Lecture Note 5 Bending of Thin Plates First Semester, Academic Year 2012 Department of Mechanical Engineering Chulalongkorn University Objectives Analyze bending of thin plates Analyze for stress and deformation in plates subjected to bendingandtwistingbending and twisting Analyze for stress and deformation in plates subjected to distributed transverse loads Analyze for stress and deformation in plates subjected to combined loads Describe energy method for analyzing thin plates 2
Topics
Thin plates subjected to bending, twisting, distributed transverse and in-plane loading BendingofthinplateswithasmallinitialcurvatureBending of thin plates with a small initial curvature Energy method Characteristics ShtfthitilSheets of thin materials Resist membrane forces and bendingPure Bending
Descriptions TheneutralplanedoesnotdeformandisusedastheTheneutral planedoes not deform and is used as the reference plane. Planes remain planes Strains can be determined in terms of z and the radii of curvature r. Direct stresses vary linearly across the thickness.Pure Bending
Strain 5 1 (xxyz xz E
21 )() 1 1 (
x xy yyxz y
Ez z E 21 )() 1y yxEz
Pure Bending
Applied boundary Moments /2 2/2 /2 2/211 ()() 1 11 ()() 1
t xxxt xyxy t yyyt
Ez MyzydzMdzD Ez MxzxdzMdzD
61yxyx 3 2Flexural rigidity 12(1)Et D
1 () 1 ()
x xy y yx
MD MD
Pure Bending
Deflection 222 222 222 22211 ()() 11 ()()
x xxy y
www MDD xxy www MDD yyx
7
222 22 22If 0: 111 If : (1)
y yyx y xy xy
yyx ww M yx M MMM D
Bending & Tw isting
Description 8Bending & Tw isting
Equilibrium
0 cossinsincosnnxyxyxyFMACMABMBCMABMBC 9
22 cossinsin2 0 sincoscossin sin2cos2 2
0 0
nxyxy ttxyxyxy x
n y ttxy
MMMM FMACMABMBCMAB
F F
MBC MM MM
Bending & Tw isting
Principal Moments sin2cos2 2 0 Principal moments and curvatures
xy txy t
MM MM M 10
2 tan2xy xy
M MM
Bending & Tw isting
Shear #1
xyxyMyyzdz Mxxzdz
/2 /2 /2 /2xyxy t xy x
xyt t yxyt
Mxxzdz Mzdz GzdzM
Bending & Tw isting
Shear #2 , ww uzv xy vu 2 2
x xy
y xy w z xy
232/2/22 /2/2 322
2 6 (1) 12(1)
tt xyxyttwGtw MGzdzGzdz xyxy Etww D xyxy
Transverse Load
Description 13Shear strains are ignored.
Transverse Load
Equilibrium #1
/2 /2 /2 /2 0
t xxzt t yyzt
Qdz Qdz F 14
0 ()()0 0z yx xxyy yx
F QQ QxyQyQyxQxqxy xy QQ q xy
Transverse Load
Equilibrium #2
/2 /2 /2 /2
t xxt t yyt
Mzdz Mxdz
/2 /2 222
0 ()()
t xyyxxyt x xyy xyxyyy
MMxdz M MM MxyMyMyxMx xy QQyyy 15
()()0 222 0 0
yx yxx xyy y xyx x
QQyyy QyxyQxQqx yx MM Q xy MM Q yx
Transverse Load
Equilibrium #3 22 200xyyxyyy yMMMMQ Q xyyxyy
22 2 2222
00 From
xyxyxxx x yx xyyxyx
xyyxyy MMMMQ Q yxxyxx QQ q xy MMMM 16
22
222 222
xyyxyx xyyx
q xyyxxy MMM q xyxy
Transverse Load
Displacement #1 22222 2222(), (), (1)xyxywwwww MDMDMD xyxyyx
222 22 22222222 222222 424
From 2 ()2(1)() ()2(1)
xyyx
yyy MMM q xyxy wwwww DDDq xyxyxxyyyx www
44 ()wwq 17
4222()2(1) xxyx
2422 444 4224
() 2
Dyyxy wwwq Dxxyy 22
2 22()q w Dxy
Transverse Load
Displacement #2 22MMww 22 22 22() ()
xyx x yxy y
MMww QD xyxxy MMww QD yxyxy 18
Transverse Load
BC #1: Simple Support Free to rotate, no deflection Alonganedgex
2 2 22 22
Along an edge 0, 0 M()0
BC BC
x ww w yy ww D xy 2 20, ()0BCBCw w x
Transverse Load
BC #2: Built-in Notorotation,nodeflectionNo to rotation, no deflection Along an edgex 0, 0BCw w xTransverse Load
BC #3: Free No bending moments, twisting moments or vertical shearing forces Along an edge ()0()0()0x MMQ
33 32 22
()0, ()0, ()0 ()0 ((2))0
xBCxyBCxBC xy xBC BC
MMQ M Q y ww xxy ww 21
22()()0xBCBCww M xy
Transverse Load
BC #3: Free No bending moments, twisting moments or vertical shearing forces Along an edge ()0()0()0x MMQ
33 32 22
()0, ()0, ()0 ()0 ((2))0
xBCxyBCxBC xy xBC BC
MMQ M Q y ww xxy ww 22
22()()0xBCBCww M xy
Example
Transverse Load #1 A simply supported plate of dimension a×bis subjected to a uniform transverse load q.Determine the deflection and bending moment distributions. 23Example
Transverse Load #2 444 4224The deflection must satisfy 2wwwq Dxxyy 2 2 2 2
Boundary conditions 0 and at 0 and 0 and at y0 and y
Dxxyy w wxxa x w wb y
24
11 11
Thus sinsin sinsin
mn mn mn mn
mxny wA ab mxny qa ab
Example
Transverse Load #3 00sinsinab abmxny qdxdy ab mxnymxny
0011 0sinsinsinsin 4 For sinsin
ab mn mn mn a
mxnymxny adxdy abab ab a mxmx fdx aa a
2500 when and when 2 For sinsin 0 when and whe 2
b
a fmmfmm nyny gdy bb b gnnf
n nnExample
Transverse Load #4 444 422420wwwq Dxxyy 4224 2 422()2()()()0 ()()0 1
mn mn mn mn
ammnn A aabbD amn A abD
26
422211 11
1 sinsin (/)(/) sinsinmn
mn mn mn
amxny w abDmanb mxny qa ab
Example
Transverse Load #5 200416 sinsinab mnqmxnyq adxdy ababmn
62221,3,51,3,5 max62221,3,51,3,516sin(/)sin(/) (/)(/) 16sin(/2)sin(/2) at /2,/2 (/)(/)
mn mn
ababmn qmxanyb w Dmnmanb qmn wxayb Dmnmanb
,,,, max(/)(/) 0.0443
mnmanb wq
4 3 if ,0.3a ab Et
Example
Transverse Load #6 22 42221,3,51,3,5 22(/)(/)16 sinsin (/)(/) (/)(/)
x mn
manbqmxny M abmnmanb b
22 42221,3,51,3,5 ,max,max ,max,max(/)(/)16 sinsin (/)(/) at /2,/2 0
y mn xy xy
manbqmxny M abmnmanb MMxayb MM
2 .0479 if,0.3 1212yxqaab MzMz 33 ,max,max22 2 ,max,max2
, 66 , at 2 0.2871 if,0.3
yx xy yx xy xy
tt MMt z tt a qab t
Combined Loadings
Descriptions Combined loads TldTransverse loads In-plane forces 29Combined Loadings
Equilibrium #1 0yxxNN xy 0xyyNN xy 302 20()cos()cos() ()0
x xxx yx yxyx
Nwww FNxyxNy xxxx N NyxNx y
Combined Loadings
Equilibrium #2 2 xyNwww 312 2
()()()() (( ))xyz
xy xyzxyxy xy xy yx yxzyx
Nwww NNxyxNy xxxyy Nww Nxyxy xyxy Nww NNxyxy xyyx
N
Combined Loadings
Equilibrium #3 2 Nwww 322 2 2 2 2
()()()() ()()
x xzxx x x y yzy
xz
Nwww NNxyxNy xxxx Nww Nxyxy xxx Nww NNxyxy yy
N y
Combined Loadings
Equilibrium #4 ()()()()zz zxyzyxzxzyz
RF RNNNN
2 22 22 222 22)2 (2)
xyxy zxy yx xy zxyxy
z
NNwww RxyNxyxy xyxyyx NNwwww NxyxyNxyxy xxyyxy www RNNNxy xyxy
R
33
fromyxx
xyxy NN xy
0 and 0 and in transverse loadxyyNN xy 444222 4224221 2(2)xyxywwwwww qNNN Dxyxxyyxy
Initial Curvature
Descriptions 010 444 111 4224Assume total deflection as the sume of initial 2
wwww www 4224 222 010101 22 2 0
()()()1 (22) Initial curvature is equivalent to the application of
xyxy x
xxyy wwwwww qNNN Dxyxy qN
22 000 222yxywww NN xyxy 34
0 11 126222211
sinsin, if is compressive, 0 sinsin, (/)(/)
mnxyxy mn mnx mnmn mnx
xyxy mxny wANNN ab ANmxny wBB abDamnambN
Energy Method
Descriptions 222 22 2222 22221 (2) 2 From (),(),(1)
xyxy xyxy
www UMMMxy xyxy wwww MDMDMD xyyx
Energy Method
Bending and Twisting 22222 222 2222 22222 22()()22(1)() 2 For a rectangular plate ab
Dwwwww Uxy xyxyxy ab Dwwwww
22 222200 2 2(()2(1)() 2 For bending only, 0 ( 2
ab xy
Dwwwww Udxdy xyxyxy M Dw U x
222 2 22200()2abwww dxdy yxy
Energy Method
Transverse Load 00()abVwqxy Vwqdxdy
37Energy Method
In-plane Loads #1 22 21 (1()) 2axw w x xa
38
2 0 2 0
2 1 (1()) 2 1 () 2 ()
a a xx
x w adx x w aadx x VNyNaay
Energy Method
In-plane Loads #2 21 ()abw VNdxdy
392 00 2 00
() 2 1 () 2
xx ab yy
VNdxdy x w VNdxdy y
Energy Method
In-plane Loads #3 1 2 1 2xyxy xyxy
ww VNx xy ww NyV
40
00 22 000
2 1 2 2 1 ()()2 2
xy ab xyxy abb xyxyxy
x xy
yy xy ww VNdxdy xy wwww VVVVNNNdxdy xyxy
Example
Energy #1 A simply supported plate of dimension a×bis subjected to a uniform transverse load q.Determine the deflection and bending moment distributions. 1 22222 22 222200sinsin (()2(1)() 2mnm ab
mxny wA ab Dwwwww UVdxdy xyxyxy
4100 62221,3,51,3,5
2 () 16sin(/)sin(/) (/)(/)
ab mn
xyxyxy wqdxdy qmxanyb w Dmnm
U anb
V