• Tidak ada hasil yang ditemukan

Instructions: Answer all five [5] questions. - EPrints USM

N/A
N/A
Protected

Academic year: 2024

Membagikan "Instructions: Answer all five [5] questions. - EPrints USM"

Copied!
5
0
0

Teks penuh

(1)

UNIVERSITI SAINS MALAYSIA Second Semester Examination

Academic Session 2OOT t2OAg Aprit 2008

MSS 212 - Further Linear Atgebra [Aljabar Linear Lanj utai]

Duration : 3 hours

[Masa:

3 jamJ

Please check that this examination paper consists of

FlvE

pages of printed material before

you

begin

the examination. +

fsila

pastikan

bahawa kertas

pepeiksaan ini mengandungi LIMA muka

surat

yang bercetak sebetum anda memurakan

peperiniaiiinii.l

Instructions: Answer all five

[5] questions.

tArahan Jawab semua lima [S]

soatan.l

...2t-

(2)

[1 1 1 1r

1 (a) ,.,, =

|

I :'; :'r: ::;l

Show that det.A

=

1

[t nc= tc= ucr]

[70 marks]

(b) x*2y*32=-l w-Zx-y-"=)

w+Y-"=|

2w*3x*z=A

Solve the above simultaneous equations using

cramer's *"t.rro

marksl

2. LetV = {p(x) € P4(c)lp(0) =

0}.

LetW =

{(at,a2,Qsto.41Q5,ao)

e

Culas

-

&4

- o5, ot = oz =

oe}

Show that V is isomorphic

to

W over C by constructing an isomorphism.

[140 marks]

3. Let

F be a

field. A

sequence

{4"} in

F is a

function

o:Z+ -+

E

such

that o(n) - q,

LetV = {all

sequences

{a"} in R}

For any

ta"j,tb"\ € V,r €

lR,

define

{an}+{bn}={ar*bn}

r.

{a.,-}

- {ran}

Show that

with

these

'+' and ' '' ,

V is a vector space

over

IR-

[100 marksJ

...,3-

(3)

IMSS

2121

[70

markahJ

(b) x*2y*32=-L w-2x-y-r=:

w+y-t=+

2w*3x*z=0

selesaikan persamaan serentak

di

atas dengan menggunakan petua Cramer.

[50

markahJ

2. BiarV = tp@) e pa(a)lp(0) =

0].

BiarW = t(at,cl2,e3,e.4,d5ta) e

C6las

- a4 os,

aL

= ez =

aa}

Tunjukkan v adalah isomorfisma dengan

w

atas

c

dengan membina suatu isomorJisma.

[140

markahJ

3. Biar

F

ialah

suatu medon. suatu

jujukan di

F,

{on},

adarah

suatufungsi

oi Vj +F

s e demi.ki.an htng g a o

(n) =

an

Biar V -

{semua

jujukan [ar,] d/lR]

Bagi setiap

tan],{bn}

E

V,r e R, tukri.f

{a"}+tbn}={an*bn}

r .tanj - {ran}

Tunjukkan

dengan'+' dan ' .' tnt, v

is odarah suatu ruang vector qtas

w fl00

markahJ

3

r (a) ,,,, o =fl :'; 'ri; r:;l *rukkan detA = L

Lt oc, uc'' tcrl

...t4-

(4)

l1 0 0\

4. retA=( L z 0f

\-3 5 2/

(a)

Determine whether

A

can be diagonalised or not

[100 marks]

(b)

Find JCF(A)

[20 marks]

5. Let

M2*2(lR) be an inner product space over IR.

with

the

following

defined inner product:

Forany A: (oti),B = (bt) e Mzx:@)

< A,B t= I i=I Zo,,uq

j=1

Define

alinear transformation T:

Mr*r(R) t Mz"z(lR)

such that

(A)T - Ar

(the transpose

ofl)

(a)

Show that

Iis

self-adjoint.

[40 marks]

(b) Find an orthonormal

basis

p of M2"2(R) such

that Tp,p

is a

diagonal matrix.

[80 marks]

.../5-

(5)

5

[MSS 2121

/t 0 0\

4. BiarA=lt Z 0l

\-3 5 2/

(a)

Tentukan samada A boleh diperpenjurukan atau tidak

ft00

markahJ

(b)

Cari JCF(A)

[20 markahJ

5, Biar M2"2(R) illgh

suatu ruang hasil darap terkedaraman atas R dengan penalvifan hasil darab terkedalaman seperti berilafi :

Bagi setiap

A = (ori), g = (br) e

M2xz(W)

< A,B t= I

i=\ j=7

Zo,,r,,

Tal<rif suatu tranformasi linear

I:

M2r2(lR)

r Mzrz(R)

sedemikian hingga

(A)T =

Ar (transposisi bagi A) (a) Tunjukkan T adalah sw odampingan.

[40 markahJ (b)

cari suatu

asas ortononnal B

bagi Mz*z(R)

sedemikian hingga Tp,B

adal ah suatu matrik pepenj uru,

[80 markahJ

-oooOooo-

Referensi

Dokumen terkait

UNIVERSITI SAINS MALAYSIA First Semester Examination 2012/2013 Academic Session January 2013 MAA111 Algebra for Science Students [Aljabar Untuk Pelajar Sains] Duration : 3 hours

First Semester Examination Academic Session 2007 12008 October/November 2007 MGM 511 - Linear Algebra [Aljabar Linear] Duration : 3 hours [Masa: 3 jam] Please check that this

UNIVERSITI SAINS MALAYSIA First Semester Examination Academic Session 200812009 November 2008 MAT 363 - Statistical lnference [Pentaabi ran Statisti k] Duration : 3 hours [Masa : 3

UNIVERSITI SAINS MAIAYSIA Peperiksaan Kursus Semasa Guti Paniang Sidang Akademik 2007 I2OOB Jun 2008 MAT 222- Differential Equations ll [Persamaan Pemhezaan II] Duration:3 hours

UNIVERSITI SAINS MALAYSIA Second Semester Examination 2010/2011 Academic Session April/May 2011 MSS 212 - Further Linear Algebra [Aljabar Linear Lanjutan] Duration : 3 hours [Masa

UNIVERSITI SAINS MALAYSIA Peperiksaan Kursus Semasa Cuti Panjang Sidang Akademik 2010/2011 Jun 2011 MSS 212 - Further Linear Algebra [Aljabar Linear Lanjutan] Duration : 3 hours

UNIVERSITI SAINS MALAYSIA Second Semester Examination 2011/2012 Academic Session June 2012 MSS 301 – Complex Analysis [Analisis Kompleks] Duration : 3 hours [Masa : 3 jam]

UNIVERSITI SAINS MALAYSIA Second Semester Examination Academic Session 2005120OG April/May 2006 MSS 301 - Complex Analysis [Analisis Kompleks] Duration : 3 hours [Masa : 3 jam]