'
"" ""
'fllfH";itlll'YI 1 ';:ll 1Jfll";jfffl1fl ~ 2561
CVE 448 Fundamental of Finite Element Method
""
""
'11-l'YI 4 ~t'IUUJ 'Yi.ff.
..
2561'
,,.
fll!Vltl'U
,., ,.,
1.
<uinn:1uiili'-nrn1>1 3 <uo 3 m!1 (n1J11tl'1w) i,,;'vi1c1~1Uff1J1>1fl1r1ou
nt11 09.00 - 12.00
i . ' " ' l " ,,,.,
3. Uf11'J\olt:11JflltlllJU\olfl~'1Jtl 111~1-JllfiU Local llfl~ Global 11'1/\Pll'ilU
,., ,., ,.,
11lf1N7N'U 'il~ i~fom1vi'ilTHu1 i
vnJi '11"i~fl~uuu
"O"i wm1ffomw1'lf1wu 1uflf ,nJu
f11'll'.J'il1~
(F)11c1~1vinoom1t11'1f1tu
(W)~c1~'Yl~1iit1u 1ufllflf111flmfl '111t1t11'il iA'f u i
'Yl'J,J\)'~cy1>1
i,,;''WUfffl1Tif1UliJU'Uf1fff11,J1
ivn.
02-4709147jJ J'"l 'j/ I ..::',\ ~ ~ 'j/
'1Jt1fft11J 'U 11>1mu m1 u1~11J'U 'il7f1fllfl1'lf71fl'1m11J itl1i111c11
111'11 tl' 1mfl 1'1f11rr1mrn it11i 1
1
\
1. The bar element shown in Figure 1 is uniform and has nodes 1 and 2. Let the assumed axial displacement field have the form
u =
a1+
a2.x
3.a) Determine the shape functions N1 and N2 which
u =
NJ]1x + N2d
2x. (15 marks) Given:d..x
andd
2x
are the nodal axial displacements at node 1 and node 2, respectively.b) Let
d
1x=
8 andd
2x=
8, determine the axial displacementu
and strain at.x =
~ from the4
shape functions obtained from
u =
a1+
a2.x
3. (10 marks) ytE::::::::::::::::::::L::::::::::::::::::::::.il---~~
x,u1 2
Figure 1
2.
~-2L-_ _ k_1 _ _ _ 1t--_k_2 _ ___,~
~..., __ ... - - - ~ . . , _ __.,P ____ .... ~
Figure 2
(a) Obtain the global stiffness matrix [K] and equation of the assemblage shown in Figure 2 by using the force/displacement matrix relationships along with the fundamental concepts of nodal equilibrium and compatibility. (15 marks)
(b) Determine the nodal displacement of node 1, the forces in each element, and the reactions.
The axial stiffnesses for the elements 1 and 2 are k1 and k2, respectively. The point load Pis applied at node 1. (20 marks)
(c) Which element has the higher internal force if k1 > k2? (5 marks)
2
\
3.
3
E,A,L
2
E,A,L
Figure 3
(a) Find the total structure stiffness equations {
F} = [ K]{
d} of the plane truss structure as shown in Figure 3 by using the force/displacement relationships along with fundamental concepts of nodal equilibrium and compatibility. (25 marks)Let E and A be constant for both elements.
(b) Is this structure stable? Explain or prove by using the finite element concept. (10 marks)
3