2326-9865
Vol. 71 No. 3s3 (2022) 250 http://philstat.org.ph
On New Connectivity Topological Indices of Certain Chemical Graphs
Mohamad Nazri Husin1, Muhammad Sharjeel2, Ghulam Farid2, Zainab Javid2, Khurrem Shehzad2, Murat Cancan3, Mehdi Alaeiyan4, Mohammad Reza Farahani4
1Special Interest Group on Modelling & Data Analytics (SIGMDA), Faculty of Ocean Engineering Technology & Informatics,
Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
2 Department of Mathematics and Statistics, University of Agriculture, Faisalabad, Pakistan.
[email protected], [email protected], [email protected],
3 Faculty of Education, Van Yuzuncu Yıl University, Zeve Campus, Tuşba, 65080, Van, Turkey.
[email protected], [email protected].
4 Department of Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran.
[email protected], [email protected], [email protected] Correspondence should be addressed to Mohamad Nazri Husin; [email protected]
(ORCID ID: 0000-0003-4196-4984, 0000-0002-0019-9131, 0000-0002-8606-2274, 0000-0003-2185-5967, 0000-0003-2969-4280)
Correspondence should be addressed to: [email protected]
Issue: Special Issue on Mathematical Computation in Combinatorics and Graph Theory in Mathematical Statistician and Engineering Applications
Article Info
Page Number: 250 - 261 Publication Issue:
Vol 71 No. 3s3 (2022)
Article History
Article Received: 30 April 2022 Revised: 22 May 2022
Accepted: 25 June 2022 Publication: 02 August 2022
Abstract
The goal of our research is to calculate degree-based connectivity Kulli- Basava indices of chemical graphs. These graphs include hammer-like- benzenoid and phenylene graphs. Several degree-based topological indices are calculated of hammer and phenylene graph.
Keywords: Degree-based Topological index, benzenoid graphs, sum connectivity index, product connectivity index, atom-bond connectivity index, geometric arithmetic connectivity index, reciprocal connectivity index.
2010 Mathematics Subject Classification: 05C07, 05C09, 05C31, 5C76, 05C99.
1. Introduction
Cheminformatics is a modern field that combines chemistry, computer science, mathematics.
Mathematical chemistry is a subfield of chemistry in which we examine chemical structures by applying mathematical logic. The molecular graph is constructed by representing atoms as points or vertices and constraints as edges or lines, respectively. A graph is ‘joined’ if every two vertices have connectivity, a graph is ‘simple’ if there are no multiple edges and loops present between any two vertices. Molecular graphs are all connected and simple. The number of vertices connected to a vertex determines its degree. We recommend [4] for basic graph theory concepts. A topological index is a numerical value associated with a graph that describes the graph's topology and is invariant under graph auto-morphism. Distance-based
2326-9865
Vol. 71 No. 3s3 (2022) 251 http://philstat.org.ph
topological indices, degree-based topological indices, counting-related polynomials, graph indices are some of the most common types of topological indices. Degree-based topological indices are significantly vital in chemical graph theory, especially in chemistry. A topological index 𝑇𝑜𝑝(𝐺′) of a graph 𝐺′ is a value having the characteristic that 𝑇𝑜𝑝(𝐻′) = 𝑇𝑜𝑝(𝐺′) for any graph 𝐻′isomorphic to 𝐺′. Wiener developed the concept of the topological index while researching the boiling point of paraffin [1, 3, 9-11, 24, 31]. For more information about the topological indices, the reader can look at the articles [2, 7, 8, 17-23, 26-28, 30, 36-38, 40]
2. Definitions
For a graph G’, the Sum connectivity Kulli-Basava index, the Product connectivity Kulli- Basava index, the Atom bond connectivity Kulli-Basava index, the Geometric arithmetic connectivity Kulli-Basava index, the Reciprocal connectivity Kulli-Basava index are defined by
𝑆𝐾𝐵(𝐺′) = ∑ 1
√𝑆𝑒( 𝑢) + 𝑆𝑒( 𝑣)
𝑢𝑣∈𝐸(𝐺)
, (1)
𝑃𝐾𝐵(𝐺′) = ∑ 1
√𝑆𝑒( 𝑢) 𝑆𝑒( 𝑣)
𝑢𝑣∈𝐸(𝐺)
, (2)
𝐴𝐵𝐶𝐾𝐵(𝐺′) = ∑ √𝑆𝑒( 𝑢) + 𝑆𝑒( 𝑣) − 2 𝑆𝑒( 𝑢) 𝑆𝑒( 𝑣)
𝑢𝑣∈𝐸(𝐺)
, (3)
𝐺𝐴𝐾𝐵(𝐺′) = ∑ 2√𝑆𝑒( 𝑢) 𝑆𝑒( 𝑣) 𝑆𝑒( 𝑢) + 𝑆𝑒( 𝑣)
𝑢𝑣∈𝐸(𝐺)
, (4) and 𝑅𝐾𝐵(𝐺′) = ∑𝑢𝑣∈𝐸(𝐺)√𝑆𝑒( 𝑢) 𝑆𝑒( 𝑣), (5) respectively (see [33]).
Figure 1: Hammer-like benzenoid graph 𝐻𝑛(𝐺′).
The degree of an edge is determined by the formula𝑑𝐺(𝑒) = d𝐺(𝑢) + 𝑑𝐺(𝑣) − 2. The neighbourhood of vertices and sum of the degrees of all edges incident to a vertex are denoted by 𝑁𝐺(𝑣) and𝑆𝑒(𝑣), respectively (see [5-6, 12-16, 25, 29, 32-35, 39]).
3. Main Results
3.1 Result for Hammer like-Benzenoid Graph
The hammer-like benzenoid graph H Gn
( )
has 2(2n+15) vertices and (5n+37) edges. By simplification, the basis of the degree of vertices is divided into two portions 2(n+8) vertex of degree 2 and 2(n+7) vertex of degree 3. When two pyrene-fragments are joined at each2326-9865
Vol. 71 No. 3s3 (2022) 252 http://philstat.org.ph
end of a linear polyacene chain of length n, the resulting structure is called a hammer-like structure Hn
( )
G .Now, we construct a table by using section Error! Reference source not found. and calculate the partition of the edges to their sum of the degrees of all edges incident to vertices for the hammer-like benzenoid graph. So, fore=uvE G
( )
, we have:Table 1: The number of edges partition of (𝑺𝒆(𝒖), 𝑺𝒆(𝒗)) for Hammer like-Benzenoid Graph.
(S ue( ), S ( ))e v (4,5) (5,5) (5,10) (5,11) (6,10) (6,11) Number of
edges n n
(
−2)
2 n n(
−2)
n n n(
−1)
n(S ue( ), S ( ))e v (10,12) (11,11) (11,12) (12,12) (10,10) Number of
edges
n n+2 n 2 n−1
Theorem 3.1.1. The Sum connectivity Kullibasava index H Gn
( )
is defined by( )
1 1 1 2 1 1 2 1 2 23 15 4 17 20 22 23 3 15
2 2 1 1
10 22 6 20 .
SKB G = + + n + + + + − − n
+ + + −
Proof: By using sections Error! Reference source not found. andTable 1, we get
( )
( )( ) ( )
= 1
uv E G e e
SKB G
S u S v
+( ) ( ) ( ) ( )
( )
1 1 1 1 1 1 1
2 2 2 1 1
9 10 15 16 16 17 20
1 1 1 1
2 2
22 22 23 24
n n n n n n n n n
n n n
= − + + − + + − + + −
+ + + + +
( ) ( ) ( ) ( )
( )
1 1 1 1 1 1 1
2 2 2 1 1
3 10 15 4 4 17 20
1 1 1 1
2 2
22 22 23 2 6
n n n n n n n n n
n n n
= − + + − + + − + + −
+ + + + +
1 1 1 2 1 1 2 1 2 2
3 15 4 17 20 22 23 3 15
2 1 2 1
.
10 6 22 20
n n
= + + + + + + − −
+ + + −
Theorem 3.1.2. The Product connectivity Kullibasava index Hn
( )
G is given as2326-9865
Vol. 71 No. 3s3 (2022) 253 http://philstat.org.ph
( )
1 1 1 2 1 1 1 1 1 1 2 2 110 11
20 50 60 55 66 120 132 20 50 60
2 2 1 1 5 11 6 10 .
PKB G = + + n + + + + + + − − − n
+ + + −
Proof: By using section Error! Reference source not found. and Table 1, we get
( )
( )( ) ( )
1
uv E G e e
PKB G
S u S v
=
( ) ( ) ( )
( ) ( )
2 2 2
2
1 1 1 1 1 1
2 2 2
20 25 50 55 60 66
1 1 1 1 1
1 2 2
100 120 121 132 144
1 1 1 2 2 1 1
5 11 6 10
20 50 60
1 1 1 1 1 1 2 2 1
10 11 .
55 66 120 132 20 50 60
n n n n n n n n
n n n n
n
n
= − + + − + + − +
+ − + + + + +
= + + + + + −
+ + + + + + − − −
Theorem 3.1.3. The Atom bond connectivity Kullibasava index for Hn
( )
G is given as( )
7 13 7 2 2 8 22 2 20 1820 50 30 5 6 11 10
ABCK G n
= + + + + + −
14 15 18 1 20 21 7 7 13
2 2 .
55 66 10 6 11 132 20 30 50 n
+ + + + + + − − −
Proof: It follows from section Error! Reference source not found. and Table 1that
( ) ( ) ( )
( ) ( )
( )
e e 2
uv E G e e
S u S v ABCKB G
S u S v
+ −
=
( ) ( ) ( )
( ) ( )
7 8 13 14 14 15
2 2 2 1
20 25 50 55 60 66
18 20 20 21 22
1 2 2
100 120 121 132 144
n n n n n n n n
n n n n
= − + + − + + − +
+ − + + + + +
( ) ( ) ( )
( ) ( )
2 7 8 2 13 14 2 7 15
2 2 2
20 5 50 55 30 66
18 1 20 21 22
1 2 2
10 6 11 132 12
n n n n n n n n
n n n n
= − + + − + + − +
+ − + + + + +
7 13 7 2 2 8 22 2 20 18
20 50 30 5 6 11 10
14 15 18 1 20 21 7 7 13
2 2 .
55 66 10 6 11 132 20 30 50
n
n
= + + + + + −
+ + + + + + − − −
2326-9865
Vol. 71 No. 3s3 (2022) 254 http://philstat.org.ph
Theorem 3.1.4. The Geometric arithmetic connectivity Kullibasava index for Hn
( )
G is defined by( )
2
2 55 66 1 120 2 132 20 2 50 60
55 33 5 60 11 66 5 25 30
20 50 60 4 4 1 1
10 25 30 5 11 3 5 .
GAKB G n
n
= + + + + + − − −
+ + + + + + − Proof: By using section (2) and Table 1, we get
( ) ( ) ( )
( ) ( )
( )
2 e e
uv E G e e
S u S v GAKB G
S u S v
=
+( ) ( ) ( )
( ) ( )
2 20 4 25 2 50 2 55 2 60
2 2 1
20 25 50 55 60
2 66 2 100 2 120 2 121 2 132 4 144
1 2
66 100 120 121 132 144
n n n n n n n
n n n n n
= − + + − + + −
+ + − + + + + +
( ) ( ) ( )
( ) ( )
20 20 50 2 55 60 66
2 2 1
10 25 25 55 30 33
1 120 2 132 1
1 2
5 60 11 66 3
n n n n n n n n
n n n n
= − + + − + + − +
+ − + + + + +
2
2 55 66 1 120 2 132 20 2 50 60
55 33 5 60 11 66 5 25 30
20 50 60 4 4 1 1
10 25 30 5 11 3 5 .
n n
= + + + + + − − −
+ + + + + + −
Theorem 3.1.5. We define the Reciprocal connectivity Kullibasava index for Hn
( )
G by( ) ( ) ( )
( )
7 15 2 17 20 2 22 23 6 2 15 2 10 2 22 2 24 20 .
RKB G = + n + + + + − − n
+ + + −
Proof: By using section Error! Reference source not found.andTable 1, we get
( ) ( ) ( )
( ) e e
uv E G
RKB G S u S v
=
( ) ( ) ( )
( ) ( )
2 4 5 2 5 5 2 5 10 5 11 1 6 10
6 11 1 10 10 10 12 2 11 11 11 12 2 12 12
n n n n n n n
n n n n n
= − + + + + − + + + + − +
+ + + − + + + + + + + + + +
( ) ( ) ( ) ( )
( )
2 2 2
2 3 2 10 2 15 4 4 17 1 20
22 23 2 24 2 22
n n n n n n n n n
n n n
= − + + − + + − + + −
+ + + + +
( ) ( )
( )
3 4 15 2 6 2 15 4 4 17 20 22 23 22
2 10 2 22 2 24 20
n n
= + + + − − + − + + + + +
+ + + −
(
7 15) (
n2 17 20 2 22 23 6 2 15) (
n 2 10 2 22 2 24 20 .)
= + + + + + − − + + + −
2326-9865
Vol. 71 No. 3s3 (2022) 255 http://philstat.org.ph
3.2 Results for Linear Benzenoid Phenylenes
The descriptor phenylene is generally reserved for chemical graphs formed by inserting a square between all pairs of neighbouring hexagons in catacondensed benzenoid systems.
There are two types of vertices one vertex is of degree Two and the other vertex is of degree Three. The number of vertices is equal to 𝑉(𝐺′) = ℎ′2+ 𝑞′2+ 𝑛′2+ ℎ′𝑞′+ 𝑞′𝑛′− 5and the total number of edges in the graph 𝐸(𝐺′) = ℎ′2+ 𝑞′2+ 𝑛′2+ 5(ℎ′+ 𝑞′+ 𝑛′) − 4, where ℎ′is the number of hexagons in each hexagon segment 𝑞′is the number of squares joining the hexagon and 𝑛′ is the total number of hexagons segments. Therefore, linear benzenoid phenylenes can be a suitable term for these graphs.
Figure 2: Linear Benzenoid Phenylene where ℎ′= 3, 𝑞′= 5 and 𝑛′ = 4.
Now, we construct the table using section 2 and we calculate the partitions of the edges to their sum of the degrees of all edge’s incident to vertices of fluoranthene type benzenoid linear generalized phenylene graph for 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺′) in Table 2.
Table 2: The number of edges partition of (𝑺𝒆(𝒖), 𝑺𝒆(𝒗)) for Linear Benzenoid Phenylene.
(S ue( ), S ( ))e v (4,4) (4,5) (5,10) (6,6) (6,10) Number of
edges
2 n n q +1 q2
(S ue( ), S ( ))e v (6,11) (10,10) (11,11) (11,12) (12,12) Number of
edges
h+ +q n q q +1 h+ +q n h2+n2+5
Theorem 3.2.1. The Sum connectivity Kulli basava index for linear generalized phenylene is defined by
( )
22 2
1 1 1 1 1 1 1 1
24 17 23 12 17 20 22 23
1 1 1 1 1 1 1 1 1 5
4 24 3 15 17 23 2 12 22 24 .
SKB G h h q
q n n
= + + + + + + +
+ + + + + + + + + + Proof: By using definition (2) and Error! Reference source not found., we get
( )
( )( ) ( )
= 1
uv E G e e
SKB G
S u S v
+2
2 2
1 1 1 1 1 1 1
2 ( 1) ( )
8 9 15 12 16 17 20
1 1 1
( 1) ( ) ( 5)
22 23 24
n n q q h q n q
q h q n h n
= + + + + + + + + + +
+ + + + + + +
2326-9865
Vol. 71 No. 3s3 (2022) 256 http://philstat.org.ph
2
2 2
2 2 2
1 1 1 1 1 1 1
3 4
2 15 12 12 17 17 17 20
1 1 1 1 1 1 1
5
22 22 23 23 23 24 24 24
1 1 1 1 1 1 1 1
24 4 24 12 17 20 22 23
1 1 1 1 1 1
17 23 3 15 17 23
n n n
q q h q q
q h q n h n
h q n q
h
= + + + + + + + + +
+ + + + + + + +
= + + + + + + +
+ + + + + +
1 1 1 5
.
2 12 22 24
n + + + +
Theorem 3.2.2. The Product connectivity Kulli basava index for linear generalized phenylene is given by
( )
1 2 1 2 1 2 1 1 1 1 112 60 12 6 66 10 11 132
1 1 1 1 1 1 1 1 1 5
2 6 11 12
66 132 20 50 66 132
PKB G h q n q
h n
= + + + + + + +
+ + + + + + + + + + Proof: By using definition (2) and Error! Reference source not found., it follows that
( )
( )( ) ( )
1
uv E G e e
PKB G
S u S v
=
2
2 2
1 1 1 1 1 1 1 1
2
16 20 50 36 36 60 66 66
1 1 1 1 1 1 1
66 100 121 121 132 132 132
1 1 1
5
144 144 144
n n q q h q
n q q h q n
h n
= + + + + + + +
+ + + + + + +
+ + +
2
2
1 1 1 1 1 1 1 1 1
2 120 50 6 6 60 66 66 66
1 1 1 1 1 1 1 1 1
10 11 11 132 132 132 12 12 512
n n q q h q n
q q h q n h n
= + + + + + + + +
+ + + + + + + + +
2 2 2
1 1 1 1 1 1 1 1
12 60 12 6 66 10 11 132
1 1 1 1 1 1 1 1 1 5
2 6 11 12 .
66 132 120 50 66 132
h q n q
h n
= + + + + + + +
+ + + + + + + + + +
Theorem 3.2.3. We define the Atom bond connectivity Kullibasava index for linear generalized phenylene
2326-9865
Vol. 71 No. 3s3 (2022) 257 http://philstat.org.ph
( )
2 22
22 7 10 15 18 20 21
12 30 6 66 10 11 132
22 15 21 7 13 15 21
12 66 132 20 50 66 132
6 10 20 5 22
2 6 11 12 .
ABCK G h q q
n h n
= + + + + + +
+ + + + + + +
+ + + +
Proof: By using definition (2) and Error! Reference source not found., we get
( ) ( ) ( )
( ) ( )
( )
e e 2
uv E G e e
S u S v ABCKB G
S u S v
+ −
=
2
2 2
6 7 13 10 14 15
2 ( 1) ( )
16 20 50 36 60 66
18 20 21 22
( 1) ( ) ( 5)
100 121 132 144
n n q q h q n
q q h q n h n
= + + + + + + + +
+ + + + + + + + +
2
2 2
2 2
6 7 13 10 10 7 15 15
2 20 50 6 6 30 66 66
15 18 20 20 21 21 21
66 10 11 11 132 132 132
22 22 5 22
12 12 12
22 7 10 15 18 20 21
12 30 6 66 10 11 132
22 12
n n q q h q
n q q h q n
h n
h q q
= + + + + + + +
+ + + + + + +
+ + +
= + + + + + +
+
2 15 21 7 13 15 21
66 132 20 50 66 132
6 10 20 5 22
2 6 11 12 .
n h n
+ + + + + +
+ + + +
Theorem 3.2.4. The Geometric arithmetic connectivity Kulli basava index for linear generalized phenylene is given by
2 60 2 2 2 66 2 132 2 66 2 132
( ) 3
8 17 23 17 23
2 20 2 50 2 66 2 132
+ 9
9 15 17 23
GAKB G h q n h q
n
= + + + + + + +
+ + + +
Proof: By using definition (2) andError! Reference source not found., we get
( ) ( ) ( )
( ) ( )
( )
2 e e
uv E G e e
S u S v GAKB G
S u S v
=
+2326-9865
Vol. 71 No. 3s3 (2022) 258 http://philstat.org.ph
2
2 2
16 2 20 2 50 2 36 2 60 2 66
4 ( 1) ( )
8 9 15 12 16 17
2 100 2 121 2 132 2 144
( 1) ( ) ( 5)
20 22 23 24
n n q q h q n
q q h q n h n
= + + + + + + + +
+ + + + + + + + +
2
2 2
2 20 2 50 60 2 66 2 66 2 66
2 1
9 15 8 17 17 17
2 132 2 132 2 132
1 5
23 23 23
n n q q h q n
q q h q n h n
= + + + + + + + +
+ + + + + + + + +
2 60 2 2 2 66 2 132 2 66 2 132
8 17 23 3 17 23
2 20 2 50 2 66 2 132
9 15 17 23 9.
h q n h q
n
= + + + + + + +
+ + + + +
Theorem 3.2.5. The Reciprocal connectivity Kulli basava index for linear generalized phenylene is given by
( ) ( ) ( ) ( ) ( ) ( )
( )
2 2 2
12 60 12 66 132 27 66 132
20 50 66 132 85.
RKB G h q n h q
n
= + + + + + + +
+ + + + +
Proof: By using section Error! Reference source not found.andError! Reference source not found., we get
( ) ( ) ( )
( ) e e
uv E G
RKB G S u S v
=
2
2 2
2 16 20 50 ( 1) 36 60 ( ) 66 100
( 1) 121 ( ) 132 ( 5) 144
n n q q h q n q
q h q n h n
= + + + + + + + + +
+ + + + + + + +
2
2 2
2.4 20 50 ( 1)(6) 60 ( ) 66 (10)
( 1)(11) ( ) 132 ( 5)(12)
n n q q h q n q
q h q n h n
= + + + + + + + + +
+ + + + + + + +
( ) ( ) ( ) ( ) ( )
( )
2 2 2
12 60 12 66 132 27 66 132
20 50 66 132 85.
h q n h q
n
= + + + + + + +
+ + + + +
Conclusion
Graph theory has given researchers several helpful tools, such as topological indices. It investigates quantitative structure-activity (QSAR) and structure-property (QSPR) correlations, which are used to determine chemical compound biological activities and characteristics. In this paper, the Kulli-Basava indices of chemical graphs have been computed. Our results may play a vital role in estimating the melting and boiling points.
Acknowledgement
The authors would like to thanks Universiti Malaysia Terengganu for the support of this research work via research vot number: P29000. The authors also thank to anonymous referees for their valuable suggestion for the improvement of the manuscript
2326-9865
Vol. 71 No. 3s3 (2022) 259 http://philstat.org.ph References
[1] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and Applications, Acta Appl. Math. 66(3) (2001), 211-249.
[2] A. Modabish, M.N. Husin, A.Q. Alameri, H. Ahmed, M. Alaeiyan, M.R. Farahani, M. Cancan, Enumeration of spanning trees in a chain of diphenylene graphs, Journal of Discrete Mathematical Sciences and Cryptography, 25(1), 241-251 (2022).
[3] B. Bollobás and P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998), 225- 233.
[4] D.B. West, Introduction to Graph Theory, Vol. 2, Prentice Hall, Upper SaddleRiver, 2001.
[5] D.Y. Shin, S. Hussain, F. Afzal, C. Park, D. Afzal, M.R. Farahani. Closed formulas for some new degree based topological descriptors using Mpolynomial and boron triangular nanotube. Frontiers in Chemistry, 1246, 2021.
[6] D. Afzal, S. Ali, F. Afzal, M. Cancan, S. Ediz, M.R. Farahani. A study of newly defined degree-based topological indices via M-polynomial of Jahangir graph.
Journal of Discrete Mathematical Sciences and Cryptography 24 (2), 427-438, 2021.
[7] F. Chaudhry, M.N. Husin, F. Afzal, D. Afzal, M. Ehsan, M. Cancan, M.R. Farahani, M-polynomial and degree-based topological indices of tadpole graph, Journal of Discrete Mathematical Sciences and Cryptography, 24(7), 2059-2072 (2021).
[8] F. Asif, Z. Zahid, M.N. Husin, M. Cancan, Z. Tas, M. Alaeiyan, M.R. Farahani, On Sombor indices of line graph of silicate carbide Si2C3− I[p, q], Journal of Discrete Mathematical Sciences and Cryptography, 25(1), 301-310 (2022).
[9] G. Rucker, C. Rucker, On topological indices, boiling points, Cycloalkanes, Journal of Chemical Information and Computer Sciences, 39(5) (1999), 788-802.
[10] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer Science and Business Media, 2012.
[11] H. Wiener, Structural determination of paraffin boiling points, Journal of the American Chemical Society 69(1) (1947), 17-20.
[12] H. Mutee ur Rehman, R. Sardar, A. Raza, Computing topological indices ofHex Board and its line graph, Open J. Math. Sci. 1(1) (2017), 62-71.
[13] H. Yang, A.Q. Baig, W. Khalid, M.R. Farahani, X. Zhang. M-polynomial and topological indices of benzene ring embedded in P-type surface network. Journal of Chemistry 2019.
[14] H. Wang, J.B. Liu, S. Wang, W. Gao, S. Akhter, M. Imran, M.R. Farahani. Sharp bounds for the general sum-connectivity indices of transformation graphs. Discrete Dynamics in Nature and Society 2017.
[15] M. Alaeiyan, C. Natarajan, G. Sathiamoorthy, M.R. Farahani. The eccentric connectivity index of polycyclic aromatic hydrocarbons (PAHs). Eurasian chemical communications 2(6), 646-651, 2020.
2326-9865
Vol. 71 No. 3s3 (2022) 260 http://philstat.org.ph
[16] M. Cancan, S. Ediz, M.R. Farahani, On ve-degree atom-bond connectivity, sum- connectivity, geometric-arithmetic and harmonic indices of copper oxide Eurasian chemical communications 2(5), 641-645, 2020.
[17] M.N. Husin, R. Hasni, M. Imran, More results on computation of topological indices of certain networks, International Journal of Networking and Virtual Organisations, 17(1), 46-64 (2017).
[18] M.N. Husin, R. Hasni, The neighbourhood polynomial of some families of dendrimers, Journal of Physics: Conference Series, 1008(1), 012028 (2018).
[19] M.N. Husin, R. Hasni, N.E. Arif, Zagreb polynomial of some nanostar dendrimers, Journal of Computation and Theoretical Nanoscience, 12(11), 4297 (2015).
[20] M.N. Husin, R. Hasni, N. E. Arif, M. Imran, On topological indices of certain families of nanostar dendrimers, Molecules, 2(7), 821 (2016).
[21] N. A. Farooqui, A. K. Mishra, and R. Mehra, “IOT based Automated Greenhouse Using Machine Learning Approach”, Int J Intell Syst Appl Eng, vol. 10, no. 2, pp.
226–231, May 2022.
[22] M.N. Husin, R. Hasni, M. Imran, H. Kamarulhaili, The edge version of geometric arithmetic index of nanotubes and nanotori, Optoelectronics and Advanced Materials, Rapid Communications, 9(9-10), 1292-1300 (2015).
[23] M.N. Husin and A. Ariffin, On the edge version of topological indices for certain networks, Italian Journal of Pure and Applied Mathematics, 47, 550-564 (2022).
[24] M.N. Husin, S. Zafar, R.U. Gobithaasan, Investigation of atom-bond connectivity indices of line graphs using subdivision approach, Mathematical Problems in Engineering, 6219155 (2022).
[25] M. Randic, On characterization of molecular branching, Journal of the American Chemical Society 97(23) (1975), 6609-6615.
[26] M. S. Sardar, S. Zafar and M.R. Farahani, The generalized Zagreb index of Capra- designed planar benzenoid series Cak(C6), Open J. Math. Sci. 1(1) (2017),44-51.
[27] N.H.A.M. Saidi, M.N. Husin, N.B. Ismail, On the topological indices of the lines graphs of polyphenylene dendrimer, AIP Conference Proceedings, 2365, 060001 (2021).
[28] N.H.A.M. Saidi, M.N. Husin, N.B. Ismail, On the Zagreb indices of the line graphs of polyphenylene dendrimers, Journal of Discrete Mathematical Sciences and Cryptography, 23(6), 1239-1252 (2020).
[29] N.H.A.M. Saidi, M.N. Husin, N.B. Ismail, Zagreb indices and Zagreb coindices of the line graphs of the subdivision graphs, Journal of Discrete Mathematical Sciences and Cryptography, 23(6), 1253-1267 (2020).
[30] S. Akhter, M. Imran, W. Gao, M.R. Farahani. On topological indices of honeycomb networks and graphene networks. Hacettepe Journal of Mathematics and Statistics 47 (1), 19-35, 2018.
[31] S. Hameed, M.N. Husin, F. Afzal, H. Hussain, D. Afzal, M.R. Farahani, M. Cancan, On Computation of newly defined degree-based topological invariants of Bismuth Tri-iodide via M-polynomial, Journal of Discrete Mathematical Sciences and Cryptography, 24(7), 2073-2091 (2021).
2326-9865
Vol. 71 No. 3s3 (2022) 261 http://philstat.org.ph
[32] S. Klavžar, I. Gutman, A comparison of the Schultz molecular topological Index with the Wiener index, Journal of Chemical Information and Computer Sciences 36(5) (1996), 1001-1003.
[33] V.R. Kulli, College graph theory, V. Inter. Publi. Gulbarga. India. 2012.
[34] V.R. Kulli, New Connectivity topological Indices, Annal. Pure. Appli. Math., 1, (2019), 1-8.
[35] V. R. Kulli, B. Chaluvaraju and H. S. Boregowda, Connectivity BanhattiIndices for certain families of Benzenoid systems, Journal of Ultra Chemistry, 13(4) (2017), 81- 87.
[36] W. Gao, M.K. Jamil, A. Javed, M.R. Farahani, M Imran. Inverse sum indeg index of the line graphs of subdivision graphs of some chemical structures. UPB Sci. Bulletin B 80 (3), 97-104, 2018.
[37] W. Gao, M.N. Husin, M.R. Farahani, M. Imran, On the edges version of atom-bond connectivity index of nanotubes, Journal of Computational and Theoretical Nanoscience, 13(10), 6733-6740 (2016).
[38] W. Gao, M.N. Husin, M.R. Farahani, M. Imran, On the edges version of atom-bond connectivity and geometric arithmetic indices of nanocones CNCk[n], Journal of Computational and Theoretical Nanoscience, 13(10), 6741-6746 (2016).
[39] W. Gao, M.R. Farahani, S. Wang, M.N. Husin. On the edges version of atom-bond connectivity and geometric arithmetic indices of certain graph operations, Applied Mathematics and Computation, 308, 11-17 (2017).
[40] Hoda, S. A. ., and D. A. C. . Mondal. “A Study of Data Security on E-Governance Using Steganographic Optimization Algorithms”. International Journal on Recent and Innovation Trends in Computing and Communication, vol. 10, no. 5, May 2022, pp. 13-21, doi:10.17762/ijritcc.v10i5.5548.
[41] X. Zhang, X. Wu, S. Akhter, M.K. Jamil, J.B. Liu, M.R. Farahani. Edge-version atom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs. Symmetry. 10 (12), 751, 2018.
[42] Y. Liu, M. Rezaei, M.R. Farahani, M.N. Husin, M. Imran, The omega polynomial and the cluj-ilmenau index of an infinite class of the titania nanotubes TiO2(m, n), Journal of Computational and Theoretical Nanoscience, 14(7), 3429-3432 (2017).