Appendix
Tl
A p p e n d ix A
The m aterial of th is part is drawn from reference Existence theorem Oil lin ear d iffe re n tia l equations.
A .l Theorem. The d iffe re n tia l equations
เ ^ น 1(ร) = E e * (ร)v > . i = 1 , 2 , . . . , p, p . . . - ( 1 )
where are continuous functions in the in terval 0 < s <1 r , has a set of C^-solutions which assume prescribed value น? when ร = 0.
Proof. To prove th is, le t
ui (s) " ui + j £ 1°น11(t)uk at น?(ร) = น?','
J
H c .k(t)uJ(t)dt น“ (ร) “ น " ,' ] E'ร
\
/ (2)J
Since c^k are continuous functions on a compact set they are hounded i . e . , there exist a constant c such th at
c (ร) < c/p for a ll ธ £ [o,r] and for i = 1 , 2 , . . . , p, k = 1 , 2 , . . . , P.
IP-
Then
We assume th at 1/ \ 0 u t(ร)- น~
า าน. .i0 (c P
J
0 fe]y - P f s k=lE J0 K 7 2 P
^ 0
■ < K for i = 1,2.
dt
พ
t,u kcik (t) dt
dt KCs .
Also น?(ร) - น?(ร) - j E i te l and also
น?(ร) - น?(ร) É C 1
k=l 01 lcik < t)l l \ ( t ) - \ dt
dt
< (KC)(C/n ) L
J
t dt - KC2 ร2 .In sim ilar way i t follows th at
i R / _ ’I n - l / \I ™ ท „ ท ท
|u .(ร) - น . ( ร ) I < KC £ < KC r
1 1 ท! ท!
Hence, by the W eierstrass M -test, the sequence ^ น^(ร) \
converges uniform in the in terv al 0 <: ร c r and a continuous function น^(ร) can be defined by the equation.
lim ท-*•เพ น ? ( ธ } = น ^ ( ร ) .
Also, from the uniform ity of convergence, i t follows from (2), th a t, as n ftj ,
ui (s) = u° i + 1 Y ° ik ( t) V t ) a t -
Hence “ น^(ร) = Y2 c^^(s)u^(s) and น^(อ) = u|? .p This complete the proof of the existence theorem.
À
Appendix B
The m aterial of th is part is drawn from reference £5].
The solution of homogeneous lin ear d iffe re n tia l equations of order ท.
The general homogeneous lin ear equation of the ท th order is L(y) = anน ) ^ + V l (x)£ ท- ï +- - '+ al (x)£ * a0<x)y ' 0 ...(1) We use L(y) to denote the resu lt of su b stitu te any any function y in the le f t member of E qu.(l). Since m ultiplying y by a constant m ultiplies each term by a constant,
L(cy1) = cL(y1), and L(cy1) = 0, i f L(y1) = 0 .
Again, replacing y by y^+ y 2 replaces each term in y by the sum of two sim ilar term s, one in y^ and one in y . Hence
L(y1+ y2) = L(yx) + L(y2) and LCy^ y 2) - 0, if L(y1 ) = 0, L(y2) = 0.
Consequently the sum of two solutions, or the product of one solution by a constant, is again a solution of the homogeneous equation ( Hence we have proven the f ir s t part of the following theorem.
B .l Theorem. The solution of the homogeneous equation (1) form a vector space พ. Furthermore dim(w) < ท.
7 5
Proof. The f ir s t part of th is theorem follows at once from the above remark. To prove the second p a rt, le t น^,น9, . . . ,น^ he k lin early independent solution of ( l) . Thus the associated vector-valued
functions บ^,บ25. . . , บ would he lin early independent, where บ ^ x ) = (น1 (x), น/( x ) ..., น^1-1^ (x )), i = 1 ,2 ,... ,k.
To see th is , i f บ^,U g ,..., บk are lin early dependent vector-valued function, then there are scalars c ^ ,C g ,..., ck not a ll zero, so th at
c1บ1(x) + CgUgCx) + ... + ckบk(x) = 9 , where 9 = zero vector.
But th is implies
C1น1(x) + c 2น2น ) ckuk(x) = 0 , therefore น^, น
Now since บk ,U g ,..., บ are lin early independent then
บ^(Xq), บ2น 0) , . . . , บk(xç) would he lin ear independent in Vfi. But there can be no more than ท lin early independent vectors in V since dim (vn) - ท.''' Hence k cannot exceed ท and dim(w) <r ท.
Thus the theorem is proved.
2’ \ are lin early dependent.
76
A p p en d ix G
A P roof of Remark A-.1.7.
Let F ะ J ร j^o ,lJ —^ Rn be a c ^ -p a r a m e tr iz a tio n by a rc l e n g th . Let Sq c j and assume t h a t th e v e c to r s F (รq),
F /;(Sq), F #(Sq) , . . . , F^2'+"^(Sq) ( r < k) a re l i n e a r l y independent then th e v e c to r s F 1 ( ร ) , . . . , F^r + ar e l i n e a r l y independent in some neighborhood TJ of Sq in J .
P ro o f. Let M ((r+ l)x ท) be the s e t o f a l l ( r + l ) X n m a tric e s w ith r e a l e n t r i e s (r+1 5Ç ท). Since th e r e e x i s t s a fu n c tio n f mapping M ( ( r + l) X n ) onto IT i n a o n e -to -o n e onto way, th e n H ( ( r + l ) \ n )
can be endowed w ith th e same topology as t h a t of r / r+ "^n . v/e denote by M ((r + l)x n, r+1) th e su b s e t of M ( ( r + l ) x n ) which c o n s i s t s of th e s e m a tric e s of ra n k r+ 1 , claim t h a t M ((r + l),y n , r+1) i s an open su b s e t o f M((r+1) x n ) . To prove t h i s we note th a t
M ((r+l)X 'n* r+1) i s a subm anifold of M ( ( r + l ) x n ) o f dim ension ( r + l ) n (see [2] on page 1 0 9). Thus i t s u f f i c i e s to show t h a t i f M i s a m anifold o f dimension ท and M i s a subm anifold of M of th e/
/ / /
same dim ension then K i s open in M. Let a £ M , s in c e M i s a subm anifold of M of th e same dim ension, then t h e r e e x i s t s an open s u b s e t V 3 a of M and a fu n c tio n p such t h a t p i s a homeomorphism o f V onto some open subnet Vi of pn , and p i s a homeomorphism of
V A
M onto some open su b se t พ d V/ of R11. Because พ i s open in pn , t h e r e f o r e พ and p ^ (พ ) => V n M i s open in 17 and V77 r e s p e c t i v e l y under th e u s u a l r e l a t i v e top o lo gy . Thus V n M te p ก V / fo r some open su b s e t p of M. This im p lies t h a t V n M i s open in M.
Hence a i s an i n t e r i o r p o in t of M , but a i s a r b i t r a r y we conclude t h a t M i s open.
To f i n i s h th e p ro o f of Remark ^ ,1 .7 » we d e fin e a new fu n c tio n
t h a t i s a ls o contimucus on J . c l e a r l y \j/'(s o) £ M ((r+ l)X n » r+1) 1 but M ( ( r + l ) x n j r+1) i s open in M ( ( r + l ) X n ) , th e n th e re i s an open su b s e t บ 3 vp (ร ) of M ((r+l),X n) and บ c M ( ( r + l ) x n , r+ 1 ).
J because "Vj/ i s con tin u o u s. Hence th e r e e x i s t s a neighborhood
u
of Sq in I such t h a t ^(บ)
cบ
1 soบ
i s th e re q u ire d neighborhood#The p ro of i s com plete.
M ((r+1)X n) as fo llow s ะ
R e f e r e n c e s
[1 J
A po stol, Tom K ., m athem atical A n a ly s is . 5 th ed.Reading ะ Addison-W esley, 1957»
[ 2 j A uslander, L . , and Mackenzie, R.E. I n t r o d u c ti o n to D i f f e r e n t i a b l e M an ifo ld s. ;:c G raw -H ill, 1 9 6 3.
^3 j B i r k o f f1 G. and Mac L ane,ร . , A Survey o f Modern A lg eb ra. 3 rd . New York : M acmillan, 1 9 6 5.
[ k ] Buck, r u e ., Advanced C a lc u lu s . 2nd, ed. New York ะ M acGraw-Hill,
1 9 6 5.
^ 5 j Gluck, Herman, H igher C urvature of Curves in E uclidean S pace.
The American M athem atical Monthly, V o l.7 3 | N o.7, 1 9 6 6.
[ 6 j Kaplan, W ilfre d , and Lewis, Donald J , C alcu lu s and L in ear A lgebra New York ะ John W illey and Sons, I n c . , 1 9 7 0-1 9 7 1»
£ 7 ] Komogorov, A.N. and Fomin, S .V ., I n tr o d u c to r y Real A n a ly s is , t r a n s i , and ed. by S ilverm an, R ichard A. Englewood
C l i f f s ะ P r e n t i c e - H a ll , 1 9 7 0.
w illm o re, T , J . , D i f f e r e n t i a l Geometry. Oxford U n iv e rs ity P r e s s , 1 9 5 9.
s t r u i k , D .J ., L e ctu re s on C l a s s i c a l D i f f e r e n t i a l Geometry.
Reading : Addison-V/esley, 1950.
[
c h e r n ,■ ร.ร., Notes on D i f f e r e n t i a l Geometry. บ, o f C a l., B erkeley l e c t u r e n o tes/
Name Degree S c h o larsh ip
79
VITA
Mr. P iro j S attayatham
B.A. (Thammasat U niversity), 1971+.
U niversity Development Commission (U .D .C .)
Thai Government, 197^-1976.