PROPERTIES O POLYETHYLEN
MODIFIED WATER HYACINTH FIBERS ( crassipes
A thesis submitted in
School of Materials Engineering UNIVERSITI MALAYSIA PERLIS
i
PROPERTIES OF LOW DENSITY
POLYETHYLEN/NATURAL RUBBER/CHEMICAL MODIFIED WATER HYACINTH FIBERS (Eichhornia
crassipes) COMPOSITES
by
TAN SOO JIN 0940410383
A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy
School of Materials Engineering UNIVERSITI MALAYSIA PERLIS
2013
ITY
CHEMICAL Eichhornia
fulfilment of the requirements for the degree of
© This
item
is protected
by original
copyright
i
UNIVERSITI MALAYSIA PERLIS
NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.
DECLARATION OF THESIS
Author’s full name : TAN SOO JIN
Date of birth : 12 JULY 1986
Title : PROPERTIES OF LOW DENSITY POLYETHYLENE/NATURAL
RUBBER/CHEMICAL MODIFIED WATER HYACINTH FIBERS (Eichhornia crassipes) COMPOSITES Academic Session : 2012/2013
I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as :
CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
RESTRICTED (Contains restricted information as specified by the organization where research was done)*
OPEN ACCESS I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)
I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of _____ years, if so requested above).
Certified by:
_____________________________ _________________________________
SIGNATURE SIGNATURE OF SUPERVISOR
_____________________________ __________________________________
(NEW IC NO. / PASSPORT NO.) NAME OF SUPERVISOR Date: ________________________ Date: __________________________
© This
item
is protected
by original
copyright
ii
ACKNOWLEDGEMENT
First of all, thank God for giving me utmost strength, patience and ability to complete this thesis successfully.
I would like to express my greatest appreciation and sincere gratitute to my supervisor, Associate Professor Dr. Supri A. Ghani for the continuous support in my PhD study and research. He helped me with his enthusiasm, inspiration, and great effort in explaination clearly and simply. Throughout my thesis-writing period, he provided encouragement, guidance, useful advices and motivations. I would like to extend my gratitude to my co-supervisor, Dr Teh Pei Leng for her cared and guidance on my study.
Special thank to Dr. Khairel Rafezi Ahmad, Dean of School of Materials Engineering for his support in completion my research and thesis. My sincere thanks also go to all the technicians and PLV of School of Materials Engineering for their generous effort and assistance in the laboratory’s work; and not to forget to all the staffs in this school those help me directly and indirectly.
I dedicated special thanks to my friends and my postgraduate colleagues for helping me to get through the difficult times, and for all the emotional support they provided. My days of completion my PhD study would be extremely difficult without their help.
Last but not least, I record my gratitude to my lovely family especially my parents for their supports, understanding, loveliness and providing the financial support. I am also grateful to the Universiti Malaysia Perlis for giving me a space to learn and opportunity to complete my PhD study and thesis. Thank you very much.
© This
item
is protected
by original
copyright
iii
TABLE OF CONTENTS
PAGE
THESIS DECLARATION i
ACKNOWLEDGEMENT ii
TABLE OF CONTENTS iii
LIST OF FIGURES ix
LIST OF TABLES xvii
LIST OF ABBREVIATIONS, SYMBOLS xix
ABSTRAK xxiii
ABSTRACT xxv
CHAPTER 1: INTRODUCTION 1.1 Research Background 1.2 Problem Statement 1.3 Objectives of Study 1.4 Organization of the Thesis
1 10 12 13
CHAPTER 2: LITERATURE REVIEW 2.1 Thermoplastic Elastomers (TPEs)
2.1.1 Classification and Structure of Thermoplastic Elastomers 2.1.1.1 Styrenic Block Copolymers
2.1.1.2 Multi-Block Copolymers
2.1.1.3 Hard Polymer/Elastomer Combinations 2.1.1.4 Graft Copolymers
2.1.1.5 Ionomers
15 17 17 18 18 20 20
© This
item
is protected
by original
copyright
iv 2.1.1.6 Core-Shell Morphologies
2.1.2 Thermoplastic Polyolefin Blends (TPOs) 2.1.3 Thermoplastic Vulcanizates (TPVs) 2.1.4 Thermoplastic Natural Rubber (TPNR) 2.2 Composites
2.2.1 Polymer Matrix Composites (PMC) 2.3 Polyethylene (PE)
2.3.1 Low Density Polyethylene (LDPE)
2.3.1.1 Properties of Low Density Polyethylene (LDPE) 2.3.1.2 Applications of Low Density Polyethylene (LDPE) 2.4 Natural Rubber (NR)
2.4.1 Properties of Natural Rubber (NR) 2.4.2 Applications of Natural Rubber (NR) 2.5 Fillers
2.6 Natural Fibers
2.6.1 Natural Fiber Composites
2.7 Interaction between Natural Fibers and Polymer Matrix 2.7.1The Interphase and Interface in Composites 2.7.2 Wetting, Adhesion, and Dispersion
2.7.2.1 Chemical Bonding 2.7.2.2 Electrostatic Bonding 2.7.2.3 Mechanical Bonding 2.7.2.4 Interdiffusion
2.8 The Factors Influence Natural Fibers in Polymer Composites 2.9 Water Hyacinth
2.9.1 Major Components in Water Hyacinth 2.9.1.1 Cellulose
2.9.1.2 Hemicelluloses 2.9.1.3 Lignin
2.10 Compatibilizer
2.10.1 Polyethylene-Grafted-Maleic Anhydride (PE-g-MAH)
21 22 23 24 26 26 27 29 29 30 32 33 34 36 38 39 41 42 43 45 47 48 49 49 54 58 58 60 60 61 62
© This
item
is protected
by original
copyright
v 2.11 Chemical Modification
2.11.1 Poly (Methyl Methacrylate) (PMMA) 2.11.2 Poly (Vinyl Alcohol) (PVA)
2.11.3 Polyaniline (PANI) 2.11.4 Alkaline Treatment
2.11.5 Epoxy-Ethylene Diamine (EED)
CHAPTER 3: RESEARCH METHODOLOGY 3.1 Materials
3.1.1 Raw Materials 3.1.2 Chemicals
3.1.3 Preparation of Water Hyacinth Fibers (WHF)
3.2 Chemical Modification of Water Hyacinth Fibers with Poly (Methyl Methacrylate) (PMMA)
3.3 Chemical Modification of Water Hyacinth Fibers with Poly (Vinyl Alcohol) (PVA)
3.4 Chemical Modification of Water Hyacinth Fibers with Polyaniline (PANI)
3.5 Alkaline Treatment on Water Hyacinth Fibers
3.6 Modification of Epoxy-Ethylene Diamine (EED) on Water Hyacinth Fibers
3.7 Preparation of LDPE/NR/WHF Composites with Compatibilizer 3.8 Preparation of Modified LDPE/NR/WHF Composites with Different Chemicals
3.9 Testings and Characterization 3.9.1 Tensile Test
3.9.2 Swelling Behavior Test
3.9.3 Scanning Electron Microscopy (SEM) Analysis 3.9.4 Fourier Transform Infrared (FTIR) Spectroscopy 3.9.5 Differential Scanning Calorimetry (DSC)
3.9.6 Thermogravimetric Analysis (TGA)
65 66 68 71 73 75
79 79 80 81 83
83
84
84 85
85 87
89 89 89 90 90 91 91
© This
item
is protected
by original
copyright
vi
3.9.7 Capacity and Conductivity Measurements 3.9.8 X-ray Diffraction (XRD) Analysis
CHAPTER 4: RESULTS AND DISCUSSION
4.1 Effects of Polyethylene-Grafted-Maleic Anhydride (PE-g-MAH) on Properties of LDPE/NR/WHF Composites
4.1.1 Tensile Properties 4.1.2Swelling Behavior 4.1.3 Morphology Analysis
4.1.4 Spectroscopy Infrared Analysis 4.1.5 DSC Analysis
4.1.6 Thermal Degradation
4.1.7 X-ray Diffraction (XRD) Analysis
4.2 Effect of Poly (Methyl Methacrylate) (PMMA) Modified Water Hyacinth Fibers on Properties of LDPE/NR/WHF Composites 4.2.1 Tensile Properties
4.2.2Swelling Behavior 4.2.3 Morphology Analysis
4.2.4 Spectroscopy Infrared Analysis 4.2.5 DSC Analysis
4.2.6 Thermal Degradation
4.2.7 X-ray Diffraction (XRD) Analysis
4.3 Effect of Poly (Vinyl Alcohol) (PVA) Modified Water Hyacinth Fibers on Properties of LDPE/NR/WHF Composites
4.3.1 Tensile Properties 4.3.2Swelling Behavior 4.3.3 Morphology Analysis
4.3.4 Spectroscopy Infrared Analysis 4.3.5 DSC Analysis
4.3.6 Thermal Degradation
4.3.7 X-ray Diffraction (XRD) Analysis
92 92
94
94 98 100 102 104 106 108 111
111 114 116 117 121 123 125 128
128 131 132 134 137 138 141
© This
item
is protected
by original
copyright
vii
4.4 Properties of LDPE/NR/WHF Composites: The Effect of Polyaniline (PANI)
4.4.1 Tensile Properties 4.4.2Swelling Behavior 4.4.3 Morphology Analysis
4.4.4 Spectroscopy Infrared Analysis 4.4.5 Electrical Properties
4.4.6 DSC Analysis
4.4.7 Thermal Degradation
4.4.8 X-ray Diffraction (XRD) Analysis
4.5 Properties of LDPE/NR/WHF Composites: The Effect of Alkaline Treatment
4.5.1 Tensile Properties 4.5.2Swelling Behavior 4.5.3 Morphology Analysis
4.5.4 Spectroscopy Infrared Analysis 4.5.5 DSC Analysis
4.5.6 Thermal Degradation
4.5.7 X-ray Diffraction (XRD) Analysis
4.6 Effects of Chemical Modification of Epoxy-Ethylene Diamine (EED) on Water Hyacinth Fibers Filled Low Density Polyethylene/Natural Rubber Blends
4.6.1 Tensile Properties 4.6.2Swelling Behavior 4.6.3 Morphology Analysis
4.6.4 Spectroscopy Infrared Analysis 4.6.5 DSC Analysis
4.6.6 Thermal Degradation
4.6.7 X-ray Diffraction (XRD) Analysis
144
144 147 148 150 154 156 158 160 163
163 166 167 170 173 175 178 181
181 184 185 188 192 194 197
© This
item
is protected
by original
copyright
viii
CHAPTER 5: CONCLUSIONS AND SUGGESTIONS 5.1 Conclusions
5.2 Suggestions
REFERENCES
APPENDICES
199 201
202
226
© This
item
is protected
by original
copyright
ix
LIST OF FIGURES
PAGE Figure 2.1 Illustration of molecular structure of soft and hard phases in
thermoplastic elastomers.
16
Figure 2.2 Illustration of morphology of styrenic block copolymers. 17 Figure 2.3 Illustration of morphology of multi-block polymers with
crystalline hard segments.
18
Figure 2.4 Illustration of morphology of hard polymer-elastomer blends. 19 Figure 2.5 Illustration of morphology of dynamic vulcanizates. 19 Figure 2.6 Clusters of ionic groups forming a cross-link M+ = metal cation,
A- = anion.
21
Figure 2.7 Chemical structures for (a) ethylene and (b) polyethylene. 27 Figure 2.8 The structure of low density polyethylene. 39
Figure 2.9 Isoprene units in natural rubber. 32
Figure 2.10 Typical fillers particle shape. 37
Figure 2.11 A schematic description of an interphase and interface in a cross- section of wood-polymer composites.
43
Figure 2.12 Contact angle of a liquid drop on a solid surface. 44 Figure 2.13 Chemical bond between groups A on the surface and groups B
on the other surface.
46
Figure 2.14 A schematic diagram of crosslink. 47
Figure 2.15 Mechanism of electrostatic attraction. 48 Figure 2.16 Mechanical bond formed when liquid polymer wets a rough solid
surface.
48
© This
item
is protected
by original
copyright
x Figure 2.17
Figure 2.18
Mechanism of interdiffusion.
Water hyacinth
49 54
Figure 2.19 Structure of cellulose. 59
Figure 2.20 Phenylpropane units of lignin (a) coniferyl alcohol (b) sinayl alcohol, and (c) p-coumaryl alcohol.
61
Figure 2.21 The structure of (a) block copolymers and (b) graft copolymers. 62 Figure 2.22 Chemical structure of maleic anhydride. 63 Figure 2.23 General mechanism of reaction between cellulose fiber surfaces
with PE-g-MAH.
63
Figure 2.24 Chemical structure of (a) MMA monomer used to synthesis (b) PMMA.
67
Figure 2.25 Chemical structure of poly (vinyl alcohol). 69 Figure 2.26 Chemical structure of polyaniline (PANI). 71 Figure 2.27 Chemical structure of epoxy group per molecule 76
Figure 3.1 Stems of water hyacinth. 82
Figure 3.2 Water hyacinth fibers. 82
Figure 4.1 Effect of fiber loading and compatibilizer on tensile strength of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites.
95
Figure 4.2 Effect of fiber loading and compatibilizer on Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites.
97
Figure 4.3 Effect of fiber loading and compatibilizer on elongation at break of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites.
98
Figure 4.4 Effect of fiber loading and compatibilizer on molar sorption of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites.
99
Figure 4.5 SEM morphologies of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites, (a) LDPE/NR,
(b) LDPE/NR/WHF-5, (c) LDPE/NR/WHFPE-g-MAH-5, (d) LDPE/NR/WHF-15, (e) LDPE/NR/WHFPE-g-MAH-15, (f) LDPE/NR/WHF-25, (g) LDPE/NR/WHFPE-g-MAH-25.
102
© This
item
is protected
by original
copyright
xi Figure 4.6
Figure 4.7
The FTIR spectra for (a) LDPE/NR/WHFPE-g-MAH and (b) LDPE/NR/WHF composites.
DSC thermogram of LDPE/NR/WHF composites at different fiber loading.
103
105
Figure 4.8 DSC thermogram of LDPE/NR/WHFPE-g-MAH composites at different fiber loading.
105
Figure 4.9 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.
107
Figure 4.10 Thermogravimetric curves of LDPE/NR/WHFPE-g-MAH
composites at different fiber loading.
107
Figure 4.11 XRD diffractogram of LDPE/NR/WHF composites at different fiber loading.
109
Figure 4.12 XRD diffractogram of LDPE/NR/WHFPE-g-MAH composites at different fiber loading.
109
Figure 4.13 Effect of fiber loading on tensile strength of LDPE/NR/WHF and LDPE/NR/WHFPMMA composites.
112
Figure 4.14 Effect of fiber loading on Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFPMMA composites.
113
Figure 4.15 Effect of fiber loading on elongation at break of LDPE/NR/WHF and LDPE/NR/WHFPMMA composites.
114
Figure 4.16 Effect of fiber loading on molar sorption of LDPE/NR/WHF and LDPE/NR/WHFPMMA composites.
115
Figure 4.17 The SEM micrographs of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHFPMMA composites,
(a) LDPE/NR/WHF-5, (b) LDPE/NR/WHFPMMA-5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHFPMMA-15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHFPMMA-25.
117
Figure 4.18 The FTIR spectra for (a) WHFPMMA and (b) WHF. 118 Figure 4.19 The FTIR spectra for (a) LDPE/NR/WHF and
(b) LDPE/NR/WHFPMMA composites.
119
Figure 4.20 The propose interaction of PMMA modified water hyacinth fibers with LDPE/NR phases.
120
© This
item
is protected
by original
copyright
xii
Figure 4.21 DSC thermogram of LDPE/NR/WHF composites at different fiber loading.
122
Figure 4.22 DSC thermogram of LDPE/NR/WHFPMMA composites at different fiber loading.
122
Figure 4.23 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.
124
Figure 4.24 Thermogravimetric curves of LDPE/NR/WHFPMMA composites at different fiber loading.
124
Figure 4.25 XRD diffractogram of LDPE/NR/WHF composites at different fiber loading.
126
Figure 4.26 XRD diffractogram of LDPE/NR/WHFPMMA composites at different fiber loading.
126
Figure 4.27 Effect of fiber loading on tensile strength of LDPE/NR/WHF and LDPE/NR/WHFPVA composites.
129
Figure 4.28 Effect of fiber loading on Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFPVA composites.
130
Figure 4.29 Effect of fiber loading on elongation at break of LDPE/NR/WHF and LDPE/NR/WHFPVA composites.
131
Figure 4.30 Effect of fiber loading on molar sorption of LDPE/NR/WHF and LDPE/NR/WHFPVA composites.
132
Figure 4.31 The SEM micrographs of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHFPVA composites,
(a) LDPE/NR/WHF-5, (b) LDPE/NR/WHFPVA-5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHFPVA-15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHFPVA-25.
134
Figure 4.32 The FTIR spectra for (a) WHFPVA and (b) WHF. 135 Figure 4.33 The FTIR spectra for (a) LDPE/NR/WHFPVA and
(b) LDPE/NR/WHF composites.
136
Figure 4.34 Propose interaction of PVA modified water hyacinth fibers. 136 Figure 4.35 DSC thermogram of LDPE/NR/WHF composites at different
fiber loading.
137
© This
item
is protected
by original
copyright
xiii
Figure 4.36 DSC thermogram of LDPE/NR/WHFPVA composites at different fiber loading.
138
Figure 4.37 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.
139
Figure 4.38 Thermogravimetric curves of LDPE/NR/WHFPVA composites at different fiber loading.
140
Figure 4.39 The XRD diffractogram of LDPE/NR/WHF composites at different fiber loading.
142
Figure 4.40 The XRD diffractogram of LDPE/NR/WHFPVA composites at different fiber loading.
142
Figure 4.41 Effect of fiber loading on tensile strength of LDPE/NR/WHF and LDPE/NR/WHFPANI composites.
145
Figure 4.42 Effect of fiber loading on Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFPANI composites.
146
Figure 4.43 Effect of fiber loading on elongation at break of LDPE/NR/WHF and LDPE/NR/WHFPANI composites.
147
Figure 4.44 Effect of fiber loading on molar sorption of LDPE/NR/WHF and LDPE/NR/WHFPANI composites.
148
Figure 4.45 The SEM morphology of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHFPANI composites,
(a) LDPE/NR/WHF-5, (b) LDPE/NR/WHFPANI-5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHFPANI-15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHFPANI-25.
150
Figure 4.46 The FTIR spectra for (a) WHFPANI and (b) WHF. 151 Figure 4.47 The FTIR spectra for (a) LDPE/NR/WHFPANI and (b)
LDPE/NR/WHF composites.
152
Figure 4.48 Illustration of the mechanism of interaction of WHFPANI with LDPE/NR phases.
153
Figure 4.49 Capacity for LDPE/NR/WHF composites and LDPE/NR/WHFPANI composites at different fiber loading.
155
Figure 4.50 Conductivity for LDPE/NR/WHF composites and LDPE/NR/WHFPANI composites at different fiber loading.
155
© This
item
is protected
by original
copyright
xiv
Figure 4.51 DSC thermogram of LDPE/NR/WHF composites at different fiber loading.
157 Figure 4.52 DSC thermogram of LDPE/NR/WHFPANI composites at different
fiber loading.
157
Figure 4.53 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.
159
Figure 4.54 Thermogravimetric curves of LDPE/NR/WHFPANI composites at different fiber loading.
159
Figure 4.55 XRD diffractograms of LDPE/NR/WHF composites at different fiber loading.
161
Figure 4.56 XRD diffractograms of LDPE/NR/WHFPANI composites at different fiber loading.
161
Figure 4.57 The effect of alkaline treatment on tensile strength of LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.
164
Figure 4.58 The effect of alkaline treatment on Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.
165
Figure 4.59 The effect of alkaline treatment on elongation at break of LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.
166
Figure 4.60 The effect of alkaline treatment on molar sorption of LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.
167
Figure 4.61 TheSEM morphology of (a) WHF and (b) WHFNaOH. 168 Figure 4.62 The SEM micrographs of tensile fracture surface of
LDPE/NR/WHF and LDPE/NR/WHFNaOH composites, (a) LDPE/NR/WHF-5, (b) LDPE/NR/WHFNaOH-5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHFNaOH-15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHFNaOH-25.
170
Figure 4.63 The FTIR spectra for (a) WHFNaOH and (b) WHF. 171 Figure 4.64 The FTIR spectra for (a) LDPE/NR/WHFNaOH and (b)
LDPE/NR/WHF composites.
172
© This
item
is protected
by original
copyright
xv
Figure 4.65 Illustration of mechanism for the LDPE/NR with alkali treated water hyacinth fibers (WHFNaOH).
173
Figure 4.66 DSC thermogram of LDPE/NR/WHF composites at different fiber loading.
174
Figure 4.67 DSC thermogram of LDPE/NR/WHFNaOH composites at different fiber loading.
175
Figure 4.68 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.
176
Figure 4.69 Thermogravimetric curves of LDPE/NR/WHFNaOH composites at different fiber loading.
177
Figure 4.70 XRD diffractograms of LDPE/NR/WHF composites at different fiber loading.
179
Figure 4.71 XRD diffractograms of LDPE/NR/WHFNaOH composites at different fiber loading.
179
Figure 4.72 The tensile strength of LDPE/NR/WHF and LDPE/NR/WHFEEDcomposites at different fiber loading.
182
Figure 4.73 The Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFEED composites at different fiber loading.
183
Figure 4.74 The elongation at break of LDPE/NR/WHF and LDPE/NR/WHFEED composites at different fiber loading.
184
Figure 4.75 The molar sorption of LDPE/NR/WHF and LDPE/NR/WHFEED composites at different fiber loading.
185
Figure 4.76 The SEM morphology of (a) WHF and (b) WHFEED. 186 Figure 4.77 The SEM morphology of tensile fracture surface of
LDPE/NR/WHF and LDPE/NR/WHFEED composites, (a) LDPE/NR/WHF-5, (b) LDPE/NR/WHFEED-5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHFEED-15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHFEED-25.
187
Figure 4.78 The FTIR spectra for (a) WHFEED and (b) WHF. 189 Figure 4.79 The FTIR spectra for LDPE/NR/WHFEED and (b)
LDPE/NR/WHF composites
190
© This
item
is protected
by original
copyright
xvi
Figure 4.80 Illustration of crosslink and interaction of WHFEED with LDPE/NR blends.
192
Figure 4.81 DSC thermogram of LDPE/NR/WHF composites at different fiber loading.
193
Figure 4.82 DSC thermogram of LDPE/NR/WHFEED composites at different fiber loading.
194
Figure 4.83 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.
195
Figure 4.84 Thermogravimetric curves of LDPE/NR/WHFEED composites at different fiber loading.
196
Figure 4.85 XRD diffractogram of LDPE/NR/WHF composites at different fiber loading.
197
Figure 4.86 XRD diffractogram of LDPE/NR/WHFEED composites at different fiber loading.
198
© This
item
is protected
by original
copyright
xvii
LIST OF TABLES
PAGE Table 2.1 Classification of polyethylene according to ASTM D 883-00. 28
Table 2.2 Different types of fillers. 38
Table 2.3 Chemical composition of water hyacinth. 55
Table 3.1 Physical properties of LDPE. 79
Table 3.2 Properties of NR grade SMR L. 80
Table 3.3 Formulation of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH at different fiber loading.
86
Table 3.4 Formulation of different chemicals modified LDPE/NR/WHF composites with different fiber loading.
88
Table 4.1 Thermal parameter for LDPE/NR/WHF and
LDPE/NR/WHFPE-g-MAH composites at different fiber loading.
106
Table 4.2 Temperature of 50 % weight loss (T-50%wt) , final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites.
108
Table 4.3 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites at different fiber loading.
110
Table 4.4 Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHFPMMA composites at different fiber loading.
123
Table 4.5 Temperature of 50 % weight loss (T-50%wt), final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFPMMA composites.
125
Table 4.6 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFPMMA composites at different fiber loading.
127
Table 4.7 Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHFPVA composites at different fiber loading.
138
© This
item
is protected
by original
copyright
xviii
Table 4.8 Temperature of 50 % weight loss (T-50%wt), final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFPVA composites.
140
Table 4.9 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFPVA composites at different fiber loading.
143
Table 4.10 Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHFPANI
composites at different fiber loading.
158
Table 4.11 Temperature of 50 % weight loss (T-50%wt), final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFPANI composites.
160
Table 4.12 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFPANI composites at different fiber loading.
162
Table 4.13 Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.
175
Table 4.14 Temperature of 50 % weight loss (T-50%wt), final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFNaOH composites.
177
Table 4.15 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.
180
Table 4.16 Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHFEED
composites at different fiber loading.
194
Table 4.17 Temperature of 50 % weight loss (T-50%wt), final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFEED composites.
196
Table 4.18 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFEED composites at different fiber loading.
198
© This
item
is protected
by original
copyright
xix
LIST OF ABBREVIATIONS, SYMBOLS
ASTM American Society for Testing and Materials
BF Banana fiber
CF Curaua fibers
CMC Ceramic matrix composites CNFs Cellulose nanofibers
DGEBA Diglycidyl ether of bisphenl A DSC Differential scanning calorimetry EA + MMA Ethyl acrylate with methyl methacrylate
EED Epoxy-ethylene diamine
EPDM Ethylene propylene diene monomer
ER Epoxy resin
ESD Electrostatic dispersive FTIR Fourier transform infrared HDPE High density polyethylene HVA-2 N, N-m-phenylenebismaleimide
IC Integrated circuit
ICI Imperial Chemical Industries
IM Injection molding
KF Kenaf fiber
KP Kenaf powder
© This
item
is protected
by original
copyright
xx L/D Length-to-diameter ratio LDPE Low density polyethylene LLDPE Linear low density polyethylene
LNR Liquid natural rubber
MAH Maleic anhydride
MAPE Maleic anhydride polyethylene MAPP Maleic anhydride polypropylene MLDPE Maleated low density polyethylene
MMC Metal matrix composites
MPR Melt-processible rubber
NaOH Sodium hydroxide
NBR Acrylonitrile butadiene rubber
NBRr Recycled acrylonitrile butadiene rubber
NBR-g-MMA Acrylonitrile butadiene rubber grafted methyl methacrylate
NR Natural rubber
NRL Natural rubber latex
NRP Natural rubber powder
OH Hydroxyl groups
PA Phthalic anhydride
PA-6 Polyamide-6
PANI Polyaniline
PANI-DBSA Polyaniline doped with dodecylbenzene sulfonic acid
PE Polyethylene
PEG Polyethylene glycol
© This
item
is protected
by original
copyright
xxi
PE-g-MAH Polyethylene-grafted-maleic anhydride PP-g-MAH Maleic anhydride grafted polypropylene
PF Phenol-Formaldehyde
PLA Poly (lactic acid)
PMC Polymer matrix composites PMMA Poly (methyl methacrylate)
PP Polypropylene
PPEAA Poly (propylene-ethylene-acrylic acid) PRIM Rubber Research Institute Malaysia
PS Polystyrene
PVA Poly (vinyl alcohol)
rHDPE Recycled high density polyethylene
RTR Reclaimed tire rubber
RWF Rubber wood finer
SBR Styrene butadiene rubber SEM Scanning Electron Microscopy
SHF Sunn hemp fibers
T-50%wt Temperature at 50 % weight loss TD Maximum decomposition temperature Tg Glass transition temperature
Tm Melting temperature
To Onset degradation temperature TEM Transmission electron microscopy TGA Thermogravimetric analysis TPEs Thermoplastic elastomers
© This
item
is protected
by original
copyright
xxii TPNR Thermoplastic natural rubber TPOs Thermoplastic polyolefin blends TPVS Thermoplastic vulcanizates
UFNBRP Ultra-fine-vulcanized acrylonitrile butadiene rubber powder
WHF Water hyacinth fibers
WRHA White rice husk ash
XRD X-ray diffraction
© This
item
is protected
by original
copyright
xxiii
Sifat-sifat Komposit Polietilena Ketumpatan Rendah/Getah Asli/Serat Keladi Bunting (Eichhornia crassipes) Yang Diubahsuai Secara Kimia
ABSTRAK
Komposit serat semula jadi daripada polietilena ketumpatan rendah (LDPE)/getah asli (NR)/serat keladi bunting (WHF) telah dikaji. Komposit disediakan dengan menggunakan Brabender Plasticorder pada suhu 160 oC dengan kelajuan motor pada 50 rpm. Kesan pembebanan WHF, pengserasi dan pelbagai jenis modifikasi kimia ke atas sifat mekanikal, sifat pembengkakan, sifat morfologi, sifat terma, pencirian spektroskopi infra merah dan pencirian XRD terhadap komposit LDPE/NR/WHF telah dikaji. Pengserasi yang digunakan dalam kajian ini ialah polietilena-dicantumkan-maleik anhidrida (PE-g-MAH). Pelbagai jenis modifikasi kimia yang digunakan ke atas komposit LDPE/NR/WHF adalah poli (metil metakrilat) (PMMA), poli (vinil alkohol) (PVA), polianilin (PANI), rawatan alkali (NaOH), dan epoksi-etilena diamina (EED). Komposit dengan pengserasi meningkat 15.38 % pada kekuatan tegangan dan 17.63 % pada modulus Young tetapi menurun 35.79 % pada pemanjangan pada takat putus, 26.21 % pada molar penyerapan, dan 4.22 % pada purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan MMA menunjukkan penambahan 29.18 % pada kekuatan tegangan, 31.86 % pada modulus Young, 35.66 % pada pemanjangan pada takat putus manakala penurunan sebanyak 5.36 % pada molar penyerapan dan 5.84 % pada purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan PVA menunjukkan satu peningkatan dalam kekuatan tegangan, modulus Young , dan pemanjangan pada takat putus di mana penambahan masing-masing sebanyak 23.96 %, 16.34 % , dan 24.69 %, manakala molar penyerapan dan purata jarak antara zarah masing-masing berkurang sebanyak 3.22 % dan 2.35 %. Komposit LDPE/NR/WHF dimodifikasi dengan PANI menunjukkan penambahan sebanyak 4.71 % pada kekuatan tegangan, 24.46 % pada modulus Young, 85.5 % pada pemanjangan pada takat putus tetapi berkurang sebanyak 3.60 % pada molar penyerapan dan 11.29 % pada purata jarak antara zarah. Serat keladi bunting dimodifikasi dengan NaOH dalam komposit LDPE/NR/WHF menunjukkan satu penambahan sebanyak 2.46 %, 202.33 % dan 68.77 %, masing-masing dalam kekuatan tegangan, modulus Young dan pemanjangan pada takat putus manakala penurunan sebanyak 25.30 % dan 19.39 %, masing-masing dalam molar penyerapan dan purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan EED bertambah sebanyak 16.30 % pada kekuatan tegangan, 17.13 % modulus Young , dan 507.05 % pemanjangan pada takat putus tetapi berkurang sebanyak 8.6 % pada molar penyerapan dan 11.52 % purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan PE-g-MAH, PMMA, PVA, PANI, NaOH and EED menunjukkan kestabilan terma yang baik tetapi pengurangan pada % penghabluran kecuali untuk komposit LDPE/NR/WHF dimodifikasi dengan PMMA. Mikrograf SEM permukaan patahan tegangan untuk komposit yang dimodifikasi dengan kimia menunjukkan interaksi antara muka dan lekatan antara WHF dengan adunan LDPE/NR telah meningkat. SEM micrograf untuk WHF yang dimodifikasi dengan NaOH and EED menunjukkan permukaan yang kasar untuk lekatan yang lebih baik. Komposit LDPE/NR/WHF dimodifikasi dengan PANI
© This
item
is protected
by original
copyright