• Tidak ada hasil yang ditemukan

© This item is protected by original copyright

N/A
N/A
Protected

Academic year: 2024

Membagikan "© This item is protected by original copyright"

Copied!
24
0
0

Teks penuh

(1)

PROPERTIES O POLYETHYLEN

MODIFIED WATER HYACINTH FIBERS ( crassipes

A thesis submitted in

School of Materials Engineering UNIVERSITI MALAYSIA PERLIS

i

PROPERTIES OF LOW DENSITY

POLYETHYLEN/NATURAL RUBBER/CHEMICAL MODIFIED WATER HYACINTH FIBERS (Eichhornia

crassipes) COMPOSITES

by

TAN SOO JIN 0940410383

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Materials Engineering UNIVERSITI MALAYSIA PERLIS

2013

ITY

CHEMICAL Eichhornia

fulfilment of the requirements for the degree of

   

   

   

   

   

 

©   This

  item

  is   protected

  by   original

  copyright

 

(2)

i

UNIVERSITI MALAYSIA PERLIS

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

DECLARATION OF THESIS

Author’s full name : TAN SOO JIN

Date of birth : 12 JULY 1986

Title : PROPERTIES OF LOW DENSITY POLYETHYLENE/NATURAL

RUBBER/CHEMICAL MODIFIED WATER HYACINTH FIBERS (Eichhornia crassipes) COMPOSITES Academic Session : 2012/2013

I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as :

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by the organization where research was done)*

OPEN ACCESS I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)

I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of _____ years, if so requested above).

Certified by:

_____________________________ _________________________________

SIGNATURE SIGNATURE OF SUPERVISOR

_____________________________ __________________________________

(NEW IC NO. / PASSPORT NO.) NAME OF SUPERVISOR Date: ________________________ Date: __________________________

   

   

   

   

   

 

©   This

  item

  is   protected

  by   original

  copyright

 

(3)

ii

ACKNOWLEDGEMENT

First of all, thank God for giving me utmost strength, patience and ability to complete this thesis successfully.

I would like to express my greatest appreciation and sincere gratitute to my supervisor, Associate Professor Dr. Supri A. Ghani for the continuous support in my PhD study and research. He helped me with his enthusiasm, inspiration, and great effort in explaination clearly and simply. Throughout my thesis-writing period, he provided encouragement, guidance, useful advices and motivations. I would like to extend my gratitude to my co-supervisor, Dr Teh Pei Leng for her cared and guidance on my study.

Special thank to Dr. Khairel Rafezi Ahmad, Dean of School of Materials Engineering for his support in completion my research and thesis. My sincere thanks also go to all the technicians and PLV of School of Materials Engineering for their generous effort and assistance in the laboratory’s work; and not to forget to all the staffs in this school those help me directly and indirectly.

I dedicated special thanks to my friends and my postgraduate colleagues for helping me to get through the difficult times, and for all the emotional support they provided. My days of completion my PhD study would be extremely difficult without their help.

Last but not least, I record my gratitude to my lovely family especially my parents for their supports, understanding, loveliness and providing the financial support. I am also grateful to the Universiti Malaysia Perlis for giving me a space to learn and opportunity to complete my PhD study and thesis. Thank you very much.

   

   

   

   

   

 

©   This

  item

  is   protected

  by   original

  copyright

 

(4)

iii

TABLE OF CONTENTS

PAGE

THESIS DECLARATION i

ACKNOWLEDGEMENT ii

TABLE OF CONTENTS iii

LIST OF FIGURES ix

LIST OF TABLES xvii

LIST OF ABBREVIATIONS, SYMBOLS xix

ABSTRAK xxiii

ABSTRACT xxv

CHAPTER 1: INTRODUCTION 1.1 Research Background 1.2 Problem Statement 1.3 Objectives of Study 1.4 Organization of the Thesis

1 10 12 13

CHAPTER 2: LITERATURE REVIEW 2.1 Thermoplastic Elastomers (TPEs)

2.1.1 Classification and Structure of Thermoplastic Elastomers 2.1.1.1 Styrenic Block Copolymers

2.1.1.2 Multi-Block Copolymers

2.1.1.3 Hard Polymer/Elastomer Combinations 2.1.1.4 Graft Copolymers

2.1.1.5 Ionomers

15 17 17 18 18 20 20  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(5)

iv 2.1.1.6 Core-Shell Morphologies

2.1.2 Thermoplastic Polyolefin Blends (TPOs) 2.1.3 Thermoplastic Vulcanizates (TPVs) 2.1.4 Thermoplastic Natural Rubber (TPNR) 2.2 Composites

2.2.1 Polymer Matrix Composites (PMC) 2.3 Polyethylene (PE)

2.3.1 Low Density Polyethylene (LDPE)

2.3.1.1 Properties of Low Density Polyethylene (LDPE) 2.3.1.2 Applications of Low Density Polyethylene (LDPE) 2.4 Natural Rubber (NR)

2.4.1 Properties of Natural Rubber (NR) 2.4.2 Applications of Natural Rubber (NR) 2.5 Fillers

2.6 Natural Fibers

2.6.1 Natural Fiber Composites

2.7 Interaction between Natural Fibers and Polymer Matrix 2.7.1The Interphase and Interface in Composites 2.7.2 Wetting, Adhesion, and Dispersion

2.7.2.1 Chemical Bonding 2.7.2.2 Electrostatic Bonding 2.7.2.3 Mechanical Bonding 2.7.2.4 Interdiffusion

2.8 The Factors Influence Natural Fibers in Polymer Composites 2.9 Water Hyacinth

2.9.1 Major Components in Water Hyacinth 2.9.1.1 Cellulose

2.9.1.2 Hemicelluloses 2.9.1.3 Lignin

2.10 Compatibilizer

2.10.1 Polyethylene-Grafted-Maleic Anhydride (PE-g-MAH)

21 22 23 24 26 26 27 29 29 30 32 33 34 36 38 39 41 42 43 45 47 48 49 49 54 58 58 60 60 61 62  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(6)

v 2.11 Chemical Modification

2.11.1 Poly (Methyl Methacrylate) (PMMA) 2.11.2 Poly (Vinyl Alcohol) (PVA)

2.11.3 Polyaniline (PANI) 2.11.4 Alkaline Treatment

2.11.5 Epoxy-Ethylene Diamine (EED)

CHAPTER 3: RESEARCH METHODOLOGY 3.1 Materials

3.1.1 Raw Materials 3.1.2 Chemicals

3.1.3 Preparation of Water Hyacinth Fibers (WHF)

3.2 Chemical Modification of Water Hyacinth Fibers with Poly (Methyl Methacrylate) (PMMA)

3.3 Chemical Modification of Water Hyacinth Fibers with Poly (Vinyl Alcohol) (PVA)

3.4 Chemical Modification of Water Hyacinth Fibers with Polyaniline (PANI)

3.5 Alkaline Treatment on Water Hyacinth Fibers

3.6 Modification of Epoxy-Ethylene Diamine (EED) on Water Hyacinth Fibers

3.7 Preparation of LDPE/NR/WHF Composites with Compatibilizer 3.8 Preparation of Modified LDPE/NR/WHF Composites with Different Chemicals

3.9 Testings and Characterization 3.9.1 Tensile Test

3.9.2 Swelling Behavior Test

3.9.3 Scanning Electron Microscopy (SEM) Analysis 3.9.4 Fourier Transform Infrared (FTIR) Spectroscopy 3.9.5 Differential Scanning Calorimetry (DSC)

3.9.6 Thermogravimetric Analysis (TGA)

65 66 68 71 73 75

79 79 80 81 83

83

84

84 85

85 87

89 89 89 90 90 91 91  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(7)

vi

3.9.7 Capacity and Conductivity Measurements 3.9.8 X-ray Diffraction (XRD) Analysis

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Effects of Polyethylene-Grafted-Maleic Anhydride (PE-g-MAH) on Properties of LDPE/NR/WHF Composites

4.1.1 Tensile Properties 4.1.2Swelling Behavior 4.1.3 Morphology Analysis

4.1.4 Spectroscopy Infrared Analysis 4.1.5 DSC Analysis

4.1.6 Thermal Degradation

4.1.7 X-ray Diffraction (XRD) Analysis

4.2 Effect of Poly (Methyl Methacrylate) (PMMA) Modified Water Hyacinth Fibers on Properties of LDPE/NR/WHF Composites 4.2.1 Tensile Properties

4.2.2Swelling Behavior 4.2.3 Morphology Analysis

4.2.4 Spectroscopy Infrared Analysis 4.2.5 DSC Analysis

4.2.6 Thermal Degradation

4.2.7 X-ray Diffraction (XRD) Analysis

4.3 Effect of Poly (Vinyl Alcohol) (PVA) Modified Water Hyacinth Fibers on Properties of LDPE/NR/WHF Composites

4.3.1 Tensile Properties 4.3.2Swelling Behavior 4.3.3 Morphology Analysis

4.3.4 Spectroscopy Infrared Analysis 4.3.5 DSC Analysis

4.3.6 Thermal Degradation

4.3.7 X-ray Diffraction (XRD) Analysis

92 92

94

94 98 100 102 104 106 108 111

111 114 116 117 121 123 125 128

128 131 132 134 137 138 141  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(8)

vii

4.4 Properties of LDPE/NR/WHF Composites: The Effect of Polyaniline (PANI)

4.4.1 Tensile Properties 4.4.2Swelling Behavior 4.4.3 Morphology Analysis

4.4.4 Spectroscopy Infrared Analysis 4.4.5 Electrical Properties

4.4.6 DSC Analysis

4.4.7 Thermal Degradation

4.4.8 X-ray Diffraction (XRD) Analysis

4.5 Properties of LDPE/NR/WHF Composites: The Effect of Alkaline Treatment

4.5.1 Tensile Properties 4.5.2Swelling Behavior 4.5.3 Morphology Analysis

4.5.4 Spectroscopy Infrared Analysis 4.5.5 DSC Analysis

4.5.6 Thermal Degradation

4.5.7 X-ray Diffraction (XRD) Analysis

4.6 Effects of Chemical Modification of Epoxy-Ethylene Diamine (EED) on Water Hyacinth Fibers Filled Low Density Polyethylene/Natural Rubber Blends

4.6.1 Tensile Properties 4.6.2Swelling Behavior 4.6.3 Morphology Analysis

4.6.4 Spectroscopy Infrared Analysis 4.6.5 DSC Analysis

4.6.6 Thermal Degradation

4.6.7 X-ray Diffraction (XRD) Analysis

144

144 147 148 150 154 156 158 160 163

163 166 167 170 173 175 178 181

181 184 185 188 192 194 197  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(9)

viii

CHAPTER 5: CONCLUSIONS AND SUGGESTIONS 5.1 Conclusions

5.2 Suggestions

REFERENCES

APPENDICES

199 201

202

226  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(10)

ix

LIST OF FIGURES

PAGE Figure 2.1 Illustration of molecular structure of soft and hard phases in

thermoplastic elastomers.

16

Figure 2.2 Illustration of morphology of styrenic block copolymers. 17 Figure 2.3 Illustration of morphology of multi-block polymers with

crystalline hard segments.

18

Figure 2.4 Illustration of morphology of hard polymer-elastomer blends. 19 Figure 2.5 Illustration of morphology of dynamic vulcanizates. 19 Figure 2.6 Clusters of ionic groups forming a cross-link M+ = metal cation,

A- = anion.

21

Figure 2.7 Chemical structures for (a) ethylene and (b) polyethylene. 27 Figure 2.8 The structure of low density polyethylene. 39

Figure 2.9 Isoprene units in natural rubber. 32

Figure 2.10 Typical fillers particle shape. 37

Figure 2.11 A schematic description of an interphase and interface in a cross- section of wood-polymer composites.

43

Figure 2.12 Contact angle of a liquid drop on a solid surface. 44 Figure 2.13 Chemical bond between groups A on the surface and groups B

on the other surface.

46

Figure 2.14 A schematic diagram of crosslink. 47

Figure 2.15 Mechanism of electrostatic attraction. 48 Figure 2.16 Mechanical bond formed when liquid polymer wets a rough solid

surface.

48  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(11)

x Figure 2.17

Figure 2.18

Mechanism of interdiffusion.

Water hyacinth

49 54

Figure 2.19 Structure of cellulose. 59

Figure 2.20 Phenylpropane units of lignin (a) coniferyl alcohol (b) sinayl alcohol, and (c) p-coumaryl alcohol.

61

Figure 2.21 The structure of (a) block copolymers and (b) graft copolymers. 62 Figure 2.22 Chemical structure of maleic anhydride. 63 Figure 2.23 General mechanism of reaction between cellulose fiber surfaces

with PE-g-MAH.

63

Figure 2.24 Chemical structure of (a) MMA monomer used to synthesis (b) PMMA.

67

Figure 2.25 Chemical structure of poly (vinyl alcohol). 69 Figure 2.26 Chemical structure of polyaniline (PANI). 71 Figure 2.27 Chemical structure of epoxy group per molecule 76

Figure 3.1 Stems of water hyacinth. 82

Figure 3.2 Water hyacinth fibers. 82

Figure 4.1 Effect of fiber loading and compatibilizer on tensile strength of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites.

95

Figure 4.2 Effect of fiber loading and compatibilizer on Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites.

97

Figure 4.3 Effect of fiber loading and compatibilizer on elongation at break of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites.

98

Figure 4.4 Effect of fiber loading and compatibilizer on molar sorption of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites.

99

Figure 4.5 SEM morphologies of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites, (a) LDPE/NR,

(b) LDPE/NR/WHF-5, (c) LDPE/NR/WHFPE-g-MAH-5, (d) LDPE/NR/WHF-15, (e) LDPE/NR/WHFPE-g-MAH-15, (f) LDPE/NR/WHF-25, (g) LDPE/NR/WHFPE-g-MAH-25.

102  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(12)

xi Figure 4.6

Figure 4.7

The FTIR spectra for (a) LDPE/NR/WHFPE-g-MAH and (b) LDPE/NR/WHF composites.

DSC thermogram of LDPE/NR/WHF composites at different fiber loading.

103

105

Figure 4.8 DSC thermogram of LDPE/NR/WHFPE-g-MAH composites at different fiber loading.

105

Figure 4.9 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.

107

Figure 4.10 Thermogravimetric curves of LDPE/NR/WHFPE-g-MAH

composites at different fiber loading.

107

Figure 4.11 XRD diffractogram of LDPE/NR/WHF composites at different fiber loading.

109

Figure 4.12 XRD diffractogram of LDPE/NR/WHFPE-g-MAH composites at different fiber loading.

109

Figure 4.13 Effect of fiber loading on tensile strength of LDPE/NR/WHF and LDPE/NR/WHFPMMA composites.

112

Figure 4.14 Effect of fiber loading on Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFPMMA composites.

113

Figure 4.15 Effect of fiber loading on elongation at break of LDPE/NR/WHF and LDPE/NR/WHFPMMA composites.

114

Figure 4.16 Effect of fiber loading on molar sorption of LDPE/NR/WHF and LDPE/NR/WHFPMMA composites.

115

Figure 4.17 The SEM micrographs of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHFPMMA composites,

(a) LDPE/NR/WHF-5, (b) LDPE/NR/WHFPMMA-5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHFPMMA-15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHFPMMA-25.

117

Figure 4.18 The FTIR spectra for (a) WHFPMMA and (b) WHF. 118 Figure 4.19 The FTIR spectra for (a) LDPE/NR/WHF and

(b) LDPE/NR/WHFPMMA composites.

119

Figure 4.20 The propose interaction of PMMA modified water hyacinth fibers with LDPE/NR phases.

120  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(13)

xii

Figure 4.21 DSC thermogram of LDPE/NR/WHF composites at different fiber loading.

122

Figure 4.22 DSC thermogram of LDPE/NR/WHFPMMA composites at different fiber loading.

122

Figure 4.23 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.

124

Figure 4.24 Thermogravimetric curves of LDPE/NR/WHFPMMA composites at different fiber loading.

124

Figure 4.25 XRD diffractogram of LDPE/NR/WHF composites at different fiber loading.

126

Figure 4.26 XRD diffractogram of LDPE/NR/WHFPMMA composites at different fiber loading.

126

Figure 4.27 Effect of fiber loading on tensile strength of LDPE/NR/WHF and LDPE/NR/WHFPVA composites.

129

Figure 4.28 Effect of fiber loading on Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFPVA composites.

130

Figure 4.29 Effect of fiber loading on elongation at break of LDPE/NR/WHF and LDPE/NR/WHFPVA composites.

131

Figure 4.30 Effect of fiber loading on molar sorption of LDPE/NR/WHF and LDPE/NR/WHFPVA composites.

132

Figure 4.31 The SEM micrographs of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHFPVA composites,

(a) LDPE/NR/WHF-5, (b) LDPE/NR/WHFPVA-5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHFPVA-15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHFPVA-25.

134

Figure 4.32 The FTIR spectra for (a) WHFPVA and (b) WHF. 135 Figure 4.33 The FTIR spectra for (a) LDPE/NR/WHFPVA and

(b) LDPE/NR/WHF composites.

136

Figure 4.34 Propose interaction of PVA modified water hyacinth fibers. 136 Figure 4.35 DSC thermogram of LDPE/NR/WHF composites at different

fiber loading.

137  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(14)

xiii

Figure 4.36 DSC thermogram of LDPE/NR/WHFPVA composites at different fiber loading.

138

Figure 4.37 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.

139

Figure 4.38 Thermogravimetric curves of LDPE/NR/WHFPVA composites at different fiber loading.

140

Figure 4.39 The XRD diffractogram of LDPE/NR/WHF composites at different fiber loading.

142

Figure 4.40 The XRD diffractogram of LDPE/NR/WHFPVA composites at different fiber loading.

142

Figure 4.41 Effect of fiber loading on tensile strength of LDPE/NR/WHF and LDPE/NR/WHFPANI composites.

145

Figure 4.42 Effect of fiber loading on Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFPANI composites.

146

Figure 4.43 Effect of fiber loading on elongation at break of LDPE/NR/WHF and LDPE/NR/WHFPANI composites.

147

Figure 4.44 Effect of fiber loading on molar sorption of LDPE/NR/WHF and LDPE/NR/WHFPANI composites.

148

Figure 4.45 The SEM morphology of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHFPANI composites,

(a) LDPE/NR/WHF-5, (b) LDPE/NR/WHFPANI-5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHFPANI-15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHFPANI-25.

150

Figure 4.46 The FTIR spectra for (a) WHFPANI and (b) WHF. 151 Figure 4.47 The FTIR spectra for (a) LDPE/NR/WHFPANI and (b)

LDPE/NR/WHF composites.

152

Figure 4.48 Illustration of the mechanism of interaction of WHFPANI with LDPE/NR phases.

153

Figure 4.49 Capacity for LDPE/NR/WHF composites and LDPE/NR/WHFPANI composites at different fiber loading.

155

Figure 4.50 Conductivity for LDPE/NR/WHF composites and LDPE/NR/WHFPANI composites at different fiber loading.

155  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(15)

xiv

Figure 4.51 DSC thermogram of LDPE/NR/WHF composites at different fiber loading.

157 Figure 4.52 DSC thermogram of LDPE/NR/WHFPANI composites at different

fiber loading.

157

Figure 4.53 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.

159

Figure 4.54 Thermogravimetric curves of LDPE/NR/WHFPANI composites at different fiber loading.

159

Figure 4.55 XRD diffractograms of LDPE/NR/WHF composites at different fiber loading.

161

Figure 4.56 XRD diffractograms of LDPE/NR/WHFPANI composites at different fiber loading.

161

Figure 4.57 The effect of alkaline treatment on tensile strength of LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.

164

Figure 4.58 The effect of alkaline treatment on Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.

165

Figure 4.59 The effect of alkaline treatment on elongation at break of LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.

166

Figure 4.60 The effect of alkaline treatment on molar sorption of LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.

167

Figure 4.61 TheSEM morphology of (a) WHF and (b) WHFNaOH. 168 Figure 4.62 The SEM micrographs of tensile fracture surface of

LDPE/NR/WHF and LDPE/NR/WHFNaOH composites, (a) LDPE/NR/WHF-5, (b) LDPE/NR/WHFNaOH-5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHFNaOH-15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHFNaOH-25.

170

Figure 4.63 The FTIR spectra for (a) WHFNaOH and (b) WHF. 171 Figure 4.64 The FTIR spectra for (a) LDPE/NR/WHFNaOH and (b)

LDPE/NR/WHF composites.

172  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(16)

xv

Figure 4.65 Illustration of mechanism for the LDPE/NR with alkali treated water hyacinth fibers (WHFNaOH).

173

Figure 4.66 DSC thermogram of LDPE/NR/WHF composites at different fiber loading.

174

Figure 4.67 DSC thermogram of LDPE/NR/WHFNaOH composites at different fiber loading.

175

Figure 4.68 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.

176

Figure 4.69 Thermogravimetric curves of LDPE/NR/WHFNaOH composites at different fiber loading.

177

Figure 4.70 XRD diffractograms of LDPE/NR/WHF composites at different fiber loading.

179

Figure 4.71 XRD diffractograms of LDPE/NR/WHFNaOH composites at different fiber loading.

179

Figure 4.72 The tensile strength of LDPE/NR/WHF and LDPE/NR/WHFEEDcomposites at different fiber loading.

182

Figure 4.73 The Young’s modulus of LDPE/NR/WHF and LDPE/NR/WHFEED composites at different fiber loading.

183

Figure 4.74 The elongation at break of LDPE/NR/WHF and LDPE/NR/WHFEED composites at different fiber loading.

184

Figure 4.75 The molar sorption of LDPE/NR/WHF and LDPE/NR/WHFEED composites at different fiber loading.

185

Figure 4.76 The SEM morphology of (a) WHF and (b) WHFEED. 186 Figure 4.77 The SEM morphology of tensile fracture surface of

LDPE/NR/WHF and LDPE/NR/WHFEED composites, (a) LDPE/NR/WHF-5, (b) LDPE/NR/WHFEED-5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHFEED-15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHFEED-25.

187

Figure 4.78 The FTIR spectra for (a) WHFEED and (b) WHF. 189 Figure 4.79 The FTIR spectra for LDPE/NR/WHFEED and (b)

LDPE/NR/WHF composites

190  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(17)

xvi

Figure 4.80 Illustration of crosslink and interaction of WHFEED with LDPE/NR blends.

192

Figure 4.81 DSC thermogram of LDPE/NR/WHF composites at different fiber loading.

193

Figure 4.82 DSC thermogram of LDPE/NR/WHFEED composites at different fiber loading.

194

Figure 4.83 Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.

195

Figure 4.84 Thermogravimetric curves of LDPE/NR/WHFEED composites at different fiber loading.

196

Figure 4.85 XRD diffractogram of LDPE/NR/WHF composites at different fiber loading.

197

Figure 4.86 XRD diffractogram of LDPE/NR/WHFEED composites at different fiber loading.

198  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(18)

xvii

LIST OF TABLES

PAGE Table 2.1 Classification of polyethylene according to ASTM D 883-00. 28

Table 2.2 Different types of fillers. 38

Table 2.3 Chemical composition of water hyacinth. 55

Table 3.1 Physical properties of LDPE. 79

Table 3.2 Properties of NR grade SMR L. 80

Table 3.3 Formulation of LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH at different fiber loading.

86

Table 3.4 Formulation of different chemicals modified LDPE/NR/WHF composites with different fiber loading.

88

Table 4.1 Thermal parameter for LDPE/NR/WHF and

LDPE/NR/WHFPE-g-MAH composites at different fiber loading.

106

Table 4.2 Temperature of 50 % weight loss (T-50%wt) , final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites.

108

Table 4.3 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFPE-g-MAH composites at different fiber loading.

110

Table 4.4 Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHFPMMA composites at different fiber loading.

123

Table 4.5 Temperature of 50 % weight loss (T-50%wt), final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFPMMA composites.

125

Table 4.6 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFPMMA composites at different fiber loading.

127

Table 4.7 Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHFPVA composites at different fiber loading.

138  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(19)

xviii

Table 4.8 Temperature of 50 % weight loss (T-50%wt), final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFPVA composites.

140

Table 4.9 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFPVA composites at different fiber loading.

143

Table 4.10 Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHFPANI

composites at different fiber loading.

158

Table 4.11 Temperature of 50 % weight loss (T-50%wt), final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFPANI composites.

160

Table 4.12 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFPANI composites at different fiber loading.

162

Table 4.13 Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.

175

Table 4.14 Temperature of 50 % weight loss (T-50%wt), final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFNaOH composites.

177

Table 4.15 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFNaOH composites at different fiber loading.

180

Table 4.16 Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHFEED

composites at different fiber loading.

194

Table 4.17 Temperature of 50 % weight loss (T-50%wt), final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHFEED composites.

196

Table 4.18 Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHFEED composites at different fiber loading.

198  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(20)

xix

LIST OF ABBREVIATIONS, SYMBOLS

ASTM American Society for Testing and Materials

BF Banana fiber

CF Curaua fibers

CMC Ceramic matrix composites CNFs Cellulose nanofibers

DGEBA Diglycidyl ether of bisphenl A DSC Differential scanning calorimetry EA + MMA Ethyl acrylate with methyl methacrylate

EED Epoxy-ethylene diamine

EPDM Ethylene propylene diene monomer

ER Epoxy resin

ESD Electrostatic dispersive FTIR Fourier transform infrared HDPE High density polyethylene HVA-2 N, N-m-phenylenebismaleimide

IC Integrated circuit

ICI Imperial Chemical Industries

IM Injection molding

KF Kenaf fiber

KP Kenaf powder

   

   

   

   

   

 

©   This

  item

  is   protected

  by   original

  copyright

 

(21)

xx L/D Length-to-diameter ratio LDPE Low density polyethylene LLDPE Linear low density polyethylene

LNR Liquid natural rubber

MAH Maleic anhydride

MAPE Maleic anhydride polyethylene MAPP Maleic anhydride polypropylene MLDPE Maleated low density polyethylene

MMC Metal matrix composites

MPR Melt-processible rubber

NaOH Sodium hydroxide

NBR Acrylonitrile butadiene rubber

NBRr Recycled acrylonitrile butadiene rubber

NBR-g-MMA Acrylonitrile butadiene rubber grafted methyl methacrylate

NR Natural rubber

NRL Natural rubber latex

NRP Natural rubber powder

OH Hydroxyl groups

PA Phthalic anhydride

PA-6 Polyamide-6

PANI Polyaniline

PANI-DBSA Polyaniline doped with dodecylbenzene sulfonic acid

PE Polyethylene

PEG Polyethylene glycol

   

   

   

   

   

 

©   This

  item

  is   protected

  by   original

  copyright

 

(22)

xxi

PE-g-MAH Polyethylene-grafted-maleic anhydride PP-g-MAH Maleic anhydride grafted polypropylene

PF Phenol-Formaldehyde

PLA Poly (lactic acid)

PMC Polymer matrix composites PMMA Poly (methyl methacrylate)

PP Polypropylene

PPEAA Poly (propylene-ethylene-acrylic acid) PRIM Rubber Research Institute Malaysia

PS Polystyrene

PVA Poly (vinyl alcohol)

rHDPE Recycled high density polyethylene

RTR Reclaimed tire rubber

RWF Rubber wood finer

SBR Styrene butadiene rubber SEM Scanning Electron Microscopy

SHF Sunn hemp fibers

T-50%wt Temperature at 50 % weight loss TD Maximum decomposition temperature Tg Glass transition temperature

Tm Melting temperature

To Onset degradation temperature TEM Transmission electron microscopy TGA Thermogravimetric analysis TPEs Thermoplastic elastomers  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

(23)

xxii TPNR Thermoplastic natural rubber TPOs Thermoplastic polyolefin blends TPVS Thermoplastic vulcanizates

UFNBRP Ultra-fine-vulcanized acrylonitrile butadiene rubber powder

WHF Water hyacinth fibers

WRHA White rice husk ash

XRD X-ray diffraction

   

   

   

   

   

 

©   This

  item

  is   protected

  by   original

  copyright

 

(24)

xxiii

Sifat-sifat Komposit Polietilena Ketumpatan Rendah/Getah Asli/Serat Keladi Bunting (Eichhornia crassipes) Yang Diubahsuai Secara Kimia

ABSTRAK

Komposit serat semula jadi daripada polietilena ketumpatan rendah (LDPE)/getah asli (NR)/serat keladi bunting (WHF) telah dikaji. Komposit disediakan dengan menggunakan Brabender Plasticorder pada suhu 160 oC dengan kelajuan motor pada 50 rpm. Kesan pembebanan WHF, pengserasi dan pelbagai jenis modifikasi kimia ke atas sifat mekanikal, sifat pembengkakan, sifat morfologi, sifat terma, pencirian spektroskopi infra merah dan pencirian XRD terhadap komposit LDPE/NR/WHF telah dikaji. Pengserasi yang digunakan dalam kajian ini ialah polietilena-dicantumkan-maleik anhidrida (PE-g-MAH). Pelbagai jenis modifikasi kimia yang digunakan ke atas komposit LDPE/NR/WHF adalah poli (metil metakrilat) (PMMA), poli (vinil alkohol) (PVA), polianilin (PANI), rawatan alkali (NaOH), dan epoksi-etilena diamina (EED). Komposit dengan pengserasi meningkat 15.38 % pada kekuatan tegangan dan 17.63 % pada modulus Young tetapi menurun 35.79 % pada pemanjangan pada takat putus, 26.21 % pada molar penyerapan, dan 4.22 % pada purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan MMA menunjukkan penambahan 29.18 % pada kekuatan tegangan, 31.86 % pada modulus Young, 35.66 % pada pemanjangan pada takat putus manakala penurunan sebanyak 5.36 % pada molar penyerapan dan 5.84 % pada purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan PVA menunjukkan satu peningkatan dalam kekuatan tegangan, modulus Young , dan pemanjangan pada takat putus di mana penambahan masing-masing sebanyak 23.96 %, 16.34 % , dan 24.69 %, manakala molar penyerapan dan purata jarak antara zarah masing-masing berkurang sebanyak 3.22 % dan 2.35 %. Komposit LDPE/NR/WHF dimodifikasi dengan PANI menunjukkan penambahan sebanyak 4.71 % pada kekuatan tegangan, 24.46 % pada modulus Young, 85.5 % pada pemanjangan pada takat putus tetapi berkurang sebanyak 3.60 % pada molar penyerapan dan 11.29 % pada purata jarak antara zarah. Serat keladi bunting dimodifikasi dengan NaOH dalam komposit LDPE/NR/WHF menunjukkan satu penambahan sebanyak 2.46 %, 202.33 % dan 68.77 %, masing-masing dalam kekuatan tegangan, modulus Young dan pemanjangan pada takat putus manakala penurunan sebanyak 25.30 % dan 19.39 %, masing-masing dalam molar penyerapan dan purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan EED bertambah sebanyak 16.30 % pada kekuatan tegangan, 17.13 % modulus Young , dan 507.05 % pemanjangan pada takat putus tetapi berkurang sebanyak 8.6 % pada molar penyerapan dan 11.52 % purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan PE-g-MAH, PMMA, PVA, PANI, NaOH and EED menunjukkan kestabilan terma yang baik tetapi pengurangan pada % penghabluran kecuali untuk komposit LDPE/NR/WHF dimodifikasi dengan PMMA. Mikrograf SEM permukaan patahan tegangan untuk komposit yang dimodifikasi dengan kimia menunjukkan interaksi antara muka dan lekatan antara WHF dengan adunan LDPE/NR telah meningkat. SEM micrograf untuk WHF yang dimodifikasi dengan NaOH and EED menunjukkan permukaan yang kasar untuk lekatan yang lebih baik. Komposit LDPE/NR/WHF dimodifikasi dengan PANI  

   

   

   

   

   

©   This

  item

  is   protected

  by   original

  copyright

 

Referensi

Dokumen terkait

viii LIST OF TABLES TABLE PAGE 2.1 Type of Transduction mechanism and the corresponding Label-free detection method 25 2.2 WHO – Ideal characteristics of surveillance RDT Mabey

iv Figure Page 2.1 Reaction between bisphenol A and epichlorohydrin 2.2 Trietylenetetramine 2.3 The chemical reaction between diamine and diepoxy 2.4 Reaction between amine and

i RESEARCH MODE Development Of An Active Cooling Mechanism To Increase The Efficiency Of Photovoltaic Module by Farhana Binti Zainuddin 1030910520 A thesis submitted in

xiv DESIGN AND IMPLEMENTATION OF EMBEDDED TRACKING SYSTEM USING SPATIAL PARALLELISM ON FPGA FOR ROBOTICS ABSTRACT The robot tracking system is one type of utilization system on a

PAGE 2.1 Edible Bird Nest 7 2.2 World Range of Swiftlets 9 2.3 Cave Nest 12 2.4 House Nest 13 2.5 Structure of N-acetylneuraminic acid sialic acid 20 3.1 Summary of Experimental

viii 3.2.3.2 Biogas Sampling and Biogas Volume Measurement 30 3.3 SCAR Operation 31 3.3.1 Acclimatization of SCAR 31 3.3.2 Operation Procedures 31 3.4 Analysis of Sample 32

xiv Multiple Objective Optimization Using Artificial Bee Colony Algorithm For Optimal Placement And Sizing Of Distributed Generation ABSTRACT The implementation of DG may lead to

xi LIST OF SYMBOLS 𝑎 Potential Crack length 𝑎1 Length of Crack 1 𝑎2 Length of Crack 2 𝑎𝑥 Crack length along plane 𝑏 Kerf length 𝑐 Empirical material constant in Paris Equation 𝐶𝑗