• Tidak ada hasil yang ditemukan

1. The Simple Regression Model Two Variables

N/A
N/A
Protected

Academic year: 2024

Membagikan "1. The Simple Regression Model Two Variables"

Copied!
15
0
0

Teks penuh

(1)

1.  The Simple Regression Model  Two Variables

Read Wooldridge (2013), Chapter 2

1 The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat

Outline

I. Definition

II. Deriving OLS Estimators  III. Goodness of Fit

VI. Expected Values and Variances

I. Definition II. Derivation III. R-Squared IV. EV&Var

1 The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat

I.  Definition

• Regression Analysis

– the study of the dependence of one variable on  one or more other variables.

• Simple Regression Analysis – two variables:  y and x

• the measure of the marginal effect of x on y

I. Definition II. Derivation III. R-Squared IV. EV&Var 3

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Definition

Three issues:

1) What is the functional relationship between x and  y?

2) There is never exact relationship between two  variables in the real world.

3) How can we find the ceteris paribus relationship between y and x?

I. Definition II. Derivation III. R-Squared IV. EV&Var 4

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Definition

(2)

A Simple Regression Model

• A simple linear model can be written as y= 0+ 1xu

where 

yx : variables

, 1 : parameters u : error term

I. Definition II. Derivation III. R-Squared IV. EV&Var 5

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Definition

Example

• Define y be the “wage” rate and x be years of 

“education”.

wage = 

0

+ 

1

educ + u

• u: unobserved factors 

examples: innate ability, experience and other  factors.

I. Definition II. Derivation III. R-Squared IV. EV&Var 6

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Definition

Assumption: Zero Population Mean  versus Zero Conditional Mean

E(u) = 0

– This implies that the average value of uin the population is  zero.

E(u|x) = 0

– We say the expected value of ugiven xequals zero.

• Example: The average level of innate ability is the same  regardless of years of education (educ).

eg.   educ= 12 , 16

I. Definition II. Derivation III. R-Squared IV. EV&Var 7

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Definition

Population Regression Function: PRF

Understand components:

y= 0+ 1xu

Population regression  function (PRF) is derived  by taking expectation  conditional on x.

E(y|x) = 0+ 1x

E(y|x) as a linear function  of x, where for any x the  distribution of y is  centered about E(y|x)

I. Definition II. Derivation III. R-Squared IV. EV&Var 8

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Definition

. .

x1 x2

E(y|x) = 0+ 1x

y

f(y)

(3)

Population Regression Line

Population regression line,  data points and the associated  error terms

n = 38 M  yi= 0+ 1xiui

(data points)

E(y|x) = 0+ 1x  (PRL)  PRL = population 

regression line

Error terms

ui= yiE(y|x

9

. .

x1 x2

E(y|x) = 0+ 1x

y

f(y)

Population regression line, data points and the associated error terms

.

. .

.

y4

y1 y2 y3

x1 x2 x3 x4

}

}

{

{

u1 u2

u3 u4

x

y E(y|x) = 0 + 1x

I. Definition II. Derivation III. R-Squared IV. EV&Var

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Definition

Population regression line,  data points and the associated  error terms

n = 38 M  yi= 0+ 1xiui

(data points)

E(y|x) = 0+ 1x  (PRL)  PRL = population 

regression line

Error terms

ui= yiE(y|xi

wage= 0+ 1educ+ u

Population vs Sample

Population regression line, data  points and the associated error  terms

n = 38 M  yi= 0+ 1xiui

(data points)

E(y|x) = 0+ 1x  (PRL) PRL =  population regression line

Error terms

ui= yiE(y|x

11

Sample regression line, sample  data points and the associated  estimated error terms

n = 526

yi= 0+ 1xiui (sample data points)

SRL = sample regression line

Residuals i= yi

x yˆ  ˆ0 ˆ1 wage= 0+ 1educ+ u

Sample regression line, sample data points and the associated estimated error terms

.

. .

.

y4

y1 y2 y3

x1 x2 x3 x4 }

}

{

{

û1 û2

û3 û4

x y yˆˆ0ˆ1x

I. Definition II. Derivation III. R-Squared IV. EV&Var

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Definition

Sample regression line,  sample data points and the  associated estimated error  terms

n = 526 yi= 0+ 1xiui

(sample data points)

(SRL) 

SRL = sample regression  line

Residuals i= yi

x yˆ  ˆ0 ˆ1

wage= 0+ 1educ+ u

(4)

Sample regression line, sample data points and the associated estimated error terms

. . .

.

y

4

y

1

y

2

y

3

x

1

x

2

x

3

x

4

}

}

{

{

û

1

û

2

û

3

û

4

x

y

y x

1

0 ˆ

ˆ 

ˆ 

obs ACT GPA

1 21 2.8

2 24 3.4

3 26 3

4 27 3.5

5 29 3.6

6 25 3

7 25 2.7

8 30 3.7

I. Definition II. Derivation III. R-Squared IV. EV&Var

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Definition

Some Terminology

• In the simple linear regression  model, where 

y= 0+ 1xu,  

• We typically refer to yas the

Dependent Variable

Left‐Hand Side Variable

Explained Variable

Regressand

Response Variable

Predicted Value

I. Definition II. Derivation III. R-Squared IV. EV&Var

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat I. Definition

• We typically refer to xas the

Independent Variable

Right‐Hand Side Variable

Explanatory Variable

Regressor

Control Variables

Predictor Variable

Covariate

II. Deriving the OLS Estimates 

• Let {(xi, yi): i=1, …, n} be a random sample of size n from  the population.  For each i

yi01xiui

• How to find the estimates of parameters, 0& 1?

• Two Methods: 

1) Method of Moments 2) Least Squares Method

I. Definition II. Derivation III. R-Squared IV. EV&Var

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

Deriving OLS using Method of  Moments

• Method of Moments  

– Here we replace the population moment with the sample  average.

• What does this mean?  Recall that for 

– E(X), the mean of a population distribution, 

– a sample estimator of E(X) is simply the arithmetic mean of  the sample,  .

I. Definition II. Derivation III. R-Squared IV. EV&Var

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

(5)

Method of Moments

Four assumptions:

(1)   The model is linear.

(2)   xi’s are not the same.  

(3) The expected value of uis zero  [E(u) = 0].

(4) The covariance between xand  uis zero. 

[Cov(x,u) = E(xu) = 0]  Note that Cov(X,Y) = E(XY) – E(X)E(Y)

I. Definition II. Derivation III. R-Squared IV. EV&Var

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

Method of Moments

Given: uy –01x From Assumptions,

(1) E(y –01x) = 0 (2) E[x(y –01x)] = 0

These are called moment restrictions

 

 

1 2

(2) ˆ i i

i

x x y x x

 

0 1 0 1

ˆ ˆ ˆ ˆ

(1) yx, or  yx Derive

I. Definition II. Derivation III. R-Squared IV. EV&Var 18

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

 

ˆ ˆ

0

ˆ 0 ˆ

1

1 0 1

1 0

n

i

i i

i n

i

i i

x y

x

x y

More Derivation of OLS

• Given the definition of a sample mean, and properties of  summation, we can rewrite the first condition as follows.

x y

x y

1 0

1 0

ˆ ˆ

or

ˆ , ˆ

I. Definition II. Derivation III. R-Squared IV. EV&Var 19

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

0 1

1

ˆ ˆ

( ) 0

n

i i

i

y

 

x

  

More Derivation of OLS

 

 

   

  

 

n

i i i

n

i i

n

i i i n

i i i n

i

i i

i

x x y

y x x

x x x y

y x

x x y y x

1 2 1

1

1 1 1

1

1 1

ˆ ˆ

ˆ 0 ˆ

I. Definition II. Derivation III. R-Squared IV. EV&Var 20

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

• we can rewrite the second condition as follows.

  

   2

1

1 2 1

1

ˆ provided that 0

n

i i n

i n i

i i

i

x x y y

x x x x

 

(6)

Method of Least Squares

• To find sample regression  function from the method of  least squares

use graph fitted values of yi residuals of observation i minimizing the sum of squared 

residuals

find first order equations (# of  restrictions)

I. Definition II. Derivation III. R-Squared IV. EV&Var 21

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

    

n

i

i i

n

i

i y x

u

1

2 1 0 1

2 ˆ ˆ

ˆ  

.

. .

.

y4

y1 y2 y3

x1 x2 x3 x4 }

}

{

{

û1 û2

û3 û4

x y yˆˆ0ˆ1x

Alternate approach to derivation

• Given the intuitive idea of  fitting a line, we can set  up a formal minimization  problem

• That is, we want to  choose our parameters  such that we minimize the  following:

 

  

n

i

i i

n

i

i y x

u

1

2 1 0 1

2 ˆ ˆ

ˆ

I. Definition II. Derivation III. R-Squared IV. EV&Var 22

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

Intuitively, OLS is fitting a line  through the sample points such  that the sum of squared  residuals is as small as possible,  hence the term least squares.

The residual, û, is an estimate  of the error term, u, and is the  difference between the fitted  line (sample regression  function) and the sample point.

Alternate approach, continued

• If one uses calculus to solve the minimization problem for  the two parameters you obtain the following first order  conditions, which are the same as we obtained before,  multiplied by n

 

ˆ ˆ

0

ˆ 0 ˆ

1

1 0 1

1 0

n

i

i i

i n

i

i i

x y

x

x y

I. Definition II. Derivation III. R-Squared IV. EV&Var 23

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

Algebraic Properties of OLS  Statistics

(1) The sample average of residuals is zero.

(2) The sample covariance between regressors and OLS  residuals,  , is zero.

(3) The point ( ̅and  ) is always on the OLS regression  line.

(4) The sample covariancebetween  and  is zero.

I. Definition II. Derivation III. R-Squared IV. EV&Var 24

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

0 1

1

ˆ ˆ 0

n

i i

i

y x

0 1

1

ˆ ˆ 0

n

i i i

i

x y x

0 1 0 1

ˆ ˆ , or ˆ ˆ yx yx

(7)

Summary of OLS slope estimate

• The slope estimate is the sample covariance between xand y divided by the sample variance of x

• If xand yare positively correlated, the slope will be positive

• If xand yare negatively correlated, the slope will be negative

• Only need xto vary in our sample

I. Definition II. Derivation III. R-Squared IV. EV&Var 25

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

  

 

1

1 2

1

ˆ

n

i i

i n

i i

x x y y

x x

 

 

1 2

ˆ i i

i

x x y x x

 

 

 

Example ACT scores and the GPA

• y = GPA(grade point average, 0‐4.0) x = ACT(American College Test, 0‐30) n = 8 students

= 0.57 + 0.10ACT

• Interpret  =0.57;  =0.10.

• What is the predicted value of GPA  when ACT=20?

obs GPA ACT

1 2.8 21

2 3.4 24

3 3 26

4 3.5 27

5 3.6 29

6 3 25

7 2.7 25

8 3.7 30

I. Definition II. Derivation III. R-Squared IV. EV&Var 26

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

  

 

  

 

1 1

1 2 2

1 1

ˆ

n n

i i i i

i i

n n

i i

i i

x x y y ACT ACT GPA GPA

x x ACT ACT

 

 

x y

obs ACT GPA

1 21 2.8

2 24 3.4

3 26 3

4 27 3.5

5 29 3.6

6 25 3

7 25 2.7

8 30

3.7

Average 25.875 3.2125

-4.875 23.765625 -0.4125 2.0109375

-1.875 3.515625 0.1875 -0.3515625

0.125 0.015625 -0.2125 -0.0265625

1.125 1.265625 0.2875 0.3234375

3.125 9.765625 0.3875 1.2109375

-0.875 0.765625 -0.2125 0.1859375

-0.875 0.765625 -0.5125 0.4484375

4.125 17.015625 0.4875 2.0109375

56.875 5.8125

0.102197802 (GPA

( 2

( 2 )(GPA 2

)(GPA 2

( 2 / )(GPA 2=

= ̅ 3.21 .102 ∗ 25.875 .57

I. Definition II. Derivation III. R-Squared IV. EV&Var 27

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

Graph, Fitted Values and Residuals

Actual Fitted

obs ACT GPA Residual

1 21 2.8 2.7142 0.0857

2 24 3.4 3.0208 0.3791

3 26 3 3.2252 -0.2252

4 27 3.5 3.3274 0.1725

5 29 3.6 3.5318 0.0681

6 25 3 3.1230 -0.1230

7 25 2.7 3.1230 -0.4230

8 30 3.7 3.6340 0.0659

2.6 2.8 3.0 3.2 3.4 3.6 3.8

20 22 24 26 28 30 32

ACT

GPA

GPA vs. ACT

I. Definition II. Derivation III. R-Squared IV. EV&Var 28

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

(8)

Eviews: Regress GPA on ACT

Dependent Variable: GPA Method: Least Squares Sample: 1 8

Included observations: 8

Variable Coefficient Std. Error t-Statistic Prob.

C 0.568132 0.928421 0.611933 0.563

ACT 0.102198 0.035692 2.863324 0.0287

R-squared 0.577424 Mean dependent var 3.2125

Adjusted R-squared 0.506994 S.D. dependent var 0.383359 S.E. of regression 0.269173 Akaike info criterion 0.425395

Sum squared resid 0.434725 Schwarz criterion 0.445255

Log likelihood 0.298422 F-statistic 8.198622

Durbin-Watson stat 2.268603 Prob(F-statistic) 0.028677

I. Definition II. Derivation III. R-Squared IV. EV&Var 29

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

Example: Effect of wages on  education 

• n=526 individuals in 1976 wage (in dollars per hour) educ (years of schooling

w = – 0.90 + 0.54educ

• Define 

• What is the predicted hourly wage for high school  students?

54 ˆ .

; 90 ˆ .

1

0   

I. Definition II. Derivation III. R-Squared IV. EV&Var 30

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

Eview: w = ‐0.90 + 0.54educ

Dependent Variable: WAGE Method: Least Squares Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.

C -0.90485 0.684968 -1.321013 0.1871

EDUC 0.541359 0.053248 10.16675 0

R-squared 0.164758 Mean dependent var 5.896103

Adjusted R-squared 0.163164 S.D. dependent var 3.693086

S.E. of regression 3.37839 Akaike info criterion 5.27647

Sum squared resid 5980.682 Schwarz criterion 5.292688

Log likelihood -1385.71 F-statistic 103.3627

Durbin-Watson stat 1.823686 Prob(F-statistic) 0

I. Definition II. Derivation III. R-Squared IV. EV&Var 31

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat II. Deriving the OLS Estimates

III. Goodness of Fit – R 2

SST = SSE + SSR

SST : total sum of squares

the total sample variation in the yi SSE : explained sum of squares

the sample variation in the  i SSR : residual sum of squared 

the sample variation in the  i. i i

i y u

y  ˆ  ˆ

I. Definition II. Derivation III. R-Squared IV. EV&Var 32

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Goodness of Fit – R2

Graph and define explained part and  unexplained part:

     

 

 

   

 

 

   

0 ˆ ˆ that know we and

SSE ˆ

ˆ 2 SSR

ˆ ˆ

ˆ 2 ˆ

ˆ ˆ

ˆ ˆ

2 2

2 2 2

y y u y y u

y y y y u u

y y u

y y y y y

y

i i i i

i i

i i

i i

i i i i

R2= SSE SST

(9)

33

.

.

.

y4

y1 y2

x1 x2 x3 x4

}

{

{

û1 û2

û4

x y

x yˆˆ0ˆ1 y4

ˆ4

y

explained

Find R 2 and Interpretation

I. Definition II. Derivation III. R-Squared IV. EV&Var

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Goodness of Fit – R2

Find R 2 and Interpretation

(Requirement: model with intercept)

0 < R2< 1

R2= 1 a perfect fit  R20 a poor fit 

Interpretation: It is the fraction of the sample variation in y explained by x.

I. Definition II. Derivation III. R-Squared IV. EV&Var 34

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Goodness of Fit – R2

R2= SSE SST

We can also think of 2 as being equal to the squared correlation coefficient between the actual and the values ˆ

i i

R

y y

 

 

 

 

2 2

2 2

ˆ ˆ ˆ ˆ

i i

i i

y y y y

R

y y y y

 

 

GPA and wages revisited

• Example ACT scores and GPA

= 0.57 + 0.10ACT n=8; R2=0.577424

• Example: Effect of wages on education w = ‐0.90 + 0.54educ

n=526,  R2=0.164758

I. Definition II. Derivation III. R-Squared IV. EV&Var 35

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat III. Goodness of Fit – R2

IV. Expected Values and  Variances of the OLS

• Algebraic properties of OLS estimation vs. statistical  properties of OLS

• Here, we learn about statistical properties of OLS estimators,  and  , over different random samples from the 

population.

• We want to prove that and  are unbiased from 4  assumptions, 

– SLR.1‐SLR.4. 

I. Definition II. Derivation III. R-Squared IV. EV&Var 36

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

(10)

Unbiasedness – (4 assumptions) 

• SLR.1 Linear in parameters y = 

0

+ 

1

x + u

• SLR.2 Random sampling

A random sample of size n from the population {(yi, xi) i =  1,2,….,n}.

I. Definition II. Derivation III. R-Squared IV. EV&Var 37

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

Random sampling

• Random sampling – definition

If Y1, Y2, …, Ynare independent random variables with a  common pdf f(y;,2), then {Y1, Y2, …, Yn} is a random  sample from the population represented by  f(y;,2)

We also say that

Yiare i.i.d. (independent, identically distributed)  random variables from a distribution.

I. Definition II. Derivation III. R-Squared IV. EV&Var 38

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

Xiare i.i.d. r.v.’s

X1 X2 Xn

Explain Y

i

are i.i.d r.v’s and X

i

are i.i.d r.v’s intuitively

SLR.2: A random sample of size n from the population {(yi, xi) i = 1,2,….,n}.

Replication ( , ( , ( ,

R=1 (n=526) ( , ( , ( ,

R=2 (n=526) ( , ( , ( ,

R=m (n=526) ( , ( , ( ,

39 Yiare i.i.d. r.v.’s

Y1 Y2 Yn

Note that i = 1, …, n (n=526 observations) R = 1, …, m (m=100 times)

Unbiasedness – SLR.3‐SLR.4

• SLR.3 Sampling variation in x

i

x

i

are not all equal.

• SLR.4 Zero conditional Mean E(u

i

|x

i

) =0

I. Definition II. Derivation III. R-Squared IV. EV&Var 40

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

 

 

 

2

ˆ1

x x

y x x

i i

i  

 

 

1 2

ˆ1

x x

u x x

i i

i

implies

Show that …

 

 

1 2

ˆ i i

i

x x y x x

 

(11)

are unbiased  (Theorem 2.1)

• Theorem 2.1 Using assumptions SLR(1) through SLR(4),

for any values of j

Proof:  

1 1) (ˆ E

1 1) (ˆ E

I. Definition II. Derivation III. R-Squared IV. EV&Var 41

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

 

 

1 1 2   1

1 2 1

1 ˆ

then 1 ,

ˆ

that so , let

i i x

i i x i i

u E s d E

u s d x x d

 

 



2

ˆ1

x x

y x x

i i

i  

 

 

1 2

ˆ1

x x

u x x

i i

i

implies

The sampling distribution of our estimate is centered around the true parameter

Summary: Unbiasedness

• The OLS estimators of 1and 0are unbiased

• Proof of unbiasedness depends on our 4 assumptions – if any  assumption fails, then OLS is not necessarily unbiased.

• Remember unbiasedness is a description of the estimator – in  a given sample we may be “near” or “far” from the true  parameter.

I. Definition II. Derivation III. R-Squared IV. EV&Var 42

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

Assumption SLR.5

43

Assumption SLR.5: Homoskedasticity – constant error variance VAR(u|x) = 2

The variance of the unobservable u, conditional on x, is constant.

I. Definition II. Derivation III. R-Squared IV. EV&Var

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

We want to know how far is away from 1 on average, i.e., study VAR( )

Thus 2is also the unconditional variance, called the error variance.

– The square root of the error variance is called the standard deviation of the error.

SLR.1-SLR.5 are called Gauss- Markov assumptions.

Var(u|x) = E(u2|x)‐[E(u|x)]2

= E(u2|x

= E(u2

= Var(u) = 2

Mean and Variance of y

• Comparison 

SLR(4) Zero conditional mean 

E(u|x) = 0  (expected value) SLR(5) homoskedasticity

VAR(u|x) = 2 (variance of u)

• Find the conditional mean and conditional variance of y E(y|x) = 0+ 1x E(u|x) = 0       SLR(3) VAR(y|x) = 2 VAR(u|x) = 2 SLR(4)

I. Definition II. Derivation III. R-Squared IV. EV&Var 44

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

(12)

Homoskedastic Case

I. Definition II. Derivation III. R-Squared IV. EV&Var 45

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

Heteroskedastic Case (violation)

I. Definition II. Derivation III. R-Squared IV. EV&Var 46

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

Variances of the OLS Estimators

• Find standard deviation of the estimators.

2

1 2

VAR( )ˆ

(xi x)

2 1 2

0 2

VAR( )ˆ

( )

i

i

n x

x x

 

I. Definition II. Derivation III. R-Squared IV. EV&Var 47

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

 

   

 

2

1 1

2 2

2

2 2

2 2

2 2 2 2

2 2

2

2 2 2

2 2 1

ˆ 1

1 1

1 1

ˆ 1

i i x

i i i i

x x

i i

x x

x

x x

Var Var d u

s

Var d u d Var u

s s

d d

s s

s Var

s s

 

 

 

Variance of OLS: Summary

Interpret

• The larger the error variance, 2, the larger the variance of  the slope estimate

• The larger the variability in the xi, the smaller the variance of  the slope estimate

• As a result, a larger sample size should decrease the variance  of the slope estimate

• Problem that the error variance is unknown 

I. Definition II. Derivation III. R-Squared IV. EV&Var 48

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

2

1 2

VAR( )ˆ

(xi x)

(13)

Efficient Estimates

• OLS estimators have the lowest variances.

• An unbiased estimator with minimum variance is  called an efficient estimator.

I. Definition II. Derivation III. R-Squared IV. EV&Var 49

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

Estimating the Error Variance

Can we find the value of var( )?

Errors (ui) vs. Residuals ( )  yi01xi+ ui yi= xi

I. Definition II. Derivation III. R-Squared IV. EV&Var 50

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

The unbiased estimator of 2is

There are n‐2 degrees of freedom. This is because there are two  restrictions (two FOCs)

2 n

uˆ

ˆ i

2 2

2

1 2

VAR( )ˆ

(xi x)

Unbiased Estimator

• Proof:  E( ) = 2

I. Definition II. Derivation III. R-Squared IV. EV&Var 51

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

 

   

   

0 1

0 1 0 1

0 0 1 1

2

2 2

ˆ ˆ

ˆ

ˆ ˆ

ˆ ˆ

Then, an unbiased estimator of is

ˆ 1 ˆ / 2

2

i i i

i i i

i i

i

u y x

x u x

u x

u SSR n n

 

   

   

  

    

    

  

Standard Error of Regression

• 2 error variance

• estimate of error variance

• .

Standard error of the regression  Standard error of the estimate  Root mean squared error

• Standard deviation of :

• Standard error of :

I. Definition II. Derivation III. R-Squared IV. EV&Var 52

1. The Simple Regression Model . Quantitative Methods of Economic Analysis . 2949605 . Chairat Aemkulwat IV. Expected Values and Variances of the OLS

2 n

u ˆ

ˆ i

2 2

Referensi

Dokumen terkait

he dependent variable and the independent variables used in the logistic regression to model the determinants of the means of transport to health facilities

 D i,t , the dependent variable, is the change in debt, EAT i,t , earnings after tax of company i at time t ,, DIV i,t , dividend of company i at time t,  E i,t the change

F-Test is used to determine whether the independent variables included in multiple linear regression model have significant influence towards dependent variable

From the table 3, the Adjusted R Square is 0.535, which means that 53.5% of the variation in the bank stock price as the dependent variable, can be explained by

PRELIMINARY COST ESTIMATION USING REGRESSION ANALYSIS INCORPORATED WITH ADAPTIVE NEURO FUZZY INFERENCE SYSTEM Yusuf Latief1, Andreas Wibowo2, Wisnu Isvara1 1 Department of Civil

The regression model of accrual earnings man- agement tested using the dependent variable of company performance proxied by Tobin's Q shows the F count value of 8.636 and a significance

On the other hand, in the SmAPFmod phase the polarization peak occurs at a temperature dependent threshold field, implying that when the sign of the field is reversed, the stripe

The p values for continuous variables were calculated using linear regression analysis under an additive model after adjusting for age, gender, BMI and mesalamine use when