• Tidak ada hasil yang ditemukan

Materials Chemistry and Physics

N/A
N/A
Protected

Academic year: 2024

Membagikan "Materials Chemistry and Physics"

Copied!
9
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Materials Chemistry and Physics

j our na l h o me p a g e: w w w . e l s e v i e r . c o m / l o c a t e / m a t c h e m p h y s

Synthesis and characterization of xMgO–1.5Al 2 O 3 –5SiO 2 (x = 2.6–3.0) system using mainly talc and kaolin through the glass route

Johar Banjuraizah

a

, Hasmaliza Mohamad

b

, Zainal Arifin Ahmad

b,∗

aSchoolofMaterialsEngineering,UniversitiMalaysiaPerlis,02600Kangar,Perlis,Malaysia

bSchoolofMaterialsandMineralResourcesEngineering,UniversitiSainsMalaysia,EngineeringCampus,14300NibongTebal,Penang,Malaysia

a r t i c l e i n f o

Articlehistory:

Received25October2010

Receivedinrevisedform23February2011 Accepted13May2011

Keywords:

A.Glasses B.Crystallization C.Powderdiffraction D.Thermalproperties D.Dielectricproperties

a b s t r a c t

Threenon-stoichiometriccordieritewithcompositionsofxMgO–1.5Al2O3–5SiO2(x=2.6–3.0mol)were synthesizedusingmainlytalcandkaolinthroughtheglassroute.Thedensificationandcrystallization behaviorsoftheseglasspowderswereinvestigatedusingDTA,dilatometer,andXRD.Sampleswerethen heattreatedat900Cfor2handfurtheranalyzedusingXRD,CTE,FESEM,densityandporositytests, andalsodielectrictesttofurtherinvestigatetheirproperties.The2.8MgO·1.5Al2O3·5SiO2glasscompo- sitionfullydensifiedandcrystallizedintohighpurity␣-cordieriteattheheattreatmenttemperature.

ItexhibitedlowerCTEanddielectricconstantcomparedtoothercomposition,makingitsuitablefor highfrequencyapplications.Otherformulationswhichcontainmulticrystallinephasesrequiremuch highertemperaturesfordensification.TheCTEvaluedependsonthetypeofcrystallinephasewhich existinthesample,whilethedielectricconstantdecreasedwithincreasingMgOamountsinthesample compositions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

␣-Cordierite-basedglass–ceramicshaveattractedsomeatten- tioninrecentyears owingtotheirlowCTE, dielectricconstant, dielectriclossanddensitywhichmakethemsuitableforhighfre- quencyapplications.Thedifficultyofobtaininghighcrystallinity

␣-cordieritephaseatorbelow900Cwithashortsoakingtime usingsolidstate[1–5]andsol–gel[6–9]methodscanbereviewed intheliterature.Althoughithasbeenreportedthat␣-cordierite canbecrystallizedat900Cusingtheglassroute[10],thecrys- tallization of secondary crystalline phases, together with large amorphous phases, will significantly affect its properties. Fur- thermore,thecrystallizationthatoccursbeforethedensification processwouldcausetheviscosityoftheglasstoincrease,resulting inhigherporosity ofglass–ceramics.Thisproblemcanbeover- comebyreducingthesofteningtemperatureandviscosityofthe glass.Besidestheadditionofsinteringaidsand pulverizinginto veryfineparticles,theviscosityoftheglasscanbefurtherreduced bymodifyingthestoichiometriccompositions.

Previously, we reported the effects of excess MgO concen- tration from cordierite stoichiometric compositions on phase transformationwhichisintheseriesofxMgO·2Al2O3·5SiO2(where x=2–4mol) [11], and also the densification and crystallization

Correspondingauthor.Tel.:+6045996128;fax:+6045941011.

E-mailaddress:[email protected](Z.A.Ahmad).

behaviorofthesecompositions[12].Althoughcompositionswith highMgOconcentrationshadenhancedthecrystallizationofthe␣- cordieritephase,smallamountsofspinel(MgAl2O4)andforsterite alsotendedtocrystallize[11].Additionally,ithasbeenprovenfrom thesestudiesthatexcessMgOinastoichiometriccordieritecom- positionwould notonlycause thedensification temperatureto decrease,butalsothecrystallizationtemperature[12].Infact,some ofthestudiedcompositionstendtocrystallizebeforedensification hascompleted.Crystallizationthatoccursbeforedensificationmay havebeeninitiatedfrominsufficientmeltingtemperatureusedto melttheglasscompoundoralowquenchingrate.Thiswillcause smallamountsof glasstocrystallize duringmeltingand conse- quentlyretardstheviscoussinteringprocessduringheattreatment oftheglass.McMillan[13]inhisbookproposedthatthemelting temperatureoftheglasscompoundcanbereducedbyreducing theintermediate oxideoftheglass,which is Al2O3 in thissys- tem,andthiswillconsequentlydecreasetheviscosityoftheglass ifthesamemeltingtemperaturewasemployed.Inadditiontothat, areductioninAl2O3moleratioisexpectedtoretardtheforma- tionofspinelasexcessMgOwillreactwithAl2O3toformspinel (MgAl2O4),whilevariationsinMgOconcentrationswillretardthe formationofforsterite.Therefore,bysystematicallymodifyingthe compositionsofstudy,thecrystallization oftheintendedphase canbecontrolledbyimpedingthereactionandcrystallizationof thesecondaryphase.Althoughithasalsobeenreportedinthelit- erature[14–18]thattheMAScompositionusedwithexcessMgO andlessAl2O3wouldcontributetobetterdensificationandcrys- 0254-0584/$seefrontmatter© 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.matchemphys.2011.05.026

(2)

Table1

ElementalanalysisofmineralsandoxidecompoundbyXRF.

Kaolin Talc SiO2 Al2O3 MgO

wt%

MgO 0.88 49 99

SiO2 59 47 99.5 0.2

Al2O3 35 0.16 0.04 99.46

K2O 3

CaO 0.014 3 0.075 0.13

TiO2 0.84

Fe2O3 0.6 0.45 0.04 0.15 0.0036

Cr2O3 0.032

NiO 0.014 0.028 0.022

P2O5 0.073 0.095

ZrO2 0.05

SO3 0.06 0.07

CuO 0.016 0.014

Table2

Compositionofoxidesinthemixtures.

Sample MASratio MgO(g) Al2O3(g) SiO2(g)

X1 3:1.5:5 21.0548 26.6322 52.3131

X2 2.8:1.5:5 19.9309 27.0113 53.0578

X3 2.6:1.5:5 18.7745 27.4014 53.8241

tallizationbehavior,itmustbenotedthatpureoxideswereused astheirinitialrawmaterialsandthecompositionsweredifferent fromtheoneusedinthepresentstudy.

Therefore,besidestheuseof compositionswithexcess MgO concentrationinthispresentstudy,moleofintermediateoxidewas alsoreduced.Al2O3wasreducedto1.5moleratio,whileSiO2mole ratiowaskeptconstantat5molesastheexactcordieritestoichio- metriccompositionforallinvestigatedcompositions.Theeffectof MgOconcentrationinaseriesofxMgO·1.5Al2O3·5SiO2sampleswas examined.Thecompositionsofthepresentresearchweresystem- aticallychosenbasedonpreviousstudiessoastoincreasethepurity ofthe␣-cordieritephaseaswellitsdensificationbehavior.

2. Materialsandmethods

MgO–Al2O3–SiO2glass–ceramicswithdifferentmoleratiosweresynthesized usingkaolin(KaolinIndustry,TapahPerak,Malaysia)andtalc(IpohCeramic,Sdn Bhd,IpohMalaysia).Silica(IpohCeramic,SdnBhd.Ipoh,Malaysia),alumina(Metco, Westbury,USA)andmagnesia(Merck,WhitehouseStation,NJ)wereaddedtocom- pensatetheformulationofthecompositions.Theamountoftalcandkaolinused ineachcompositionstudiedwasweightedtotheoptimumamountsinorderto minimizetheuseofpuremetaloxides.Theelementalcompositionoftheinitial rawmaterialswasdeterminedbyX-rayflorescencespectroscopy(RigakuX-Ray SpectrometermodelRIX3000)andthedetailsaregiveninTable1.Tables2and3 summarizethedetailedcompositionsofoxideandtheweightpercentofinitialraw materials.Thehomogenizedmixturesofrawingredientsweremeltedinalumina cruciblesat1500Cfor4hinair.Fritswereproducedbyquenchingthemeltsin distilledwater,andweredrymilledusingPulverized6toobtainfineglasspowders withaverageofparticlesizesintherangeof1–3␮m.

TwosetsofDTAanalyseswerecarriedout.Thefirstdatawascollectedfromthe glasspowderheatedat5Cmin−1fromroomtemperatureupto900Candwaskept isothermallyat900Cfor1h(ModelLinseis).ThesecondDTAwascollectedfromthe samplenon-isothermallyheatedfromroomtemperatureto1000Cat5Cmin−1 heatingrate.Rectangularspecimens(5mm×3mm×20mm)forthedilatometry testwerepreparedbycompactionoftheglasspowderusingaHydrotexuniax- ialpressingmachineat120MPa.Sinteringreactionsatincreasingtemperatures weretestedusingadilatometrytestwithahightemperatureverticaldilatome- ter(ModelLinseis)fromroomtemperatureto1100C.TheX-raydiffraction(XRD)

Table3

Compositionofinitialsamplebasedminerals.

Sample MASratio Talc(g) Kaolinite(g) MgO(g) Al2O3(g) SiO2(g) X1 3:1.5:5 30.0000 64.0000 6.3550 4.2320 0.4531 X2 2.8:1.5:5 31.0000 65.0000 4.7400 4.2600 0.1400 X3 2.6:1.5:5 31.0000 65.0000 3.5845 4.6514 0.9040

Fig.1. XRDpatternofglasspowderforsamplesX1,X2andX3.

patternsoftheglasspowdersandsinteredproductswereobtainedusingaBruker D8AdvancedoperatedinBragg–Brentanogeometry,withCuK␣radiation.Count- ingtimewasfixedat71.5sforeach0.032step.TheX-raytubewasoperatedat 40kVand30mA.AllXRDinstrumentparameterssetupwerefixedtostandardvalue duringthemeasurements.Bulkdensityandapparentporosityweremeasuredby Archimedesimmersiontechnique.Microstructuresofthefracturedsampleswere observedusingafieldemissionscanningelectronmicroscopy(VPFESEM-Supra 35VP)at30kV.SpecimensfortheCTEanddielectrictestwerepreparedbycom- pactionoftheglasspowderusingaHydrotexuniaxialpressingmachineat120MPa.

Thesamplesweresinteredinairunderisothermalconditionsfor2hat900Cwith a5Cmin−1heatingratebeforeCTEanddielectrictesting.TheCTEtestwascar- riedoutusinghightemperatureverticaldilatometertests(ModelLinseis)inair fromroomtemperatureto1200C,whilethedielectricmeasurementsweremade usinganImpedanceAnalyzer(HewletPackardmodelHP4291).Thespecimenswere groundandpolisheddowntoa1␮mdiamondpaste,washedinwaterandacetone andheatedat100Cfor2htoremovemoisturepriortothedielectricmeasurement.

Theresultsofdielectricconstantanddielectriclossasafunctionoffrequencycan beobtaineddirectlywhenthesamplethicknessisfedintothemachine.

3. Resultsanddiscussion 3.1. XRDpatternofglasspowder

Fig.1showsalargeamorphoushumpandnocrystallinepeaksin thediffractionpatternsfortheallthreeglasspowdersamples.This indicatesthatallcompoundsinthesampleshavetransformedinto amorphousorglassyphaseafterbeingmeltedat1500Cfor4h.

Reductionofintermediateoxide(Al2O3)intheglasscompositions wasproventobeabletoreducethemeltingtemperatureaswell astheviscosityoftheglassat1500Ccausingnocrystallinephase toappearinthediffractionpatternofmilledglasspowder.

3.2. Non-isothermalandisothermalDTAanalysis

Fig.2demonstratestheDTAscanoftheglasssampleinanon- isothermalcondition.Onlyasingleexothermicpeakwaspresent ineachsample.TheweakexothermicpeakbelongstosampleX3 withcomposition2.6MgO·1.5Al2O3·5SiO2whichhastheleastMgO concentrationamongthethreestudiedsamples.Thepositionof thecrystallizationpeakalsovarieswithcompositions.Theincrease of MgOconcentrationcaused a shiftof thecrystallization peak maximatolowertemperatures. Thecrystallizationtemperature decreasedfrom925Cto876Cforsampleswith2.6–3.0MgOcon- centrationasgivenin Fig.3.Thisresultwasinagreementwith experimentsconducted using a seriesof sampleswith thefor- mulationxMgO·2Al2O3·5SiO2 [11].DTAcurvesalsoindicatethat thecrystallizationpeakbecomesmoreintense,andtheareaunder theDTApeakbecomeslargerwithincreasingamountsofMgO,as demonstratedinFig.4.

(3)

Fig.2. NonisothermalDTAcurvesofsampleswithvariousMASratios.

Fig.3. CrystallizationtemperatureforsampleswithincreasingMgOconcentration forseriesxMgO·1.5Al2O3·5SiO2.

Althoughthe nonisothermalDTA curvein Fig.2 shows that the crystallization range of samples X1 and X2 ended above 900C,prolongedsoakingfor2hwouldbebeneficialtoimprove the crystallization process at intended heat treatmenttemper- atures,as demonstrated inFig. 5. Asshown in Fig.5 complete exothermicpeakswereobservedfor samplesX1andX2inthe isothermalDTAcurveduringheatingat900Cfor2h.However, noexothermicpeak was observed for sample X3withcompo-

Fig.4.IntegratedareaundernonisothermalDTApeaks.

Fig.5.IsothermalDTAplotforsamplesX1,X2andX3.

sition 2.6MgO·1.5Al2O3·5SiO2. Although the XRD pattern from compactedglassspecimenof sampleX3demonstratedthat the crystallinepeakappearedafterprolongedsinteringfor2hat900C, theintensityofthepeaksarelowercomparedtotheothertwosam- ples.Itwasexpectedforsurfacecrystallizationtohaveoccurredin thiscompactedandsinteredsamplesincenoexothermicpeakwas presentintheDTAcurveofthesameglasspowdersampleheated atthesameheattreatmentparameters.Thecrystallizationof␮- cordieriteormagnesiumdialuminumsilicatephaseinsampleX3 afterheattreatmentstronglyindicatesthatthecrystallizationpro- cessisrestrictedtotheglasssurface[19,20].Theabsenceofthe exothermicpeakintheDTAcurvewasexpectedtohaveresulted fromthelowerdrivingforceforsurfacecrystallizationoftheloose glasspowdersample(forDTAtest)comparedtocompactedglass powdersample(forXRDtest).Therefore,thenumbersofcrystals nucleatedstronglydependonthechemicalcompositionofthepar- entglassanddonotdependontemperatureandtimeoftheheat treatmentprocess[21].

3.3. Dilatometrycurve

Thedilatometrytestwascarriedoutonun-sinteredsamplesto determinethesinteringreactioncurveasafunctionoftemperature.

Therectangulargreensampleswerenon-isothermallyheatedfrom roomtemperatureto1000C.Fig.6showsatypicaldilatometric

Fig.6. Dilatometrycurveofunsinteredcompactedglasspowder.

(4)

Fig. 7.Activation energy for densification of glass sample with composition xMgO·1.5Al2O3·5SiO2.

curveforun-sinteredsampleswithdifferentMgOconcentrations.

Itcanbeseenthattheexpansionvaluesforallsampleswithdiffer- entMgOconcentrationsareveryclosetoeachotherattheinitial stagewhenheatedfromroomtemperatureupto775Candaccel- eratedat825C. Atthistemperaturerange,theviscosityofthe glassisdramaticallydecreased.Allsamplesstopobviousshrink- ingapproximatelyat875Cwithasimilarpercentageofshrinkage (12%).Becauseofthesurfacetensioneffectthatvariesasafunction ofsurfacecurvature,materialflowsaredriventowardtheparticle necks,thusdensifyingaglasspowdercompact.

Althoughthesofteningandfinalshrinkagetemperatureswere thesamefor all threesamples, theshrinkagerate ofthe three sampleswasdifferentasafunctionoftemperature.Thiscanbe observedthroughtheslopeattheshrinkagepart.Basedontheslope ofthecurves,sampleX1hasahighershrinkageratefollowedby samplesX2andX3.Thedifferenceinshrinkagerateofsamplesis greatlyrelatedtotheviscosityofglass.Glasswithlowviscosity easilyflowed,causingsampleswithhigherMgOconcentrationsto havehighershrinkagerates.Thus,varyingtheamountofMgOcon- centrationsinnon-stoichiometriccordieritecompositionwithless intermediateoxideswouldalsoaffecttheviscosityoftheglass.

3.4. Activationenergyfordensification

Activationenergy for densification of glass powder samples with different compositions is shown in Fig. 7. The activation energyfordensificationQwascalculatedwhenthesampleexperi- encesshrinkage(between825and875C)fromthedilatometry curve using the Arrhenius equation [12]. From the figure, the activationenergyfordensificationtendedtodecreasewithincreas- ing MgO concentrations in the compositions. This result (in xMgO·1.5Al2O3·5SiO2 series)wasingoodagreementwithresults obtainedfrompreviousstudiesin non-stoichiometriccordierite samples in xMgO·2Al2O3·5SiO2 series where Q decreased with increasingMgO[12].However,theactivationenergyfordensifi- cationtendstoplateauabove2.8molMgO.

Fig.8demonstrates plots of densificationand crystallization temperatureas a function of MgO. The range of crystallization temperatureslightlydecreased withincreasingMgOconcentra- tionratio,whilethetemperaturerangefordensificationissimilar for all three samples which is below the range of crystalliza- tiontemperature.Thisindicatesthatdensificationoccurredbefore crystallization.Thegapbetweendensificationandcrystallization temperaturesishighinsampleX3followed bysamplesX2and X1,respectively.AlthoughsampleX1hasthelowestcrystallization temperatureamongthethreesampleswherecrystallizationmay startbelow900C,thecrystallizationprocessisdifficulttocontrol

Fig.8.DensificationandcrystallizationtemperatureofsampleswithvariousMAS ratios.

sincethegapbetweendensificationandcrystallizationtempera- tureisveryclose.

3.5. XRDanalysisofsinteredpellet

As shown in Fig. 9, four crystalline phases that were observedinthese3samplesare␣-cordierite(ICSD98-005-8888), forsterite (ICSD 98-008-5876), spinel (ICSD 98-005-8457), and

␮-cordieriteormagnesiumdialuminiumtrisilicate(ICSD98-000- 770).Althoughnoexothermalpeakwasobservedintheisothermal DTAcurveofsampleX3withcomposition2.6MgO·1.5Al2O3·5SiO2, resultsofXRDpatternonthesinteredcompactedpelletrevealed theappearanceofcrystallinepeaksinthediffractionpattern.Both glasspowder(DTAtest)andcompactedglasspowder(XRD)sam- plesofthesamecompositionexperiencedthesameheattreatment profile,butpressedpellets,incontrasttoloosepowdersamples, tendtocrystallizeduringprolongedholdingatthesameheattreat- menttemperature.Thediffusionandthearrangementofatomsfor crystallizationwouldbeenhancediftheparticlesareverycloseas incompactedpowders.

Asdemonstratedinthediffractionpattern,themaincrystalline phasein sinteredpelletsforallthreesampleswas␣-cordierite.

Itcanbeclearlyseenthattheintensityofthe␣-cordieritepeak

Fig.9.X-raydiffractionpatternsofsampleswithdifferentMASratiossinteredat 900Cfor2h(␣:␣-cordierite,f:forsterite,␮:␮-cordierite,sp:spinel).

(5)

Table4

ResultsofRietveldrefinement.

Sample Phases Quantity(wt%) RBragg Rwp S Rexp Rp

X1 Amorphous 2.30

␣-Cordierite 89.20 12.35 11.31 2.78 6.78 9.19

Forsterite 8.50 33.21

X2 ␣-Cordierite 100.00 11.52 9.55 1.55 6.17 7.50

X3 Amorphous 46.20

␣-Cordierite 45.78 17.54 11.50 3.21 6.41 9.00

␮-Cordierite 7.59 2.59

Spinel 0.38

RBragg:agreementindicesonBraggvalue;Rwp:agreementindicesontheweighted value;S:goodnessoffit;Rexp:agreementindicesonexpectedvalue;Rp:agreement indicesontheprofilevalue.

becamehigherastheamountofMgOusedwasincreased,andsam- pleX3withchemicalformulation2.6MgO·1.5Al2O3·5SiO2hadthe lowestintensitycomparedtotheother2samples.Smallamounts of secondary phases were observed in samplesX1 and X3. ␮- Cordierite and spinel peaks appeared in sample X3, while the forsteritepeakappearedinsampleX1.Thesescrystallinephasesare normallypresentincrystallizationofMASglass[18,22].Theexis- tenceofthesetypesofsecondaryphaseinsampleswith2.6moland 3molMgOissimilarwiththeseriesofxMgO·2Al2O3·5SiO2samples [11].ResultsofphasequantificationaretabulatedinTable4.

Decreasing the amount of MgO retarded the formation of theforsteritephase,whiledecreasingtheamountofAl2O3from stoichiometric2.8MgO·2Al2O3·5SiO2successfullyretardedthefor- mationofthespinelphase.Singlephase␣-cordieritewasobserved insampleX2withcomposition2.8MgO·1.5Al2O3·5SiO2.Acompar- isonof theintensitycountsof ␣-cordieriteat(022)planealso indicatesthattheintensityofthe␣-cordieritephaseishigherin thesamplewith2.8molofMgO,andtheintensitycountsforthe threesamplesareparallelwiththeamountof␣-cordieritephase presentinthesamplesasshowninFig.10.

Fig.11showsoneoftheRietveldplotsoftheXRDdataforsample X3whichwasheattreatedat900Cfor2h.TheRietveldplotsshow agoodqualityofrefinement.Theresultsarenormalizedto100%of crystallinefraction,sothehyphotheticalamorphouscontentofthe samplewasassumedtobenegligible.

Percentageoftheamorphouscontentwascalculatedusingthe Fullprofilepatternmethod.Theresultsofthequantitativephase analysis,includingtheamorphousphase,aretabulatedinTable4.

SampleX3stillcontainsahighamountofamorphousphase.As obtainedinthenon-isothermalDTAtest,thecrystallizationtem-

Fig.10.Intensityof␣-cordieritepeakcountat(022)planeasafunctionofMgO concentration.

Fig.11.RietveldplotofsampleX3.

Fig.12. BulkdensityandporosityforseriesofxMgO·1.5Al2O3·5SiO2samples.

peraturerangeofsampleX3isabove900C.Therefore,prolonged holdingofthecompactedpelletupto2hwould noteffectively transformtheglassintoafullycrystallinephase.Thiscomposition requiresamuchhigherheattreatmenttemperaturetoenhancethe crystallizationprocess.Smallamountsofamorphousphasewere

Fig.13. Proportionlineforcalculatingcoefficientofthermalexpansionofsintered rectangularpelletsofsamplesX1,X2,andX3.

(6)

Fig.14.CoefficientofthermalexpansionofsamplesX1,X2andX3.

stillpresentinsampleX1.Theexistenceofmulticrystallinephase withdifferentcrystalstructuresinthesamplecausedpartofthe spacebetweenthecrystaltobearrangeddisorderly.

Itisobviousthatwithoutanysinteringaids,excessMgOupto 2.6molwasnotsufficienttoretardtheformationof␮-cordierite,

Fig.15. LatticechangesasafunctionofMgOconcentrationratio.(a)Latticeaand (b)latticec.

Fig.16.Dielectricconstantofsamplesasafunctionoffrequency.

whileatand/orabove3molMgOwillresultintheformationof aforsteritephase.Therefore,samplesshouldbeformulatedwith approximately2.8mol MgO withless Al2O3 (1.5mol) fromthe exactcordieritestoichiometriccompositioninordertoobtainsin- glephase␣-cordierite.

3.6. Densityandporositytest

Fig.12illustratesbulkdensityandpercentofporosityofsintered pelletasafunctionofMgOconcentrationratio.Thetrendofdensity plotsasafunctionofMgOconcentrationratioistheoppositetothe trendofporosity.SampleX2hasthehighestdensityandlowest percentageofporosityamongthethreesamples.Theformationof asecondaryphasewithdifferentcrystalstructureslimitstheden- sificationprocessandconsequentlyproducessampleswithhigher porosityandlessbulkdensity.

Theformationofmorethanonecrystallinephaseduringthe sinteringprocessinsamplesX1andX3causedthekineticprocess fortheviscousflowtobequiteslowandrequiredmuchenergy tocompletetheprocess.Therefore,samplesX1andX3with8.7 and 14.0wt% secondaryphases, respectively,have lowerdensi- fication thansample X2which hashighest wt% of ␣-cordierite phase.

Fig.17.Dielectriclossofsamplesasafunctionoffrequency.

(7)

Fig.18.(a)Microstructureoffracturesurfaceat10,000×magnificationand(b)microstructureoffracturesurfaceat1000×magnification.

3.7. Coefficientofthermalexpansion(CTE)

Thermalexpansionwasmeasuredusingsinteredrectangular pelletsinadilatometrytestmachine.TheCTEwascalculatedin theproportionregionwhichisattemperaturerange100–700C.

Therefore, thecurvesof dL/Lo(%)vs T wasreplottedin ascat- terdiagram,asshowninFig.13,toobtainalinearequation.The slopevalueofthecurveswasdividedby100togivetheresults ofCTE.ResultsofCTEforsampleswithincreasinglevelsofMgO arepresentedinFig.14.MostofthesamplesshowlowCTE,i.e.

2–4×10−6K−1.Thelowthermal expansioncoefficientofthe␣-

cordieritesamplesistheresultofitsrelatively‘rigid’tetrahedral framework,andtheanisotropicexpansionoftheoctahedralframe- workofthe␣-cordieritestructure.AsshowninFig.14,CTEplots droppedfromsampleX1toX2,andincreasedforsampleX3.The decrease in CTE values for samplesX1–X2 is associated to the increasesof␣-cordieriteweightpercentageasafunctionofMgO concentration.Theexistenceof␮-cordierite,spinelandamorphous phase(Table4)wasresponsibleforthehigherCTEinsampleX3, whiletheincreaseinCTEvaluesforsampleX1with3.0molMgO mayhaveresultedfromtheformationofaforsteritephasewhich hashigherCTE.Thecrystallizationprocessgreatlyalteredthether-

(8)

malexpansionoftheglasses.Therefore,theglass-ceramicmaterials mayhavehighorlowcoefficientsofexpansiondependingonthe expansioncoefficientsandelasticpropertiesofthecrystalphases formed[23].

InordertoseetheeffectofincreasingMgOinthecrystalstruc- tureof␣-cordierite,preciselatticeparametersweredetermined fromstructurerefinementusingLebail,PawleyandRietveldmeth- odsusingXRDsoftware.Aplotshowingtheeffectofa-andc-lattice parameterswithrespecttoincreasingMgOconcentrationratiois giveninFig.15.

SampleX3withcomposition2.6MgO·1.5Al2O3·5SiO2 hasthe highest lattice a and lattice c values. The expansion of lat- tice a and lattice c was expected due to the existence of higheramounts of secondary phase inside ␣-cordieritecrystals and finally expand the lattice a and lattice c. Volumes of unit cellsforthesesecondaryphases(forsterite289.93×106pm3,␮- cordierite=124.65×106pm3,spinel=524.39×106pm3)arelower thanthoseofthe␣-cordieritephase(771×106pm3).Therefore, someofthesecondaryphasescouldresideinterstitiallyinbetween the␣-cordieritecrystals,producingahighervolume.

3.8. Dielectricproperties 3.8.1. Dielectricconstant

ThedielectricconstantsofsampleswithdifferentMgOconcen- trationratiosarepresentedinFig.16asafunctionoffrequencyfrom 1MHzto1GHz.Thedielectricconstantdecreased withincreas- ingfrequencyfrom1MHzto1GHzforallsamples.Anincrease infrequencyinducesweakeningordisappearingofionicpolariza- tion,and consequentlydecreasesdielectricconstant values.The dielectricconstantofthesampleswithdifferentMgOconcentra- tionratiosisintherangeof5.3–5.5,fromafrequencyof1MHz to1GHz.Thevaluesareincloseagreementwithotherpublished values.DielectricconstantdecreaseswithincreasingMgO.Reduc- tionindielectricconstant asa functionofMgOin theseriesof xMgO·1.5Al2O3·5SiO2samplesresultedfromphasetransformation andtheamountofporosityinthesample.Althoughthepercentage ofporosityinsampleX3with2.6molMgOisthehighestamong thethreesamples,itpossesseshighdielectricconstant.Thehigh dielectricconstantinsampleX3mayhaveresultedfromhighresid- ualglasscontentinthis sample.Sampleswithhigher glassyor amorphousphasecontainmobileions.Thesemobileionscanjump betweentwositesintheopennetworkstructureofglasses,thus increasingthedielectric constantofthesample. SampleX1has higherdielectricconstantthansampleX2duetoitshigherporosity content.However,thedifferenceistoosmall,andstillwithinthe standardrange.

3.8.2. Dielectricloss

Thedielectriclossasafunctionof frequencyispresented in Fig.17.SampleX1withahigherpercentageofporosityhasthe highestdielectriclossfollowedbysamplesX3andX2.Thedielectric lossofallsamplesis within10−2 whichis slightlyhighercom- paredto reporteddata which used pure oxides asa precursor incordieritesynthesis.␣-Cordieritesynthesizedfrompureoxide generallyhasvery low dielectric loss <10−3 at10MHz[14,24].

Higher concentrations of ␣-cordieritephase do not necessarily havelowloss.Thehighvaluesofdielectriclossinthisstudy,com- paredto␣-cordieritesynthesizedusingpureoxideprecursors,are causedbyincreasedpolarizationdue todefectsinthestructure andimpuritiesormetaloxideatgrainboundaries.Someoxides, especiallythosewhichhaveexcessiveelectricalconductivityatele- vatedtemperatures,causedielectriclossesinceramicmaterials.

Dielectriclossesmayalsobecausedbythedipolemovementof polarizedmoleculesintheelectricalfieldornon-homogeneityof thestructure.

3.9. FESEM/EDXanalysis

MicrostructureoffracturesamplesasdemonstratedinFig.18(a) and(b)clearlyshowsthatsampleX2isfullydensifiedwiththe lowestporositycontent,followedbysamplesX3andX1.Theobser- vation of porosity from a microstructure analysis was in good agreementwith porosity contentmeasured by theArchimedes principle.Percentageofporositysignificantlyinfluencedthebulk densityanddielectricpropertyvaluesofthesamples.

4. Conclusions

All three non-stoichiometric cordierite samples with excess modifyingoxide and less intermediate oxidecan be melted at 1500Ctoobtainfullyamorphousglasspowder.Thecrystalliza- tiontemperaturedecreasedasa functionofMgO. Althoughthe softeningtemperatureandtemperatureatwhichthesamplesstop shrinkingarethesameforallthreesamples,samplesshrunkat differentratesduetothevariationin theviscosityof theglass.

The sample withthehighest MgO concentration hasthe high- estshrinkagerate,andviceversa.AlthoughsampleX1withthe highest modifying oxide(MgO) wasexpected to have a better degreeofdensification,thecrystallizationofmulticrystallinephase withdifferentcrystalstructuresinthesamplecausedpercentage ofporositytoincrease.Thepresenceofothercrystallinephases causedintensitycountsof␣-cordieritepeakofsampleX1tobe lowerthanX2eventhoughsampleX1hasthehighestdegreeof crystallinity(measuredfromDTAcurves).Coefficientofthermal expansionof samplesdepends onthetype of crystallinephase whichexistsinthesample.Thesamplewiththechemicalformula- tion2.8MgO·1.5Al2O3·5SiO2possessesthelowestCTEcomparedto theothersamples.Thedielectricconstantdecreasedwithincreas- ingMgO.However,itsvalueswerestillwithinthestandardrange.

Thedielectriclosswasslightlyhigherthan␣-cordieritesynthesized frompureoxideduetotheexistenceofimpuritiesfromthestarting rawmaterials.

Acknowledgements

Theauthorsgratefullyacknowledgethefinancialsupportfrom IslamicDevelopmentBankSaudiArabiaandFundamentalResearch GrantScheme(9003-00171)UniversitiMalaysiaPerlis,andtechni- calassistantsfromUniversitiSainsMalaysia(USM).

References

[1]S.Kurama,H.Kurama,Ceram.Int.34(2008)269–272.

[2]E.Yalamac,S.Akkurt,Ceram.Int.32(2006)825–832.

[3]R.Goren,H.Gocmez,C.Ozgur,Ceram.Int.32(2006)407–409.

[4]R.Goren,C.Ozgur,H.Gocmez,Ceram.Int.32(2006)53–56.

[5]C.Ghitulica,E.Andronescu,O.Nicola,A.Dicea,M.Birsan,J.Eur.Ceram.Soc.27 (2007)711–713.

[6]I.Jankovic-Castvan,S.Lazarevic,D.Tanaskovic,A.Orlovic,R.Petrovic,D.Janack- ovic,Ceram.Int.33(2007)1263–1268.

[7]I. Jankovic-Castvan,S.Lazarevic,B.Jordovic,R.Petrovic,D.Tanaskovic,D.

Janackovic,J.Eur.Ceram.Soc.27(2007)3659–3661.

[8]M.K.Naskar,M.Chatterjee,J.Eur.Ceram.Soc.24(2004)3499–3508.

[9] A.M.Menchi,A.N.Scian,Mater.Lett.59(2005)2664–2667.

[10]Y.Hu,H.T.Tsai,Mater.Chem.Phys.52(1998)184–188.

[11]J.Banjuraizah,H.Mohamad,Z.A.Ahmad,Int.J.Appl.Ceram.Technol.(2010), doi:10.1111/j.1744-7402.2010.02486.x.

[12]J. Banjuraizah, H. Mohamad, Z.A. Ahmad, J. Am. Ceram. Soc. (2010), doi:10.1111/j.1551-2916.2010.04144.x.

[13]P.W.McMillan,in:J.P.Roberts(Ed.),Glass–Ceramics.CrystallizationandDevit- rification,vol.1,AcademicPressInc.,London,1969.

[14]B.H.Kim,K.H.Lee,J.Mater.Sci.29(1994)6592–6598.

[15]T.Rudolph,W.Pannhorst,G.Petzow,J.Non-Cryst.Solids144(1993)273–281.

[16]A.Goel,D.U.Tulyaganov,S.Agathopoulos,M.J.Ribeiro,J.M.F.Ferreira,Ceram.

Int.33(2007)1481–1487.

[17] G.-H.Chen,X.-Y.Liu,J.AlloysCompd.431(2007)282–286.

[18]G.-H.Chen,J.AlloysCompd.455(2008)298–302.

(9)

[19]J.Schmelzer,J.Möller,I.Gutzow,R.Pascova,R.Müller,W.Pannhorst,J.Non- Cryst.Solids183(1995)215–233.

[20]S.Reinsch,M.L.F.Nascimento,R.Müller,E.D.Zanotto,J.Non-Cryst.Solids354 (2008)5386–5394.

[21]E.D.Zanotto,J.Non-Cryst.Solids129(1991)183–190.

[22]M.Dittmer,M.Müller,C.Rüssel,Mater.Chem.Phys.124(2010)1083–1088.

[23]S.M.Salman,H.Darwish,E.A.Mahdy,Mater.Chem.Phys.112(2008)945–953.

[24]S.Wang,H.Zhou,L.Luo,Mater.Res.Bull.38(2003)1367–1374.

Referensi

Dokumen terkait

This strongly suggests that the interaction is due to the hydrogen bonding between the hydroxyl groups in Triton X-114 and the silanol groups of MCM-41.. Similar results were

Since the surfactant-rich phase obtained after the cloud point preconcentration contains a high concentration of Triton X-114 and, at the same time, the volume obtained

The structure was further substantiated by complete 1 H and 13 C NMR assignments in both solvents, which have not been previously reported for C, using 2D NMR COSY,

Several types of abnormal EEG were reported in basilar migraine including 1 an excess of beta activity in the ictal phase in children 40, 2 predominant delta activity during attack of