50649 48 28-07-14 93.71534 93.5305 49 29-07-14 93.35938 93.16406 50 30-07-14 94.33962 93.58491 51 31-07-14 92.09402 92.52137 52 01-08-14 92.45283 94.33962 53 04-08-14 92.48434 91.85804 54 05-08-14 91.95171 92.15292 55 06-08-14 93.22344 92.85714 56 07-08-14 94.18605 93.79845 57 08-08-14 93.98907 92.89617

17 COD REMOVAL KINETICS

1 2 3 4 5 6 7 8 9 10

Reactor No

Influent Average Concentration COD,

So (mg/L)

Effluent Average Concentration COD, Se

(mg/L)

MLVSS, Xv,a

(mg/L) Qo (L/h)

Residence time, hrt

(h)

So - Se

(mg/L)

Xv,a hrt (mgh/L)

(So - Se)/ Xv,a hrt

(h-1)

F/M= So

/ Xv,a hrt (mg COD/mg

MLVSS day)

A 1 508.76 36.47 1122.54 5 1 472.29 1122.54 0.420733 10.87733

2 262.28 14.28 742.857 5 1 248 742.857 0.333846 8.473663

B 1 508.76 36.43 1206.57 5 1 472.33 1206.57 0.391465 10.11979

2 262.28 11.6 703.24 5 1 250.68 703.24 0.356464 8.951027

A 1 508.76 36.47 2842.246 5 1 472.29 2842.246 0.166168 4.295983

2 262.28 14.28 2449.625 5 1 248 2449.625 0.10124 2.569667

B 1 508.76 36.43 2134.85 5 1 472.33 2134.85 0.221247 5.719484

2 262.28 11.6 1873.85 5 1 250.68 1873.85 0.133778 3.359244

(So - Se)/ Xv,a hrt (h-1) Se

Aerobic Reactor A 0.420733 36.47

0.333846 14.28

Reactor B (Aerobic) 0.391465 36.43

0.356464 11.6

Anoxic Reactor A 0.166168 36.47

0.10124 14.28

Reactor B (Anoxic) 0.221247 36.43

0.133778 11.6

NITRIFICATION KINETICS NH3-N

1 2 3 4 5 6 7 8 9 10

Reactor No

Influent Average Concentration

NH3-N, So

(mg/L)

Effluent Average Concentration

COD, Se

(mg/L)

MLVSS, Xv,a

(mg/L) Qo (L/h)

Residence time, hrt

(h)

So - Se

(mg/L)

Xv,a hrt (mgh/L)

(So - Se)/

Xv,a hrt (h-1)

F/M= So

/ Xv,a hrt (mg NH3- N /mg MLVSS day)

A 1 24.775 8.6 1122.54 5 1 16.175 1122.54 0.014409 0.529692

2 8.45 6.6 742.857 5 1 1.85 742.857 0.00249 0.273

B 1 24.775 8.6 1206.57 5 1 16.175 1206.57 0.013406 0.492802

2 8.45 6.675 703.24 5 1 1.775 703.24 0.002524 0.28838

Dokumen terkait