• Tidak ada hasil yang ditemukan

Analysis of system with single and multi degree of freedom

N/A
N/A
Protected

Academic year: 2024

Membagikan "Analysis of system with single and multi degree of freedom"

Copied!
2
0
0

Teks penuh

(1)

1

Course Syllabus

2142212 Dynamics and Vibrations for ADME

1. Course Number 2142212 2. Number of Credit Units3

3. Course NameDynamics and Vibrations

4. Faculty Engineering Department Mechanical Engineering 5. Semestersecond

6. Year2013

7. Instructor Phongsaen PITAKWATCHARA (PPT) email [email protected] 8. Conditions

I. Prerequisites 2142211 Mechanical Dynamics II. Corequisites: None

III. Concurrent: None 9. Course Statusrequired

10. Curriculum Automotive Design and Manufacturing Engineering 11. Level Undergraduate

12. Number of teaching hours per week3

Day-time Wed. 2-5 p.m.

13. Contents

• Oscillatory motion; Equations of motion of discrete mechanical systems;

• Free responses of one-degree-of-freedom mechanical systems: natural frequency and modal damping;

• Forced responses of one-degree-of-freedom mechanical systems: frequency response function, impulse response, and transient response;

• Vibration of multi-degree-of-freedom mechanical systems: natural frequencies, modal damping, mode shapes, and modal analysis;

• Engineering applications of vibration: rotating machine unbalance, base excitation, vibration suppression, tuned mass damper, and vibration instruments;

14. Course Details I. Objectives

1) To develop equations of motion governing vibration of discrete mechanical systems 2) To analyze free vibration of discrete mechanical systems and determine natural

frequencies, mode shapes, and modal damping of such systems

3) To determine forced responses of discrete mechanical systems under various excitation

4) To apply the fundamental knowledge in vibration to design and analyze vibration problems for various engineering applications

(2)

2 II. Tentative Schedule

Week Contents Notes

1 Jan 29 Introduction of mechanical vibrations Modeling

• Newton's second law 2 Feb 5 • Equations of motion

• Equilibrium

HW#1 3 Feb 12 Free Vibration of Single-Degree-of-Freedom

Systems

• Free responses of undamped and damped systems, natural frequency, damping ratio

HW#2

4 Feb 19 Forced Vibration of Single-Degree-of-Freedom Systems

• Harmonic excitation

• Frequency response function

5 Feb 26 • Applications (base excitation, rotating unbalance, and vibration instrument)

HW#3

6 Midterm

7 Mar 12 • Periodic excitation HW#4

8 Mar 19 • Non-periodic excitation 9 Mar 26 • Impulse response

• Arbitrary excitation

HW#5 10 Apr 2 Vibration of Multi-Degree-of-Freedom Systems

• Free and forced vibration

• Natural modes, Eigenvalue problems

11 Apr 9 • Modal analysis HW#6

12 Apr 23 • Modal analysis (continued) 13 Apr 30 • Harmonic excitation

• Frequency response functions

HW#7

14 Final

III. Evaluation

1) Homework xx pts 2) Midterm exam 30 pts 3) Final exam 40 pts IV. Materials

1. Textbook: Inman, D. J., 2007, Engineering Vibration, 3rd ed., Prentice-Hall Meirovitch, L., 2001, Fundamentals of Vibrations, McGraw Hill

Kelly, G., 2000, Fundamentals of Mechanical Vibrations, 2nd ed., McGraw Hill 2. Software: Matlab

3. Class website

Referensi

Dokumen terkait

The project entitle “Forward Kinematics Solution: Visualization of Rhino XR -3 Robot for 5 Degree of freedom” is a project to solve the forward kinematics problem and to visualiz e

The following are the conclusions drawn from Richard LaGravenese's findings and data analysis of the film Freedom Writers: Director and Screenwriter: The

Descriptor System Equations The general scheme of these equations that model the dynamical behavior of the power systems in transient stability studies is presented in Figure 1, where

CONTENTS xi Appendix A: An Alternative Definition of Short Sales 106 Appendix B: Determining the Derivative 107 Appendix C: Solving Systems of Simultaneous Equations 111 Appendix

The design of control system is considered to discrete time system FIG.4 SIMULINK MODEL OF UPFC WITH MULTIRATE FEEDBACK SLIDING MODE CONTROL FIG .5 SIMULINK MODELOF MULTIRATE

2d Non-Linear Model With Load Hoisting Fig 1 shows the swing motion of the load caused by trolley movement of a 3 degree of freedom displacement of trolley, angular swing of payload

2411, 2014, pages 1761-1777 Bioreactor profile control by a nonlinear auto regressive moving average neuro and two degree of freedom PID controllers Abstract This paper presents

But in the literature of reliability modeling of industrial systems, no effort has been made for analyzing the performance of single- unit systems under preventive maintenance,