1
O
Reference Path Frame
(x,y) coord
r
q
(r,q) coord
vx
vy
x
y
v
x x v
y y
vn
n
0
v v
t v
r
vr
vq
v
q r q v
r r
Path Reference
Frame
ax
ay
x
y
at
an
r
ar
aq
vt
a
x x a
y y
2 n
a v
a
t v
2
aq rq rq
2
ar r r
q
(n,t) coord
velocity meter
Summary: Three Coordinates (Tool)
Velocity Acceleration
Observer Observer’s
measuring tool
Observer
2
O
Reference Path Frame
(x,y) coord
r
q
(r,q) coord
vx
vy
x
y
v
x x v
y y
vn
n
0
v v
t v
r
vr
vq
v
q r q v
r r
Path Reference
Frame
ax
ay
x
y
at
an
r
ar
aq
vt
a
x x a
y y
2 n
a v
a
t v
2
aq rq rq
2
ar r r
q
(n,t) coord
velocity meter
Choice of Coordinates
Velocity Acceleration
Observer Observer’s
measuring tool
Observer
4
Path
(x,y) coord
r
q
(r,q) coord (n,t) coord velocity meter
Translating
Observer
Two observers (moving and not moving) see the particle moving the same way?
Observer O (non-moving) Observer’s
Measuring tool
Observer (non-rotating)
Two observers (rotating and non rotating) see the particle moving the same way?
Observer B (moving)
Rotating
No!
No!
“Translating-only Frame”
will be studied today
Which observer sees the “true” velocity?
both! It’s matter of viewpoint.
“Rotating axis”
will be studied later.
Point: if O
understand B’s motion, he can
describe the velocity which B sees.
This particle path, depends on specific observer’s viewpoint
“relative” “absolute”
A
“translating”
“rotating”
5
2/8 Relative Motion (Translating axises)
A = a particle to be studied
r
AA
Reference frame O
frame work O is considered as fixed (non-moving)
r
B If motions of the reference axis is known, then “absolute motion” of the particle can also be found.
O
Motions of A measured using framework O is called the “absolute motions”
For most engineering problems, O attached to the earth surface may be assumed “fixed”;
i.e. non-moving.
Sometimes it is convenient to describe motions of a particle “relative” to a moving “reference frame” (reference observer B)
B
Reference frame B B = a “(moving) observer”
B
r
A/ Motions of A measured by the observer at B is called the “relative motions of A with respect to B”
6
Relative position
If the observer at B use the x-y **
coordinate system to describe the position vector of A we have
j y i
x
r
ABˆ ˆ
/
where
= position vector of A relative to B (or with respect to B), and are the unit vectors along x and y axes
(x, y) is the coordinate of A measured in x-y frame
i ˆ
A Bˆ j r
/** other coordinates systems can be used; e.g. n-t.
r
BB
r
AB
r
A/A
X Y
x y
O
ˆ j
i ˆ
Here we will consider only the case where the x-y axis is not rotating (translate only)
J ˆ
I ˆ
7
( ˆˆˆˆ ) ( )
A B
r r xi yj xi yj
ˆˆˆˆ ( )
A B
r r xi yj xi yj
r
BB
r
A/
r
A BA
X Y
x y
O
ˆ j
i ˆ
x-y frame is not rotating (translate only)
Relative Motion (Translating Only)
Direction of frame’s unit vectors do not change
ˆ 0 i
ˆ j 0
0
/
v
A B/
aA B
0
/
A B A B
r r r
xi ˆˆ yj
Notation using when B is a translating frame.
B A B
A
v v
v
/B A B
A a a
a /
Note: Any 3 coords can be applied to Both 2 frames.
8
Understanding the equation
B A B
A v v
v /
Translation-only Frame!
Path
Observer O Observer B
This particle path, depends on specific observer’s viewpoint
r
AA
reference framework O
r
BO
B
reference frame work B
B
r
A/A
/
v
A O/
v
B OObserver O Observer O
Observer B
(translation-only
Relative velocity with O)
This is an equation of adding vectors of different viewpoint (world) !!!
O & B has a “relative” translation-only motion
9
The passenger aircraft B is flying with a linear motion to theeast with velocity vB = 800 km/h. A jet is traveling south with velocity vA = 1200 km/h. What velocity does A appear to a passenger in B ?
A B A B
v v v
Solution
B 800 v
A 1200 v
x y
vA B
q
jˆ 1200 iˆ
800
vA B
800 2 12002
vA B
1200 tanq 800
1200 ˆ
vA j vB 800iˆ
10
A B
A B
v a
A B A B
v v v
A B A B
a a a
18 ˆˆ 5 /
A 3.6
v i i m s
ˆ
23 /
a
A i m s
2 3 1 rad/s 60 10
q
q 0
Translational-only relative velocity
You can find v and a of B
11
v
Av
Bv
A/BVelocity Diagram x
y
a
Aa
Ba
A/BAcceleration Diagram x y
9 ˆˆ
( ) cos 45 sin 45 2 2
10
o o
vB i j i j
/ 3ˆˆ 2 /
A B A B
v v v i j m s
2 cos 45o ˆˆˆˆsin 45o 0.628 0.628
B B
a v i j i j
R
/ 3.628ˆˆ 0.628 /
A B A B
a a a i j m s
v
rad/s 10
q
9
B 10
v rq
q 0
2 B B
a v
R
5ˆ /
vA i m s ˆ 2
3 /
aA i m s
t 0
a rq
2 2 n
a r v q r
: /
B A rel B A
v v v r
?
?
/
A B A B
v v v
?
/
B A B A
v v v
B
?
/
A B A B
v v v
?
/
B A B A
v v v
Yes
Yes
Yes
No O
Is observer B a translating-only observer
relative with O
13
50 vA B
: obserber B, translating?
/ : obserber A, translating?
vB A
B
vA
To increase his speed, the water skier A cuts across the wake of the tow boat B, which has velocity of 60 km/h. At the instant when q = 30°, the actual path of the skier makes an angle = 50° with the tow rope. For this position determine the velocity v
Aof the skier and the value of
q Relative Motion:(Cicular Motion)
m 10
A B
A B
A B 10
v rq q
s m 67 . 6 16
. 3 vB 60
vA
60 120 20 40
sin120
v 40
sin 67 .
16 A
s m 5 . 22 vA
sin 20
16.67 10
sin 40
vA B q
0.887rad s q
30
D
M
?
O.K.?
Point: Most 2 unknowns can be solved with
1 vector (2D) equation.
A B A B
v v v
20
20 60
60
30
q 30
Consider at point A and B as r-q coordinate system
14
2/206 A skydriver B has reached a terminal speed . The airplane has the constant speed
and is just beginning to follow the circular path shown of curvature radius = 2000 m
Determine
(a) the vel. and acc. of the airplane relative to skydriver.
(b) the time rate of change of the speed of the
airplane and the radius of curvature of its path, both observed by the nonrotating skydriver.
B 0 a
50ˆ vA i
A 0
a
/ , /
B A B A
r q
50 / vB m s
50 ˆ v
B j
aA x 0 ( )aA t
A y ( )A n A2A
a a v
ˆˆ
2( ) 1.250 /
A y
a a j j m s
/
= - ,
/-
A B A B A B A B
v v v a a a
50 m/s vA
r
v
r50 m/s vB
/ 50ˆˆ 50
vA B i j
/ 1.250ˆ aA B j
15 /
v
A B/ aA B
(b) the time rate of change of the speed of the airplane and the radius of curvature of its path, both observed by the nonrotating skydriver.
r
v
rn
t
/ /
( ) sin 45o
r A B t A B
v a a
2 /
/ /
( ) cos 45o
A B
A B n A B r
v a a
/
,
/A B A B
v a
/ 50ˆˆ 50
vA B i j
/
1.250 ˆ a
A B j
B 0 a
50ˆ vA i
50 ˆ v
B j
ˆ
21.250 /
aA j m scoord n t
v
r
r45o 45o
16
1000 ˆ m /
A 3.6
v i s
ˆ 2
1.2 /
aA i m s
1500 ˆ /
B 3.6
v i m s
0 / 2
aB m s
, : relative world r q
/ , /
B A B A
r q
coord r q
/
,
/B A B A
v a
17
/ 500ˆ
BA 3.6
v i
/
1 .2 ˆ
BA
a i a v
q
( v
B A r/) r
r v cos q
120.3
(
vB A/)
q rq
q
0.00579
2
(aB A r/ ) r rq (aB A/ )q rq 2rq
0.637
r
0.166 10 3
q q
r
1000 ˆ m/
A 3.6
v i s
ˆ 2
1.2 /
aA i m s
1500 ˆ /
B 3.6
v i m s
0 / 2
aB m s
cos
v q
sin
vq
cos
a q
sin
a q
30o
coord r q
1800 1200 sin 30o 1200
r