• Tidak ada hasil yang ditemukan

Instructions: Answer all four [4] - EPrints USM

N/A
N/A
Protected

Academic year: 2024

Membagikan "Instructions: Answer all four [4] - EPrints USM"

Copied!
7
0
0

Teks penuh

(1)

Second Semester Examination Academic Session

200512006

April/Mei

2006

MAT

102E

- Advanced Galculus [Kalkulus Lanjutan]

Duration

:

3 hours

[Masa : 3 jamJ

Please check that this examination paper consists of SEVEN pages of

printed

material before you

begin

the examination.

[Sila

pastikan

bahawa keftas

peperiksaan

ini mengandungiTUJUH muka surat yang bercetak sebelum anda memulakan

peperiksaan

inil.

Instructions: Answer all four

[4]

questions.

Franan Jawab semua empat [4]

soalanl.

a3

...12-
(2)

2

IMAT 1o2El

l. (a)

Find the

following limits

of functions or sequences :

(Dnffi

(ii)

,lS, (.orr+sinr)i (iii) lim (J"B,f -r')

,. \ ,. 3'(...D*1-r1") (iv.t lim

-

n-r6 n !

(-r is a real number

and n is

apositive integer)

O)

The sequence

{ a, }

is defined as

dr=2, an*t=!(zo,+s),

Y

n>1.

J

(i)

Determine whether

{ ",}

is increasing or decreasing.

(ii) Is { o^I

bounded above ?

(iii) Does l*o^ exist? If yes, findthislimit.

(iv)

Is the series

;, +

convergent or divergent ?

-'=l fl2

(Give reasons to support your answers)

(c) If

the

limit of a

sequence

{ b, }

exists, prove

that

the

limit

is unique.

[100 marks]

I. (a)

Cari hadfungsi atau

jujulan

yang berikut :

(' 1in'--J!t-

x--+o

!n()sx -))

(it),1-T. (.o.r

+

sinr )i

(ii, ,,y (J

"^

ut - "') 3'(Jr+(-l)')

(iv) lgl J

(x

ialah nombor

nyata dan n

ialah integer

positifl

.../3.

(3)

ft) Jujukan { a,}

attotcriJkan sebagai

dr=2, dn+t=J-(zo,+5), Y n2r.

J

(,

Tentukan sama

ada { o,\

menokok atau menyusut.

(i, Adalwh { a,l

terbatas dari atas ?

(iit) Adakah

ll3l-o"

wujud

?

Jikn ya, cari had ini.

(iv) Adalah ttri i. A

menumpu atau mencapah ?

-*l ft2

(Beriknn alasan untuk menyokong jawapan anda)

(c)

Jilca had

jujukan {b^\ wujud,

buhikan bahawa had

ini

adalah unik.

fl00

marknhJ

2. (a) If

z =

ln(e,

+ st

), show

that

(i) ?*?=t ox

oy

A2o A2- ( az. \'

(iD # q,,-lr*)

=Q

(b) (D

Showthatthe Maclaurinseries

forthe function -f(i=! l-x

is

k=0

i*o

and find its

interval

of

convergence.

(iD

Hence find the series

for

=_|- (I-2x)' and

state its interval

of

convergence.

(iii)

Find the sum

of

the series

. 2.2

22

.3

23

.4

t- 5 - O - O +"'

(c) Let Q(u,v,w)beadifferentiablefunction and ?t)y)w be

related to

xryrzby

u=L, v=L and w=2.

zz

(i)

Show

that

the

equation r * dx dv * y ! *, *

oz =

Q

canbe

fansformed into

...14-

?q

(4)

'il'=

a6 9 '

(ii) Showthat #=##

2. (a) Jil<a

z =

l,n(e'

+

ev),

tunjukknn bahawa

(, ?*?=t oxA

/ ^" \2

(i, = =-l-l &z Ay' \efu ) =o

[100 marks]

@ (,

Tunjukkanbahawa

siri Maclaurinbagi "f(*)= .

L-XI ialah

@

k=O

Zro

dan cari selang penumpuannya.

(iil

Dengan

ini

cari

siri bagi :=t dan

nyataknn selang

(r-2x)'

penumpuannya.

(ii,

Cari hasil tambah

siri

. 2-2 22-3 23-4

r* s * y + o +...

(c)

Andaikan

Q(u,v, w)

adalah suatufungsi yang terbezaknn

dan u,v,

w berhubung

dengan

x,

!, Z

secara

,=;, ,=; xv and w=

z.

(,

Tunjukkan bahawa

persamaan, ! ox * y * *, ov %

oz =

O

dapat

dijelmakan kepada w ad

-=

Aw 0).

(i,

Tuniukknn

bahawa !+ fud* =

w?

'^

0v0u

!'!

.

fl00

marlcahJ

IMAT

102E1

.".rn

./'":I 1l U

...15-

(5)

3 (a) Given that f

(x,

y)

=

yt

+3x2

+6ry -9y ,

(.x,

y)

e IR2.

Classify the critical points

of /

and

find

the local extremum

of f

lor',

(b) Given f(x,y)=7

xz

+y;' (x'Y)+(o'o).

I o , (x,Y;=(o,o)

(i)

Show that

f is

continuous

at

(0,

0).

(ii) Find {@, y) at

(x,

y)+ (0,0) *a ll1o, o;.

Ac"' 0x"

(iiD

Determine

whether $ is

continuous

at

(0,

0)

? ox

(c)

Determine whether each of the

following

series converges or diverges.

,.\ S

4k

+l

tr, /

-r=, --

"lk

(2k + 5)

(iD ; Hkt orllo

(iii) i(JE;n -il

k=l

(iv)

E# (Hinr u'=e'tnu)

[00

marks]

3 (a) Diberi f (*, y)

= y3 +3x2 + 6*y

-9y ,

(x,

y)

e R.2.

Kelaskan titik genting

bagi f dan cari

ekstremum setempat

bagi f,

| +*',

(b) Diberi f(x,y)

=

I x, * yT' (''Y)+(0'0).

L 0 , (x,y)=(0,0)

(,

Tunjukknn bahawa

f

adalah selanjar

pada (0,0).

(i, Cari !G, ox y) pada

(x,

y)+ (0,0) ao, !p,01.

dx

(ii,

Tentukan sama

ada +

adalah selanjar

pada

(Q, O) ? ox

(c)

Tentukan sama ada setiap siri yang berilafi adalah menumpu atau mencapah.

n7 t6-

..i. L

g 4k+1

1.,, ,/ . --=-

E ^lk (2k+s)

(6)

(i, , or :10

Akl

(ii, |(.L;'+E-k)

k=l

(iu)

L# (Hint: u2=e't")

[100 markahJ

4 (a)

Determine whether each of the

following

improper integrals converges.

(i) f *-"o1"-*

Jr

"lLxs

+3

(iD l"#-

(b)

Evaluate the integrals :

(i) lJ tl * 2x)

dxdy

A

where

I istheregionbowrdedby y=xz and l=4-x2

"f .l

*2

(ii) l' J0

JJzy

| _-:d*

dy

r/l+3x,

(iii)

JJ

t* n(xz + y')

dxdy

,in.r"

D =

{(x,y)e IR'

: xz +

y2

l-1,

x) 0, y

>

0}

.

(c)

Find the volume of the solid which is bounded above by the paraboloid z

=9 -

x2

- !2

and below by

the ry -plane,

and that lies outside the

cYlinder

x2 + Yz

=1-

[100 marks]

4 (a)

Tentukan sama ada kamiran

takwajar

berikut adalah menumpu.

(, f Jr *:ol'*- *

"l2xt +3

(iil l' . '

Jz.

(xz ,rd,

-x-6)i

IMAT

102E1

" .42

...17-

(7)

(b)

Nilaikan kamiran berikut :

(,) ll(3+2x)

tf dxdy

mana

; A

adalah kawasan yang dibatasi oleh

|

=

xz

dan

l=4-x2

c* fl .2

(i, l' Jo l_ + dr

d1,

J Jzy

tll+3x5

(ii,

JJ

tl rin n(xz +y')

dxdy

D

dimana D={(x,y)eiR':

x2

+yz

<.1, x

>0, y>0}.

(c)

Cari isipadu bongkah yang dibatasi di atas oleh

paraboloid

z

=9 -

x2

- !2

dan di bawah

oleh

satah

xy, dan

terletak di

luar

silinder

xz

+vz =L.

fl00

marlwhJ

-oooOooo-

43

Referensi

Dokumen terkait

UNIVERSITI SAINS MALAYSIA First Semester Examination 2009/2010 Academic Session November 2009 MAT 203 – Vector Calculus [Kalkulus Vektor] Duration : 3 hours [Masa : 3 jam]

UNIVERSITI SAINS MALAYSIA Peperiksaan Kursus Semasa Cuti Panjang Sidang Akademik 2011/2012 Ogos 2012 MAT 102 – Advanced Calculus [Kalkulus Lanjutan] Duration : 3 hours [Masa : 3

UNIVERSITI SAINS MAIAYSIA Peperiksaan Kursus Semasa Guti Paniang Sidang Akademik 2007 I2OOB Jun 2008 MAT 222- Differential Equations ll [Persamaan Pemhezaan II] Duration:3 hours

April/May 2009 MSS 301 - Gomplex Analysis [Analisis Kompleks] Duration : 3 hours [Masa : 3 jam] Please check that this examination paper consists of FIVE pages of printed material

UNIVERSITI SAINS MALAYSIA Second Semester Examination Academic Session 200812009 April/May 2009 MAA 102 - Calculus for Science Students ll [Kalkulus untuk Pelajar Sains II] Duration

UNIVERSITI SAINS MALAYSIA Second Semester Examination Academic Session 2OOT t2OAg Aprit 2008 MSS 212 - Further Linear Atgebra [Aljabar Linear Lanj utai] Duration : 3 hours [Masa:

UNIVERSITI SAI NS MALAYSIA Peperiksaan Kursus Semasa Cuti Panjang Sidang Akademik 200812009 Jun 2009 MAT 102 - Advanced Calculus [Kalkulus Lanjutan] Duration: 3 hours [Masa:3 jamJ

UNIVERSITI SAINS MALAYSIA First Semester Examination Academic Session 2007 12008 October/November 2007 MAT 2A3 - Vector Galculus [Kalkulus Vektor] Duration :3 hours [Masa: 3 jamJ