• Tidak ada hasil yang ditemukan

Lecture Note 5

N/A
N/A
Protected

Academic year: 2024

Membagikan "Lecture Note 5"

Copied!
11
0
0

Teks penuh

(1)

Lecture Note 5 Bending of Thin Plates First Semester, Academic Year 2012 Department of Mechanical Engineering Chulalongkorn University Objectives Analyze bending of thin plates Analyze for stress and deformation in plates subjected to bendingandtwistingbending and twisting Analyze for stress and deformation in plates subjected to distributed transverse loads Analyze for stress and deformation in plates subjected to combined loads Describe energy method for analyzing thin plates 2

Topics

Thin plates subjected to bending, twisting, distributed transverse and in-plane loading BendingofthinplateswithasmallinitialcurvatureBending of thin plates with a small initial curvature Energy method Characteristics ShtfthitilSheets of thin materials Resist membrane forces and bending

Pure Bending

Descriptions TheneutralplanedoesnotdeformandisusedastheTheneutral planedoes not deform and is used as the reference plane. Planes remain planes Strains can be determined in terms of z and the radii of curvature r. Direct stresses vary linearly across the thickness.
(2)

Pure Bending

Strain 5

 1 (xxyz xz E    

  

21 )() 1 1 (

x xy yyxz y

Ez z E   21 )() 1y yxEz

Pure Bending

Applied boundary Moments /2 2/2 /2 2/2

11 ()() 1 11 ()() 1

t xxxt xyxy t yyyt

Ez MyzydzMdzD Ez MxzxdzMdzD

     

   

  

6

1yxyx  3 2Flexural rigidity 12(1)Et D

1 () 1 ()

x xy y yx

MD MD

   

 

Pure Bending

Deflection 222 222 222 222

11 ()() 11 ()()

x xxy y

www MDD xxy www MDD yyx

    

      7

222 22 22If 0: 111 If : (1)

y yyx y xy xy

yyx ww M yx M MMM D

  

     

Bending & Tw isting

Description 8
(3)

Bending & Tw isting

Equilibrium 

0 cossinsincosnnxyxyxyFMACMABMBCMABMBC 9

  

  

 

  

22 cossinsin2 0 sincoscossin sin2cos2 2

0 0

nxyxy ttxyxyxy x

n y ttxy

MMMM FMACMABMBCMAB

F F

MBC MM MM

Bending & Tw isting

Principal Moments   

sin2cos2 2 0 Principal moments and curvatures

xy txy t

MM MM M 10

 2 tan2xy xy

M MM

Bending & Tw isting

Shear #1  



 

xyxyMyyzdz Mxxzdz  

  

  

/2 /2 /2 /2

xyxy t xy x

xyt t yxyt

Mxxzdz Mzdz GzdzM

Bending & Tw isting

Shear #2    , ww uzv xy vu  

    2 2

x xy

y xy w z xy   

     



232/2/22 /2/2 322

2 6 (1) 12(1)

tt xyxyttwGtw MGzdzGzdz xyxy Etww D xyxy

(4)

Transverse Load

Description 13

Shear strains are ignored.

Transverse Load

Equilibrium #1  

  

  

/2 /2 /2 /2 0

t xxzt t yyzt

Qdz Qdz F 14



      

0 ()()0 0

z yx xxyy yx

F QQ QxyQyQyxQxqxy xy QQ q xy

Transverse Load

Equilibrium #2  

 

 

/2 /2 /2 /2

t xxt t yyt

Mzdz Mxdz   

     

 

/2 /2 222

0 ()()

t xyyxxyt x xyy xyxyyy

MMxdz M MM MxyMyMyxMx xy QQyyy 15

         ()()0 222 0 0

yx yxx xyy y xyx x

QQyyy QyxyQxQqx yx MM Q xy MM Q yx

Transverse Load

Equilibrium #3   

22 200xyyxyyy yMMMMQ Q xyyxyy       

22 2 2222

00 From

xyxyxxx x yx xyyxyx

xyyxyy MMMMQ Q yxxyxx QQ q xy MMMM 16

    22

222 222

xyyxyx xyyx

q xyyxxy MMM q xyxy

(5)

Transverse Load

Displacement #1   

22222 2222(), (), (1)xyxywwwww MDMDMD xyxyyx  

        

222 22 22222222 222222 424

From 2 ()2(1)() ()2(1)

xyyx

yyy MMM q xyxy wwwww DDDq xyxyxxyyyx www  

44 ()wwq 17

 4222()2(1) xxyx    

2422 444 4224

() 2

Dyyxy wwwq Dxxyy   22

2 22()q w Dxy

Transverse Load

Displacement #2 22MMww     22 22 22

() ()

xyx x yxy y

MMww QD xyxxy MMww QD yxyxy 18

Transverse Load

BC #1: Simple Support Free to rotate, no deflection Alonganedgex

     

2 2 22 22

Along an edge 0, 0 M()0

BC BC

x ww w yy ww D xy   2 20, ()0BCBCw w x

Transverse Load

BC #2: Built-in Notorotation,nodeflectionNo to rotation, no deflection Along an edgex   0, 0BCw w x
(6)

Transverse Load

BC #3: Free No bending moments, twisting moments or vertical shearing forces Along an edge ()0()0()0x MMQ

       

33 32 22

()0, ()0, ()0 ()0 ((2))0

xBCxyBCxBC xy xBC BC

MMQ M Q y ww xxy ww 21

  22()()0xBCBCww M xy

Transverse Load

BC #3: Free No bending moments, twisting moments or vertical shearing forces Along an edge ()0()0()0x MMQ

       

33 32 22

()0, ()0, ()0 ()0 ((2))0

xBCxyBCxBC xy xBC BC

MMQ M Q y ww xxy ww 22

  22()()0xBCBCww M xy

Example

Transverse Load #1 A simply supported plate of dimension a×bis subjected to a uniform transverse load q.Determine the deflection and bending moment distributions. 23

Example

Transverse Load #2 444 4224

The deflection must satisfy 2wwwq Dxxyy   2 2 2 2

Boundary conditions 0 and at 0 and 0 and at y0 and y

Dxxyy w wxxa x w wb y

       24

11 11

Thus sinsin sinsin

mn mn mn mn

mxny wA ab mxny qa ab

 

  

 

 

(7)

Example

Transverse Load #3 00sinsinab abmxny qdxdy ab mxnymxny

 

 

  

0011 0

sinsinsinsin 4 For sinsin

ab mn mn mn a

mxnymxny adxdy abab ab a mxmx fdx aa a

 

 

   

  

25

00 when and when 2 For sinsin 0 when and whe 2

b

a fmmfmm nyny gdy bb b gnnf



   

n nn

Example

Transverse Load #4 444 422420wwwq Dxxyy   4224 2 422

()2()()()0 ()()0 1

mn mn mn mn

ammnn A aabbD amn A abD

  

 

   

 

26

422211 11

1 sinsin (/)(/) sinsinmn

mn mn mn

amxny w abDmanb mxny qa ab

  

  

  

  

Example

Transverse Load #5 200416 sinsinab mnqmxnyq adxdy ababmn 

 

62221,3,51,3,5 max62221,3,51,3,5

16sin(/)sin(/) (/)(/) 16sin(/2)sin(/2) at /2,/2 (/)(/)

mn mn

ababmn qmxanyb w Dmnmanb qmn wxayb Dmnmanb

    

  

     

 

,,,, max

(/)(/) 0.0443

mnmanb wq

  

4 3 if ,0.3a ab Et

Example

Transverse Load #6 22 42221,3,51,3,5 22

(/)(/)16 sinsin (/)(/) (/)(/)

x mn

manbqmxny M abmnmanb b

 

 

   



22 42221,3,51,3,5 ,max,max ,max,max

(/)(/)16 sinsin (/)(/) at /2,/2 0

y mn xy xy

manbqmxny M abmnmanb MMxayb MM

 



    



2 .0479 if,0.3 1212yx

qaab MzMz 33 ,max,max22 2 ,max,max2

, 66 , at 2 0.2871 if,0.3

yx xy yx xy xy

tt MMt z tt a qab t

  

  

(8)

Combined Loadings

Descriptions Combined loads TldTransverse loads In-plane forces 29

Combined Loadings

Equilibrium #1 0yxxNN xy   0xyyNN xy   30

2 20()cos()cos() ()0

x xxx yx yxyx

Nwww FNxyxNy xxxx N NyxNx y 

     

Combined Loadings

Equilibrium #2 2 xyNwww 31

2 2

()()()() (( ))xyz

xy xyzxyxy xy xy yx yxzyx

Nwww NNxyxNy xxxyy Nww Nxyxy xyxy Nww NNxyxy xyyx

N

  

        

Combined Loadings

Equilibrium #3 2 Nwww 32

2 2 2 2 2

()()()() ()()

x xzxx x x y yzy

xz

Nwww NNxyxNy xxxx Nww Nxyxy xxx Nww NNxyxy yy

N y

  

        

(9)

Combined Loadings

Equilibrium #4 ()()()()

zz zxyzyxzxzyz

RF RNNNN 

2 22 22 222 22

)2 (2)

xyxy zxy yx xy zxyxy

z

NNwww RxyNxyxy xyxyyx NNwwww NxyxyNxyxy xxyyxy www RNNNxy xyxy

R

  

        

  33

fromyxx

xyxy NN xy

   

 0 and 0 and in transverse loadxyyNN xy   444222 4224221 2(2)xyxywwwwww qNNN Dxyxxyyxy  

Initial Curvature

Descriptions 010 444 111 4224

Assume total deflection as the sume of initial 2

wwww www   4224 222 010101 22 2 0

()()()1 (22) Initial curvature is equivalent to the application of

xyxy x

xxyy wwwwww qNNN Dxyxy qN

     

22 000 222yxywww NN xyxy   34

0 11 126222211

sinsin, if is compressive, 0 sinsin, (/)(/)

mnxyxy mn mnx mnmn mnx

xyxy mxny wANNN ab ANmxny wBB abDamnambN

  

   

    

 

Energy Method

Descriptions 222 22 2222 2222

1 (2) 2 From (),(),(1)

xyxy xyxy

www UMMMxy xyxy wwww MDMDMD xyyx

 

     

Energy Method

Bending and Twisting 22222 222 2222 22222 22

()()22(1)() 2 For a rectangular plate ab

Dwwwww Uxy xyxyxy ab Dwwwww

    



22 222200 2 2

(()2(1)() 2 For bending only, 0 ( 2

ab xy

Dwwwww Udxdy xyxyxy M Dw U x

      



222 2 22200()2abwww dxdy yxy  



(10)

Energy Method

Transverse Load 00()abVwqxy Vwqdxdy

 



37

Energy Method

In-plane Loads #1 22 21 (1()) 2

axw w x xa

 

    38

2 0 2 0

2 1 (1()) 2 1 () 2 ()

a a xx

x w adx x w aadx x VNyNaay

       

 

Energy Method

In-plane Loads #2 21 ()abw VNdxdy



39

2 00 2 00

() 2 1 () 2

xx ab yy

VNdxdy x w VNdxdy y

    

  Energy Method

In-plane Loads #3 1 2 1 2

xyxy xyxy

ww VNx xy ww NyV 

     40

00 22 000

2 1 2 2 1 ()()2 2

xy ab xyxy abb xyxyxy

x xy

yy xy ww VNdxdy xy wwww VVVVNNNdxdy xyxy

      

  

(11)

Example

Energy #1 A simply supported plate of dimension a×bis subjected to a uniform transverse load q.Determine the deflection and bending moment distributions. 1 22222 22 222200sinsin (()2(1)() 2mn

m ab

mxny wA ab Dwwwww UVdxdy xyxyxy

 

   

 

41

00 62221,3,51,3,5

2 () 16sin(/)sin(/) (/)(/)

ab mn

xyxyxy wqdxdy qmxanyb w Dmnm

U anb

V  

 

 

  

 

Referensi

Dokumen terkait

Second, the note-taking pairs makes the students’ writing skill improve in hortatory exposition text at the 11th year of SMA N 1 Gemolong in 2009/2010 academic year.

THE EFFECT OF CORNELL NOTE TAKING TECHNIQUE ON THE NINTH YEAR STUDENTS’ READING COMPREHENSION ACHIEVEMENT AT SMP.. NEGERI 1 DIWEK JOMBANG IN 2010/2011

(4) Follow-up results in the form of strengthening supervision academic, analyze achievement of the objectives of teaching, learning skills to analyze the target, summed up

Based on the explanation above, this study has several objectives, namely (1) to describe the level of student academic burnout, (2) to analyze differences in student

Abstract – The objectives of this study are i) to determine an electrical property, especially resistance, of carbon (C), tin oxide (SnO 2 ), and C+SnO2 thin films. ii) to determine

In this study, mechanical properties of amorphous Al2O3 thin films were measured by in-situ tensile tests and critical bending radius was calculated based on tensile results.. Also,

Lee, McLoughlin and Chan 2008 note that most use of podcasting is as a ‘distribution Supplementary Substitutional Creative Receiving complete lecture recordings Creating podcasts to

v Note from Editors of RJES Volume 5 Number 2 Dear RJES Readers, We have finally come to another year end’s RJES Volume 5 Number 2 to our great satisfaction.. For this volume, we