A SUBCLASS OF CONVEX FUNCTIONS WITH RESPECT TO CONJUGATE POINTS
UM WEI CHON
A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR
OF SCIENCE WITH HONOURS
PEEPU3TAlliN UNIVEnSITl MALAYSIA SABAt{
MATHEMATICS WITH ECONOMICS PROGRAMME SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITY MALAYSIA SABAH
2010
UMS
UNIVERSITI MALAYSIA SABAHPUMS99:1 ~.:~
UNIVERSITI MALAYSIA SABAH //':,\
M~I~
r---/~~~~:~
\ ,.· ~"~~~f~'£
.,~:'./-.t;'BORANG PENGESAHAN STATUS TESIS@
' ,1~ ) " .~.?i.
f\ 9uhcb.tr l1f ~f)~ ~nctJbn.t wifu ~c\- '" ~!,:y'
JUDUL:
-In co~jV~ ate ~ 'i\ts .
SAYA LilIA
~b.1 ClloN
SESI PENGAJIAN:-2OOTk
(HURUF BESAR)
mengaku membenarkan tesis (LPSMISarjana/Doictor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut-
I. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajilUl sahaja.
3. Perpustakaan dibenarkan membuat salinan tcsis ini sebagai bahan pertukaran antara institutsi pengajian tinggi.
4. Sila tandakan ( I )
D
D
SULIT (Mengandungi maklumat yang berdarjah keselamatan Mall
Kcpcntingan Malaysia scperti yang tcrmaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD
(Mengandungi maklumat TERHAD yang telah ditcntukan
-7. oleh organisasilbadan di mana penyclidikan dijalankan)
o
TIDAK lERHAD~ rr~rUSTAYJv'it
Disahkan Oleh :, Ut'l"£RSI1IIMl.AYSIA SARAH/? ~ NURULAIN BINn I MAil
, ~ ~ LIBRARIAN i
-=(T:-AN~D-A-=T AN:;:::-'G-AN-P-E-N-U-L-IS-) -(T~A--<NIoo£D-A-T A-N-GAN--n~rrrrn ... ~~ YSIA SABAH
Alamat Tetap: ;,
"Jabn _
~nda'", ,
~ I_~.Mibb
, - - - - ---"--- e.400o
""~or
Nama PcnycliaTarikh:
01+/ D ~/XJ'O
Tarikh: 01f/oS-/;o
10CAT A T AN;· • Potong yang tidak bcrkcnaan .
.. Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa /organisasi berkcnaan dengan menyatakan sekali scbab dan tempoh tcsis ini perlu
dikclaskan sebagai SULIT dan TERHAD. '
tli2Tcsis dimaksudkan seba"ai tesis ba"i Ijazah Doktor Falsafah dan Sarjana seeara
=penyelidilcan atau disertai' bagi peng~jian seeara kerja kursus dan Laporan Projelc Sarjana Muda (LPSM),
PERPUSTAKAAN UMS
1IIIIIJIIII!IIIII~llli!~
·1000353923·
UMS
UNIVEASITI MALAYSIA SABAHDECLARATION
I affirm that this dissertation is of my own effort, except for the materials referred to as cited in the reference section.
ii
~.
UM WEI CHON (B507110447)
31 March 2010
UMS
UNIVERSITI MALAYSIA SABAHCERTIFIED BY
Signature
1. SUPERVISOR
(DR. AINI JANTENG)
2. EXAMINER
(ASSOC. PROF. DR. HO CHONG MUN)
3. DEAN
(PROF. DR. MOHO. HARUN ABDULLAH)
iii
UMS
UNIVERSITI MALAYSIA SABAHACKNOWLEDGEMENT
I wish to acknowledge to my dearest supervisor, Dr. Aini Janteng who abundantly helpful and patiently offered invaluable assistance and guidance. I wish to express my sincere appreciation to my examiner, Assoc. Prof. Dr. Ho Chong Mun, for his comment in this dissertation.
In particular, lowe special thanks to Tan 5er Yuan and Loo Chien Ping for sharing the kindness and invaluable assistance. I also would like to acknowledge the support that
I
received from the entire students under supervision Dr. Aini Janteng for our team work and encouragement through each other so that I can manage to finish my research on time.Last but not least, I wish to thanks my parents and family members for theirs encouragement and mentally support.
~.
UM WEI
CHON(6507110447)
31 March 2010
iv
UMS
UNIVERSITI MALAYSIA SABAHABSTRACT
This research consider U as a class consisting of functions, which are analytic in the open unit disc on the complex plane. Let S be the subclass of U that consisting of univalent functions
f
and normalized. If a functionf
E S, thenf
has a Maclaurin series expansion. This research introduced the subclass of convex functions with respect to conjugate points, which is denoted as CeCA, B), -1 S B<
A S 1. By using the mathematical induction, the coefficient estimates was obtained. The distortion theorems and integral operator were also obtained forf
E CeCA, B).v
UMS
UNIVERSITI MALAYSIA SABAHSUBKELAS FUNGSI CEMBUNG TERHADAP TITK KONJUGAT
ABSTRAK
Kajian ini mempertimbangkan U sebagai kelas yang terdiri daripada fungsi-fungsi yang analisis di dalam cakera unit terbuka pada satah kompleks. Andaikan S merupakan subkelas U, yang terdiri daripada fungsi
f
yang univalen dan ternormal.Jika suatu fungsi
f
E S, makaf
mempunyai kembangan siri Maclaurin. Kajian ini rnernperkenalkan subkelas fungsi cern bung terhadap titik konjugat yang dilambangkan sebagai Ce CA, B), -1 ~ B<
A ~ 1. Dengan mengaplikasikan kaedah aruhan matematik, anggaran pekali telah diperoleh. Teorem herotan dan operator pengkamir juga telah ditentukan bagif
E CeCA, B).vi
CONTENTS
Page
DECLARATION ii
CERTIFICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
UST OF CONTENTS vii
UST OF FIGURES ix
UST OF SYMBOLS x
CHAPTER 1 INTRODUCTION
11.1 Introduction 1
1.2 Starlike Function 2
1.3 Convex Function 4
1.4 Subordination 5
1.5 Objectives Of Study 5
1.6 Scope Of Study 6
CHAPTER 2 LITERATURE REVIEW
72.1
Introduction 72.2
Starlike With Respect To Symmetric, Conjugate andSymmetric Conjugate Points 7
2.3
Class S; (A, B) and S~ (A, B) 92.4 Convex With Respect To Symmetric, Conjugate and
Symmetric Conjugate Points 11
2.5
Class Cs(A, B) 12vii
CHAPTER 3 COEFFICIENT ESTIMATES
143.1 Introduction 14
3.2 Lemma 15
3.3 Coefficient Estimates 15
CHAPTER 4 DISTORTION THEOREM AND INTEGERAL OPERATOR
264.1 Introduction 26
4.2 Distortion Theorem 26
4.3 Integral Operator 31
CHAPTER 5 DISCUSSION, CONCLUSION AND SUGGESTION
355.1 Discussion 35
5.2 Conclusion 5.3 Suggestion
REFERENCES
viii
36 37
38
LIST OF FIGURES
No. Figure
1.1 Starlike domain 1.2 Convex domain
2.1 Starlike with respect to symmetric paints domain
ix
Page
3
4 8LIST OF SYMBOLS
= equal
+
plusminus dot operator factorial
<
less than>
greater than~ less than or equal to
E element of
~ subset of or equal to
< surbodination
~ summation sign
n
product sign Z conjugate zIzl
modulus zx
UMS
UNIVERSITI MALAYSIA SABAHCHAPTER 1
INTRODUCTION
1.1 Introduction
In this study, we let U be the class of functions w which are analytic in the open unit disc D = {z: \z\
<
l} given byco
w(z) =
I
bkzkk=l
and satisfying the conditions
w(O) = 0 and \w(z)\
<
l,z E D.Next, we let S denote the class of functions
f
which are univalent and normalized in D of the form00
fez) =
z + L
anzn (1.1)n=2
where an is a complex number.
In Goodman (1975), a function f(z) is said to be univalent in a domain E, E ~ C if f(zl) = f(Z2), implies thatz1 = Z2 for Zl,Z2 E D. In other words, a function fez) is said to be univalent in domain E if it matches a one-to-one mapping of E onto its image. Some other terms are used to describe the univalent functions, such as 'schlicht (used in German means simple) and 'odnolistni '(used in Russians means single sheeted). There are many mathematicians studied univalent functions such as Spencer (1947), Oas &. Signh (1977) and Goel
&.
Mehrok (1982).There are four main subclasses of class S which includes starlike, convex, close to convex and quasi convex.
1.2 Starlike Function
Definition 1.2.1 (Goodman, 1975) A set E, E ~ C in the plane is said to be starlike with respect to Wo an interior point of E if each ray with Initial point Wo intersects the interior of E in a set that is either a line segment or a ray. If a function fez) maps D onto a domain that is starlike with respect to wo, then we say that fez) is starlike with respect to woo In the special case the Wo = 0, we say that fez) is a starlike function.
2 UMS UNIVERSITI MALAYSIA SABAH
The domain shown in Figure 1.1 is starlike represented by its geometrical interpretation.
1m
'"
'"
"
, , , ,
" , "
'"
, , ,
, , ,
><'""
'" '" '"
'"
---~---+~"---~~~--_.
Re
Figure 1.1 Starlike domain
(Source from Goodman, 1975)
The class of starlike function is denoted by S·. The analytic description of the functions
f
E S· is given below.Definition 1.2.2 (Goodman, 1975) Let { be analytic in D with {CO) = {'CO) - 1 = O. Then,
f
E S· if and only if{ z((z)}
Re
fez) >
0, ZED. (1.2)Next, we give geometrical and analytic description for the convex function.
3
1.3 Convex Function
Definition 1.3.1 (Goodman, 1975) A set E in plane is called convex if for every pair of points Wi and Wz in the interior of E, the line segment joining WI and Wz is also in the interior of E. If a function
f
maps D onto a convex domain, thenf
is called a convex function.The domain shown in Figure 1.2 is convex represented by its geometrical interpretation.
1m
"
"-"-"-
"
"-"-"
"-Figure 1.2 Convex domain
" " "
"-"
"-" "
"-"
(Source from Goodman,1975)
Re
The class of convex function is denoted by C. The analytic description of the functions
fEe
is given below.4 UMS UNIVERSITI MALAYSIA SABAH
Definition 1.3.2 (Goodman, 1975) Let [be analytic in D with[CO)
=
['CO) -1=
O. Then, [ E C if and only if{ ( zt'
Cz)Y}
Re ((z)
>
0, zED. C1.3)1.4 Subordination
In this study, we also consider the concept of differential subordination as mentioned in Miller & Mocanu (2000) as follows:
Definition 1.4.1 (Miller & Mocanu, 2000) let
f,
9 E U. The function [Cz) is said to be subordinate to 9CZ), written asf
-< g, if there exists a function w E U such that fez)=
9( wCz)) for all zED. If gCz) is univalent in D, then f-<
9 if and only if fCO) = 9CO) and fCD) ~ 9CD).1.5 Objectives of study
In this study, we have four objectives to be obtained. There are
a. to introduce a subclass of convex functions with respect to conjugate points which is denoted by CeCA, 8), -1 ~ 8
<
A ~ 1 ;b. to determine the coefficients estimates for [ E CeCA, 8) ; c. to determine the distortion theorem for [ E CeCA, B) ; and d. to determine the integral operator for [ E CeCA, B) .
5
1.6
Scope ofstudy
In this paper, we impress on class of convex functions with respect to conjugate points. By combining the idea of Das & Singh (1977) and Goel & Mehrok (1982), we introduce a new subclass of functions which is denoted by CeCA, B), -1 ~ B
<
A ~1 and determine the coefficients estimates, distortion theorem and integral operator for the functions
f
E CeCA, B).6
CHAPTER 2
LITERATURE REVIEW
2.1 Introduction
In this chapter, we discuss the class of starlike with respect to symmetric, conjugate and symmetric conjugate pOints. In year 1959, the class of starlike with respect to symmetric points was introduced by Sakaguchi. Then the class has been quoted and considered by Robertson (1961), Stankiewicz (1965), Wu (1987) and Owa et al.
(1988). EI-Ashwah & Thomas (1987) has introduced two more classes namely starlike with respect to conjugate and symmetric conjugate points.
2.2 Starlike With Respect To Symmetric, Conjugate and Symmetric Conjugate Points
In year 1959, Sakaguchi was the first mathematician who introduced the class of function starlike with respect to symmetric points. He calls a function
I
which is analytic in D starlike with respect to symmetric points if for every r ~ l(T<
1) and every point Zo , the angular velocity ofI
about the pointI(
-zo) is positive at z = Zo , as z traverses the circleIzl = r
in the positive direction.UMS
UNIVERSITI MALAYSIA SABAHThe starlike with respect to symmetric points can be shown by Figure 2.1.
zo
= re
i8-Zo
f(-zo)
Figure 2.1.
Starlike with respect to symmetric points domain (Source from Sakaguchi,
1959)Sakaguchi
(1959)also proved that the condition is equivalent with the following definition.
Definition 2.2.1
(Sakaguchi,
1959) Letf be analytic in
Dwithf(O) ::;: f
'(0)-1 ::;:
o . Then f is starlike with respect to symmetric points if and only if
{
zf'(z) }
Re fez) _ fe -z)
>
0, zED. (2.1)We denote this class as s;.
8
Then, EI-Ashwah & Thomas
(1987)
have introduced two more classes which called starlike with respect to conjugate and symmetric conjugate paints.Definition 2.2.2 (EI-Ashwah & Thomas,
1987)
LetI
be analytic in D withICO) =
I
'CO) - 1 = 0 . ThenI
is starlike with respect to conjugate points if and only ifRe
f_
zl'Cz) }>
0VCz)
+
I(z) , zED. (2.2)We denote this class as
s;.
Definition 2.2.3 (EI-Ashwah & Singh,
1987)
LetI
be analytic in D with 1(0) =1'(0) - 1 = O. Then
I
is starlike with respect to symmetric conjugate points if and only ifWe denote this class as
S;c.
Ref- zl'(z)
}>O,
V(z) -
I(
-i)2.3 Class S;CA,B) and S~(A,B)
zED. C2.3)
Goel & Mehrok
(1982)
have introduced the subclass of starlike with respect to symmetric points denoted by S;(A, B). Then, Suci Aida Fitri Mad Dahhar & Aini Janteng(2009)
introduced another subclass of starlike with respect to conjugate paints denoted by S;CA, B).9
Definition 2.3.1 (Goel & Mehrok, 1982) Let { be analytic in D with
teO)
=f'(o) -1 = O. Then, { E S;(A, B) if and only if
2z( (z) 1
+
Az~~--:-:---:-<: ,
fez) - {(-z) 1
+
Bz -l~B<A~I,ZED.By definition of subordination, it follows that { E
s;
(A, B) if and only ifwhere
2z{'(z)
=
1+
Aw(z)=
P(z),fez) - {( -z) 1
+
Bw(z)00
P(z) = 1
+ I
Pn znn=l
w(z) E U (2.4)
(2.5)
Definition 2.3.2 (Suci Aida Fitri Mad Dahhar & Aini Janteng, 2009) Let { be analytic in D with f(O)
=
f'(O) - 1=
O. Then, {E S~(A,B) if and only if2z{'(z) 1 +Az --:--:---== <: ,
f(z)
+
{(i) 1+
Bz -1 ~ B<
A ~ 1, zED.By definition of subordination, it follows that { E S~ (A, B) if and only if
2z(z) 1
+
Aw(z)fez)
+
{(i)=
1+
Bw(z)=
P(z), w(z) E U10
(2.6)
UMS
UNIVERSITI MALAYSIA SABAHwhere P(z) of the form (2.5).
2.4 Convex With Respect To Symmetric, Conjugate and Symmetric Conjugate Points
Oas & Singh (1977) using the idea of Sakaguchi and extended the result to other class in D which is convex functions with respect to symmetric paints.
Definition 2.4.1
(Oas & Singh, 1977) Let { be analytic in D with teO)=
{'(O)-1
=
O. Then { is convex with respect to symmetric points if and only if{
(Z{'(z))' }
Re ,
>
0,(f(z) - {( -z))
zED. (2.7)
We denote this class as CS •
The class Cs can be extended to C, and Csc.
Definition 2.4.2
(Aini Jantenget al.,
2006) Let { be analytic in D with teO)=
{'(O) - 1=
O. Then { is convex with respect to conjugate points if and only if{
(Z{'(Z))' }
Re ,
>
0,(f(z)
+
f(i))ZED. (2.8)
11
We denote this class as Cc•
Definition 2.4.3 (Aini Janteng et aI., 2006) Let { be analytic in D with {CO) = {'CO) -1 =
o.
Then { is convex with respect to symmetric conjugate points if and only if{
(z{'Cz))' }
Re
, >
0,([(z) -
[e-z))
zED. (2.9)We denote this class as Csc •
2.5 Class CsCA,B)
Aini Janteng & Suzeini Abdul Halim (2008) introduced the subclass of convex with respect to symmetric points denoted by Cs(A, B).
Definition 2.5.1 (Aini Janteng & Suzeini Abdul Halim, 2008) Let [ be analytic in D with [(0)
=
['(0) -1 = O. Then [ E CsCA, B) if and only if2 (Z['(Z))' 1+Az -'-';"'-""';"---', <: ,
(fCz) - [( -z))
1+ Bz
-1 ~ B<
A ~ 1, zED.We denote this subclass as Cs(A, B).
12 UMS UNIVERSITI MALAYSIA SABAH
By definition of subordination, it follows that
f
E Cs(A, B) if and only if2 (zf '(z))' 1
+
Aw(z)-~-..-;..~, = = P(z) w(z) E U
(f(z) - f( -z)) 1
+
Bw(z) , (2.10)where P(z) of the form (2.5).
13
REFERENCES
Aini Janteng & Suzeini Abdul Halim. 2008. A subclass of convex functions with respect to symmetric points. Prosiding Simposium Kebangsaan Sains Matematik Ke-16, 3-5 June 2008, Kota Bharu, Kelantan: 2-5.
Aini Janteng, Suzeini Abdul Halim & Maslina Darus. 2006. Functions close-to-convex and quasi-convex with respect to other points. International Journal of Pure and Applied Mathematics, 30(2): 225-236.
AI-Kharsani, H.A. & AI-Khal, R.A. 2003. On the derivatives of a family of analytic functions. Red. Isot. Mat. Univ. Trieste, 35: 1-17.
Das, R.N. & Singh, P. 1977. On subclasses of schlicht function mapping. Indian
J.
Pure Appl. Math.,
8:
864-872.Duren, P.L. 1983. Univalent functions. Springer-Verlag, New York.
Dziok, J. 2010. Classes of meromorphic function defined by the Hadamard product.
International Journal of Mathematics and Mathematical Sciences, 10: 1-11.
EI-Ashwah, R.M. & Thomas, D.K. 1987. Some subclasses of close-to-convex functions.
J.
Ramanujan Math. Soc.,2:
85-100.Ghanim, F. & Darus, M. 2010. Some properties of certain subclass of meromorphically multivalent functions defined by linear operator. Journal of Mathematics and Statistics, 6(1): 34-41.
Goel, R.M. & Mehrok, B.S. 1982. A subclass of starlike functions with respect to symmetric points. Tamkang
J.
Math., 13(1): 11-24.Goodman, A.W. 1975. Univalent Functions. Volume I. Mariner Publishing Company, Inc., Tampa, Florida.
38
Khaimar, S.M. & More, M.
2008.
Certain family of analytic and univalent functions with normalized condition. Acta Mathematica Academice Paedagogicae Nyiregyhaziensis,24: 333-344.
Miller, 5.5. & Mocanu, P .T.
2000.
Differential Subordinations: Theory and Applications.Marcel Dekker Inc., Basel, New York.
Noor, K.I.
2005.
On classes of analytic functions defined by convolution with incomplete beta functions. Journal of Mathematical Analysis and Applications,307: 339-349.
Owa, 5., Wu, Z. & Ren, F.
1988.
A note on certain subclass of Sakaguchi functions.Bull. de la Royale de Liege, 57:
143-150.
Ravichandran, V.
2004.
Starlike and convex functions with respect to conjugate points. Acta Mathematica Academice Paedagogicae Nyiregyhaziensis, 20:31- 37.
Robertson, M.I.S.
1961.
Applications of the subordination principle to univalent functions. PacificJ.
of Math.,11: 315-324.
Sakaguchi, K.
1959.
On a certain univalent mapping.J.
Math. Soc. Japan,11: 72-75.
Spencer, D.C.
1947.
Some problems in conformal mapping. Bulletin of the American Mathematical SOciety,53: 417-439.
Srivastava, H.M. & Attiya, A.A.
2004.
Some subordination results associated with certain subclasses of analytic functions.J.
Inequal. Pure and Appl. Math., 5(4):1-6.
Stankiewicz,
J. 1965.
Some remarks on functions starlike with respect to symmetric points. Ann. Univ. Marie Curie Sklodowska,19(7): 53-59.
39
Sud Aida Fitri Mad Dahhar & Aini Janteng. 2009. A subclass of starlike functions with respect to conjugate paints. International Mathematical Forum, 4(28): 1373- 1377.
Wu, Z. 1987. On classes of Sakaguchi functions and Hadamard products. Sci. Sinica Ser. A.,
30:
128-135.40 UMS UNIVERSITI MALAYSIA SABAH