• Tidak ada hasil yang ditemukan

第五章 討論與結論

第四節 結論

本研究納入十三篇文獻共基因變異42筆8項SNPs與乳癌發生關聯之個體層 次研究之摘要並利用統合分析了解基因變異與乳癌的關聯性。本研究和過去的 研究相比,統合結果之p較小且更為顯著。各基因變異SNP相較於其分別沒有 變異者,乳癌發生odds增加7%~28%。

49

參考文獻

日本人體生物資料庫. (2022). About BioBank Japan. https:

//biobankjp.org/en/index.html#01

世界衛生組織. (2022). Key Cancer Data and Key Figures on IARC 20202021.

https://www.iarc.who.int/biennial-report-2020-2021web/

何沁蓉. (2021). 精準醫療在「準」什麼?. https:

//scitechvista.nat.gov.tw/Article/c000008/detail?ID=d5939536-7414-4d42- a40b-90448b1dcb08

林麗娥, & 蕭銘華. (2021). 中央研究院楊泮池院士-發展 [精準健康], 打造全齡 健康的幸福臺灣. 科儀新知(229), 4-6.

美國人體生物資料庫. (2022). All of Us Research Program Overview. https:

//allofus.nih.gov/

英國人體生物資料庫. (2022). Learn more about UK Biobank. https:

//www.ukbiobank.ac.uk/

財團法人台灣癌症基金會. (2022). 乳癌的分期與治療. https:

//www.canceraway.org.tw/page.php?IDno=532

陳民虹. (2005). 乳癌的流行病學特徵及危險因子. 澄清醫護管理雜誌, 1(1), 30- 38.

陳秋慧. (2015). 乳癌基因檢測之臨床應用與倫理考量. 腫瘤護理雜誌, 15, 15-30.

照護線上編輯部. (2021). 不只看期別!HER2乳癌治療策略,醫師圖文詳解.

https://www.careonline.com.tw/2021/01/breast-cancer.html 臺灣人體生物資料庫. (2022). Biobank-世界與臺灣 https:

//www.twbiobank.org.tw/article.php?id=17

衛生福利部國民健康署. (2022). 108年癌症登記報告. https:

//www.hpa.gov.tw/Pages/TopicList.aspx?nodeid=269 衛生福利部統計處. (2022). 110年死因統計結果分析. https:

//dep.mohw.gov.tw/dos/lp-5069-113.html

Adedokun, B., Du, Z., Gao, G., Ahearn, T. U., Lunetta, K. L., Zirpoli, G., Figueroa, J., John, E. M., Bernstein, L., & Zheng, W. (2021). Cross-ancestry GWAS meta- analysis identifies six breast cancer loci in African and European ancestry women. Nature Communications, 12(1), 1-8. https://doi.org/10.1038/s41467- 021-24327-x

Ahmed, S., Thomas, G., Ghoussaini, M., Healey, C. S., Humphreys, M. K., Platte, R., Morrison, J., Maranian, M., Pooley, K. A., Luben, R., Eccles, D., Evans, D. G., Fletcher, O., Johnson, N., dos Santos Silva, I., Peto, J., Stratton, M. R.,

Rahman, N., Jacobs, K., Prentice, R., Anderson, G. L., Rajkovic, A., Curb, J.

D., Ziegler, R. G., Berg, C. D., Buys, S. S., McCarty, C. A., Feigelson, H. S., Calle, E. E., Thun, M. J., Diver, W. R., Bojesen, S., Nordestgaard, B. G., Flyger, H., Dörk, T., Schürmann, P., Hillemanns, P., Karstens, J. H., Bogdanova, N. V., Antonenkova, N. N., Zalutsky, I. V., Bermisheva, M., Fedorova, S., Khusnutdinova, E., Kang, D., Yoo, K. Y., Noh, D. Y., Ahn, S. H., Devilee, P., van Asperen, C. J., Tollenaar, R. A., Seynaeve, C., Garcia-Closas, M., Lissowska, J., Brinton, L., Peplonska, B., Nevanlinna, H., Heikkinen, T., Aittomäki, K., Blomqvist, C., Hopper, J. L., Southey, M. C., Smith, L., Spurdle, A. B., Schmidt, M. K., Broeks, A., van Hien, R. R., Cornelissen, S., Milne, R. L., Ribas, G., González-Neira, A., Benitez, J., Schmutzler, R. K., Burwinkel, B., Bartram, C. R., Meindl, A., Brauch, H., Justenhoven, C., Hamann, U., Chang-Claude, J., Hein, R., Wang-Gohrke, S., Lindblom, A., Margolin, S., Mannermaa, A., Kosma, V. M., Kataja, V., Olson, J. E., Wang, X., Fredericksen, Z., Giles, G. G., Severi, G., Baglietto, L., English, D. R., Hankinson, S. E., Cox, D. G., Kraft, P., Vatten, L. J., Hveem, K., Kumle, M., Sigurdson, A., Doody, M., Bhatti, P., Alexander, B. H., Hooning, M. J., van den Ouweland, A. M., Oldenburg, R. A., Schutte, M., Hall, P., Czene, K., Liu, J., Li, Y., Cox, A., Elliott, G., Brock, I., Reed, M. W., Shen, C. Y., Yu, J. C., Hsu, G. C., Chen, S. T., Anton-Culver, H., Ziogas, A., Andrulis, I. L., Knight, J. A., Beesley, J., Goode, E. L., Couch, F., Chenevix-Trench, G., Hoover, R.

N., Ponder, B. A., Hunter, D. J., Pharoah, P. D., Dunning, A. M., Chanock, S.

J., & Easton, D. F. (2009). Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nature Genetics, 41(5), 585-590. https:

//doi.org/10.1038/ng.354

Barendregt, J., & Doi, S. (2016). MetaXL User Guide Version 5.3. EpiGear International Pty Ltd. Queensland, Australia. In.Brandes, N., Linial, N., &

Linial, M. (2021). Genetic association studies of alterations in protein function expose recessive effects on cancer predisposition. Scientific Reports, 11(1), 14901. https://doi.org/10.1038/s41598-021-94252-y

Catalog, G. (2022). Diagram. https://www.ebi.ac.uk/gwas/diagram

Chou, W. C., Hsiung, C. N., Chen, W. T., Tseng, L. M., Wang, H. C., Chu, H. W., Hou, M. F., Yu, J. C., & Shen, C. Y. (2020). A functional variant near XCL1 gene improves breast cancer survival via promoting cancer immunity.

International Journal of Cancer, 146(8), 2182-2193. https:

//doi.org/10.1002/ijc.32855

Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D.,

51

Kolonel, L. K., Henderson, B. E., Le Marchand, L., Brennan, P., Sangrajrang, S., Gaborieau, V., Odefrey, F., Shen, C. Y., Wu, P. E., Wang, H. C., Eccles, D., Evans, D. G., Peto, J., Fletcher, O., Johnson, N., Seal, S., Stratton, M. R., Rahman, N., Chenevix-Trench, G., Bojesen, S. E., Nordestgaard, B. G., Axelsson, C. K., Garcia-Closas, M., Brinton, L., Chanock, S., Lissowska, J., Peplonska, B., Nevanlinna, H., Fagerholm, R., Eerola, H., Kang, D., Yoo, K.

Y., Noh, D. Y., Ahn, S. H., Hunter, D. J., Hankinson, S. E., Cox, D. G., Hall, P., Wedren, S., Liu, J., Low, Y. L., Bogdanova, N., Schürmann, P., Dörk, T., Tollenaar, R. A., Jacobi, C. E., Devilee, P., Klijn, J. G., Sigurdson, A. J., Doody, M. M., Alexander, B. H., Zhang, J., Cox, A., Brock, I. W., MacPherson, G., Reed, M. W., Couch, F. J., Goode, E. L., Olson, J. E.,

Meijers-Heijboer, H., van den Ouweland, A., Uitterlinden, A., Rivadeneira, F., Milne, R. L., Ribas, G., Gonzalez-Neira, A., Benitez, J., Hopper, J. L.,

McCredie, M., Southey, M., Giles, G. G., Schroen, C., Justenhoven, C., Brauch, H., Hamann, U., Ko, Y. D., Spurdle, A. B., Beesley, J., Chen, X., Mannermaa, A., Kosma, V. M., Kataja, V., Hartikainen, J., Day, N. E., Cox, D.

R., & Ponder, B. A. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447(7148), 1087-1093. https:

//doi.org/10.1038/nature05887

Fletcher, O., Johnson, N., Orr, N., Hosking, F. J., Gibson, L. J., Walker, K., Zelenika, D., Gut, I., Heath, S., Palles, C., Coupland, B., Broderick, P., Schoemaker, M., Jones, M., Williamson, J., Chilcott-Burns, S., Tomczyk, K., Simpson, G., Jacobs, K. B., Chanock, S. J., Hunter, D. J., Tomlinson, I. P., Swerdlow, A., Ashworth, A., Ross, G., dos Santos Silva, I., Lathrop, M., Houlston, R. S., &

Peto, J. (2011). Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. Journal of the National Cancer Institute, 103(5), 425-435. https://doi.org/10.1093/jnci/djq563

Garber, J. E., & Offit, K. (2005). Hereditary cancer predisposition syndromes. Journal of Clinical Oncology, 23(2), 276-292. https:

//doi.org/10.1200/JCO.2005.10.042

Gaudet, M. M., Kuchenbaecker, K. B., Vijai, J., Klein, R. J., Kirchhoff, T., McGuffog, L., Barrowdale, D., Dunning, A. M., Lee, A., Dennis, J., Healey, S., Dicks, E., Soucy, P., Sinilnikova, O. M., Pankratz, V. S., Wang, X., Eldridge, R. C., Tessier, D. C., Vincent, D., Bacot, F., Hogervorst, F. B., Peock, S., Stoppa- Lyonnet, D., Peterlongo, P., Schmutzler, R. K., Nathanson, K. L., Piedmonte, M., Singer, C. F., Thomassen, M., Hansen, T., Neuhausen, S. L., Blanco, I., Greene, M. H., Garber, J., Weitzel, J. N., Andrulis, I. L., Goldgar, D. E., D'Andrea, E., Caldes, T., Nevanlinna, H., Osorio, A., van Rensburg, E. J.,

Arason, A., Rennert, G., van den Ouweland, A. M., van der Hout, A. H., Kets, C. M., Aalfs, C. M., Wijnen, J. T., Ausems, M. G., Frost, D., Ellis, S.,

Fineberg, E., Platte, R., Evans, D. G., Jacobs, C., Adlard, J., Tischkowitz, M., Porteous, M. E., Damiola, F., Golmard, L., Barjhoux, L., Longy, M., Belotti, M., Ferrer, S. F., Mazoyer, S., Spurdle, A. B., Manoukian, S., Barile, M., Genuardi, M., Arnold, N., Meindl, A., Sutter, C., Wappenschmidt, B.,

Domchek, S. M., Pfeiler, G., Friedman, E., Jensen, U. B., Robson, M., Shah, S., Lazaro, C., Mai, P. L., Benitez, J., Southey, M. C., Schmidt, M. K., Fasching, P. A., Peto, J., Humphreys, M. K., Wang, Q., Michailidou, K., Sawyer, E. J., Burwinkel, B., Guénel, P., Bojesen, S. E., Milne, R. L., Brenner, H., Lochmann, M., Aittomäki, K., Dörk, T., Margolin, S., Mannermaa, A., Lambrechts, D., Chang-Claude, J., Radice, P., Giles, G. G., Haiman, C. A., Winqvist, R., Devillee, P., García-Closas, M., Schoof, N., Hooning, M. J., Cox, A., Pharoah, P. D., Jakubowska, A., Orr, N., González-Neira, A., Pita, G., Alonso, M. R., Hall, P., Couch, F. J., Simard, J., Altshuler, D., Easton, D. F., Chenevix-Trench, G., Antoniou, A. C., & Offit, K. (2013). Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk. Plos Genetics, 9(3), e1003173. https://doi.org/10.1371/journal.pgen.1003173 Haiman, C. A., Chen, G. K., Vachon, C. M., Canzian, F., Dunning, A., Millikan, R. C.,

Wang, X., Ademuyiwa, F., Ahmed, S., & Ambrosone, C. B. (2011). A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–

negative breast cancer. Nature Genetics, 43(12), 1210-1214. https:

//doi.org/10.1038/ng.985

Hall, J. M., Lee, M. K., Newman, B., Morrow, J. E., Anderson, L. A., Huey, B., &

King, M.-C. (1990). Linkage of early-onset familial breast cancer to chromosome 17q21. Science, 250(4988), 1684-1689. https:

//doi.org/10.1126/science.2270482

Hunter, D. J., Kraft, P., Jacobs, K. B., Cox, D. G., Yeager, M., Hankinson, S. E., Wacholder, S., Wang, Z., Welch, R., & Hutchinson, A. (2007). A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genetics, 39(7), 870-874. https:

//doi.org/10.1038/ng2075

Huo, D., Feng, Y., Haddad, S., Zheng, Y., Yao, S., Han, Y.-J., Ogundiran, T. O., Adebamowo, C., Ojengbede, O., & Falusi, A. G. (2016). Genome-wide association studies in women of African ancestry identified 3q26. 21 as a novel susceptibility locus for oestrogen receptor negative breast cancer.

53

Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J.-Y., Sackler, R. S., Haynes, C., Henning, A.

K., SanGiovanni, J. P., Mane, S. M., & Mayne, S. T. (2005). Complement factor H polymorphism in age-related macular degeneration. Science, 308(5720), 385-389. https://doi.org/10.1126/science.1109557 Kraft, P., Zeggini, E., & Ioannidis, J. P. (2009). Replication in genome-wide

association studies. Statistical Science A review Journal of the Institute of Mathematical Statistics, 24(4), 561. https://doi.org/10.1214/09-STS290 Li, J., Humphreys, K., Heikkinen, T., Aittomäki, K., Blomqvist, C., Pharoah, P.,

Dunning, A., Ahmed, S., Hooning, M., & Martens, J. (2010). A combined analysis of genome-wide association studies in breast cancer. Breast Cancer Research and Treatment, 126, 717-727. https://doi.org/10.1007/s10549-010- 1172-9

Lin, C.-Y., Ho, C.-M., Bau, D.-T., Yang, S.-F., Liu, S.-H., Lin, P.-H., Lin, T.-H., Tien, N., Shih, M.-C., & Lu, J.-J. (2012). Evaluation of breast cancer susceptibility loci on 2q35, 3p24, 17q23 and FGFR2 genes in Taiwanese women with breast cancer. Anticancer Research, 32(2), 475-482.

Long, J., Zhang, B., Signorello, L. B., Cai, Q., Deming-Halverson, S., Shrubsole, M.

J., Sanderson, M., Dennis, J., Michailiou, K., & Easton, D. F. (2013).

Evaluating genome-wide association study-identified breast cancer risk variants in African-American women. PloS One, 8(4), e58350. https:

//doi.org/10.1371/journal.pone.0058350

MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon, A., Milano, A., & Morales, J. (2017). The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog).

Nucleic Acids Research, 45(D1), D896-D901. https:

//doi.org/10.1093/nar/gkw1133

Michailidou, K., Beesley, J., Lindstrom, S., Canisius, S., Dennis, J., Lush, M. J., Maranian, M. J., Bolla, M. K., Wang, Q., Shah, M., Perkins, B. J., Czene, K., Eriksson, M., Darabi, H., Brand, J. S., Bojesen, S. E., Nordestgaard, B. G., Flyger, H., Nielsen, S. F., Rahman, N., Turnbull, C., Fletcher, O., Peto, J., Gibson, L., dos-Santos-Silva, I., Chang-Claude, J., Flesch-Janys, D., Rudolph, A., Eilber, U., Behrens, S., Nevanlinna, H., Muranen, T. A., Aittomäki, K., Blomqvist, C., Khan, S., Aaltonen, K., Ahsan, H., Kibriya, M. G., Whittemore, A. S., John, E. M., Malone, K. E., Gammon, M. D., Santella, R. M., Ursin, G., Makalic, E., Schmidt, D. F., Casey, G., Hunter, D. J., Gapstur, S. M., Gaudet, M. M., Diver, W. R., Haiman, C. A., Schumacher, F., Henderson, B. E., Le Marchand, L., Berg, C. D., Chanock, S. J., Figueroa, J., Hoover, R. N., Lambrechts, D., Neven, P., Wildiers, H., van Limbergen, E., Schmidt, M. K.,

Broeks, A., Verhoef, S., Cornelissen, S., Couch, F. J., Olson, J. E., Hallberg, E., Vachon, C., Waisfisz, Q., Meijers-Heijboer, H., Adank, M. A., van der Luijt, R. B., Li, J., Liu, J., Humphreys, K., Kang, D., Choi, J. Y., Park, S. K., Yoo, K. Y., Matsuo, K., Ito, H., Iwata, H., Tajima, K., Guénel, P., Truong, T., Mulot, C., Sanchez, M., Burwinkel, B., Marme, F., Surowy, H., Sohn, C., Wu, A. H., Tseng, C. C., Van Den Berg, D., Stram, D. O., González-Neira, A., Benitez, J., Zamora, M. P., Perez, J. I., Shu, X. O., Lu, W., Gao, Y. T., Cai, H., Cox, A., Cross, S. S., Reed, M. W., Andrulis, I. L., Knight, J. A., Glendon, G., Mulligan, A. M., Sawyer, E. J., Tomlinson, I., Kerin, M. J., Miller, N.,

Lindblom, A., Margolin, S., Teo, S. H., Yip, C. H., Taib, N. A., Tan, G. H., Hooning, M. J., Hollestelle, A., Martens, J. W., Collée, J. M., Blot, W., Signorello, L. B., Cai, Q., Hopper, J. L., Southey, M. C., Tsimiklis, H., Apicella, C., Shen, C. Y., Hsiung, C. N., Wu, P. E., Hou, M. F., Kristensen, V.

N., Nord, S., Alnaes, G. I., Giles, G. G., Milne, R. L., McLean, C., Canzian, F., Trichopoulos, D., Peeters, P., Lund, E., Sund, M., Khaw, K. T., Gunter, M. J., Palli, D., Mortensen, L. M., Dossus, L., Huerta, J. M., Meindl, A., Schmutzler, R. K., Sutter, C., Yang, R., Muir, K., Lophatananon, A., Stewart-Brown, S., Siriwanarangsan, P., Hartman, M., Miao, H., Chia, K. S., Chan, C. W., Fasching, P. A., Hein, A., Beckmann, M. W., Haeberle, L., Brenner, H., Dieffenbach, A. K., Arndt, V., Stegmaier, C., Ashworth, A., Orr, N.,

Schoemaker, M. J., Swerdlow, A. J., Brinton, L., Garcia-Closas, M., Zheng, W., Halverson, S. L., Shrubsole, M., Long, J., Goldberg, M. S., Labrèche, F., Dumont, M., Winqvist, R., Pylkäs, K., Jukkola-Vuorinen, A., Grip, M., Brauch, H., Hamann, U., Brüning, T., Radice, P., Peterlongo, P., Manoukian, S., Bernard, L., Bogdanova, N. V., Dörk, T., Mannermaa, A., Kataja, V., Kosma, V. M., Hartikainen, J. M., Devilee, P., Tollenaar, R. A., Seynaeve, C., Van Asperen, C. J., Jakubowska, A., Lubinski, J., Jaworska, K., Huzarski, T., Sangrajrang, S., Gaborieau, V., Brennan, P., McKay, J., Slager, S., Toland, A.

E., Ambrosone, C. B., Yannoukakos, D., Kabisch, M., Torres, D., Neuhausen, S. L., Anton-Culver, H., Luccarini, C., Baynes, C., Ahmed, S., Healey, C. S., Tessier, D. C., Vincent, D., Bacot, F., Pita, G., Alonso, M. R., Álvarez, N., Herrero, D., Simard, J., Pharoah, P. P., Kraft, P., Dunning, A. M., Chenevix- Trench, G., Hall, P., & Easton, D. F. (2015). Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 47(4), 373-380. https:

//doi.org/10.1038/ng.3242

55

Dicks, E., Lee, A., Turnbull, C., Rahman, N., Fletcher, O., Peto, J., Gibson, L., Dos Santos Silva, I., Nevanlinna, H., Muranen, T. A., Aittomäki, K.,

Blomqvist, C., Czene, K., Irwanto, A., Liu, J., Waisfisz, Q., Meijers-Heijboer, H., Adank, M., van der Luijt, R. B., Hein, R., Dahmen, N., Beckman, L., Meindl, A., Schmutzler, R. K., Müller-Myhsok, B., Lichtner, P., Hopper, J. L., Southey, M. C., Makalic, E., Schmidt, D. F., Uitterlinden, A. G., Hofman, A., Hunter, D. J., Chanock, S. J., Vincent, D., Bacot, F., Tessier, D. C., Canisius, S., Wessels, L. F., Haiman, C. A., Shah, M., Luben, R., Brown, J., Luccarini, C., Schoof, N., Humphreys, K., Li, J., Nordestgaard, B. G., Nielsen, S. F., Flyger, H., Couch, F. J., Wang, X., Vachon, C., Stevens, K. N., Lambrechts, D., Moisse, M., Paridaens, R., Christiaens, M. R., Rudolph, A., Nickels, S., Flesch-Janys, D., Johnson, N., Aitken, Z., Aaltonen, K., Heikkinen, T., Broeks, A., Veer, L. J., van der Schoot, C. E., Guénel, P., Truong, T., Laurent-Puig, P., Menegaux, F., Marme, F., Schneeweiss, A., Sohn, C., Burwinkel, B., Zamora, M. P., Perez, J. I., Pita, G., Alonso, M. R., Cox, A., Brock, I. W., Cross, S. S., Reed, M. W., Sawyer, E. J., Tomlinson, I., Kerin, M. J., Miller, N., Henderson, B. E., Schumacher, F., Le Marchand, L., Andrulis, I. L., Knight, J. A.,

Glendon, G., Mulligan, A. M., Lindblom, A., Margolin, S., Hooning, M. J., Hollestelle, A., van den Ouweland, A. M., Jager, A., Bui, Q. M., Stone, J., Dite, G. S., Apicella, C., Tsimiklis, H., Giles, G. G., Severi, G., Baglietto, L., Fasching, P. A., Haeberle, L., Ekici, A. B., Beckmann, M. W., Brenner, H., Müller, H., Arndt, V., Stegmaier, C., Swerdlow, A., Ashworth, A., Orr, N., Jones, M., Figueroa, J., Lissowska, J., Brinton, L., Goldberg, M. S., Labrèche, F., Dumont, M., Winqvist, R., Pylkäs, K., Jukkola-Vuorinen, A., Grip, M., Brauch, H., Hamann, U., Brüning, T., Radice, P., Peterlongo, P., Manoukian, S., Bonanni, B., Devilee, P., Tollenaar, R. A., Seynaeve, C., van Asperen, C. J., Jakubowska, A., Lubinski, J., Jaworska, K., Durda, K., Mannermaa, A.,

Kataja, V., Kosma, V. M., Hartikainen, J. M., Bogdanova, N. V., Antonenkova, N. N., Dörk, T., Kristensen, V. N., Anton-Culver, H., Slager, S., Toland, A. E., Edge, S., Fostira, F., Kang, D., Yoo, K. Y., Noh, D. Y., Matsuo, K., Ito, H., Iwata, H., Sueta, A., Wu, A. H., Tseng, C. C., Van Den Berg, D., Stram, D. O., Shu, X. O., Lu, W., Gao, Y. T., Cai, H., Teo, S. H., Yip, C. H., Phuah, S. Y., Cornes, B. K., Hartman, M., Miao, H., Lim, W. Y., Sng, J. H., Muir, K., Lophatananon, A., Stewart-Brown, S., Siriwanarangsan, P., Shen, C. Y., Hsiung, C. N., Wu, P. E., Ding, S. L., Sangrajrang, S., Gaborieau, V., Brennan, P., McKay, J., Blot, W. J., Signorello, L. B., Cai, Q., Zheng, W., Deming- Halverson, S., Shrubsole, M., Long, J., Simard, J., Garcia-Closas, M., Pharoah, P. D., Chenevix-Trench, G., Dunning, A. M., Benitez, J., & Easton,

D. F. (2013). Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 45(4), 353-361, 361e351-352. https:

//doi.org/10.1038/ng.2563

Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., Liu, Q., Cochran, C., Bennett, L. M., & Ding, W. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266(5182), 66-71. https://doi.org/10.1126/science.7545954

Nagrani, R., Mhatre, S., Rajaraman, P., Chatterjee, N., Akbari, M. R., Boffetta, P., Brennan, P., Badwe, R., Gupta, S., & Dikshit, R. (2017). Association of genome-wide association study (GWAS) identified SNPs and risk of breast cancer in an Indian population. Scientific Reports, 7(1), 1-8. https:

//doi.org/10.1038/srep40963

Purrington, K., Slager, S., Eccles, D., Yannoukakos, D., Fasching, P., Miron, P., Carpenter, J., Chang-Claude, J., Martin, N., & Montgomery, G. (2013).

Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer.

Carcinogenesis, 35(5), 1012-1019. https://doi.org/10.1093/carcin/bgt404 Rashkin, S. R., Graff, R. E., Kachuri, L., Thai, K. K., Alexeeff, S. E., Blatchins, M.

A., Cavazos, T. B., Corley, D. A., Emami, N. C., Hoffman, J. D., Jorgenson, E., Kushi, L. H., Meyers, T. J., Van Den Eeden, S. K., Ziv, E., Habel, L. A., Hoffmann, T. J., Sakoda, L. C., & Witte, J. S. (2020). Pan-cancer study detects genetic risk variants and shared genetic basis in two large cohorts. Nature Communications, 11(1), 4423. https://doi.org/10.1038/s41467-020-18246-6 Risch, N., & Merikangas, K. (1996). The future of genetic studies of complex human

diseases. Science, 273(5281), 1516-1517. https:

//doi.org/10.1126/science.273.5281.1516

Shan, J., Mahfoudh, W., Dsouza, S. P., Hassen, E., Bouaouina, N., Abdelhak, S., Benhadjayed, A., Memmi, H., Mathew, R. A., & Aigha, I. I. (2012). Genome- Wide Association Studies (GWAS) breast cancer susceptibility loci in Arabs:

susceptibility and prognostic implications in Tunisians. Breast Cancer Research and Treatment, 135(3), 715-724. https://doi.org/10.1007/s10549- 012-2202-6

Shu, X., Long, J., Cai, Q., Kweon, S.-S., Choi, J.-Y., Kubo, M., Park, S. K., Bolla, M.

K., Dennis, J., & Wang, Q. (2020). Identification of novel breast cancer susceptibility loci in meta-analyses conducted among Asian and European descendants. Nature Communications, 11(1), 1-9. https:

57

Michailidou, K., Stram, D. O., Beckmann, L., & Rhie, S. K. (2012). A meta- analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Human Molecular Genetics, 21(24), 5373-5384. https://doi.org/10.1093/hmg/dds381

Thomas, G., Jacobs, K. B., Kraft, P., Yeager, M., Wacholder, S., Cox, D. G., Hankinson, S. E., Hutchinson, A., Wang, Z., Yu, K., Chatterjee, N., Garcia- Closas, M., Gonzalez-Bosquet, J., Prokunina-Olsson, L., Orr, N., Willett, W.

C., Colditz, G. A., Ziegler, R. G., Berg, C. D., Buys, S. S., McCarty, C. A., Feigelson, H. S., Calle, E. E., Thun, M. J., Diver, R., Prentice, R., Jackson, R., Kooperberg, C., Chlebowski, R., Lissowska, J., Peplonska, B., Brinton, L. A., Sigurdson, A., Doody, M., Bhatti, P., Alexander, B. H., Buring, J., Lee, I. M., Vatten, L. J., Hveem, K., Kumle, M., Hayes, R. B., Tucker, M., Gerhard, D. S., Fraumeni, J. F., Jr., Hoover, R. N., Chanock, S. J., & Hunter, D. J. (2009). A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nature Genetics, 41(5), 579- 584. https://doi.org/10.1038/ng.353

Turnbull, C., Ahmed, S., Morrison, J., Pernet, D., Renwick, A., Maranian, M., Seal, S., Ghoussaini, M., Hines, S., Healey, C. S., Hughes, D., Warren-Perry, M., Tapper, W., Eccles, D., Evans, D. G., Hooning, M., Schutte, M., van den Ouweland, A., Houlston, R., Ross, G., Langford, C., Pharoah, P. D., Stratton, M. R., Dunning, A. M., Rahman, N., & Easton, D. F. (2010). Genome-wide association study identifies five new breast cancer susceptibility loci. Nature Genetics, 42(6), 504-507. https://doi.org/10.1038/ng.586

Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., & Posthuma, D. (2021). Genome-wide association studies. Nature Reviews Methods Primers, 1(1), 1-21. https:

//doi.org/10.1038/s43586-021-00056-9

Vogt, P. (1993). Cancer genes. Western Journal of Medicine, 158(3), 273. https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC1311753/pdf/westjmed00079- 0055.pdf

Wooster, R., Bignell, G., Lancaster, J., Swift, S., Seal, S., Mangion, J., Collins, N., Gregory, S., Gumbs, C., & Micklem, G. (1995). Identification of the breast cancer susceptibility gene BRCA2. Nature, 378(6559), 789-792. https:

//doi.org/10.1038/378789a0

Wu, S., Cai, J., Wang, H., Zhang, H., & Yang, W. (2013). Association between 1p11- rs11249433 polymorphism and breast cancer susceptibility: evidence from 15 case-control studies. PloS One, 8(8), e72526. https:

//doi.org/10.1371/journal.pone.0072526

Zhang, H., Ahearn, T. U., Lecarpentier, J., Barnes, D., Beesley, J., Qi, G., Jiang, X., O’Mara, T. A., Zhao, N., & Bolla, M. K. (2020). Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 52(6), 572-581. https:

//doi.org/10.1038/s41588-020-0609-2

59

附錄一森林圖(inverse variance heterogeneity (IVhet) model)

一、1p11.2 (EMBP1, rs11249433)

附圖 一 rs11249433與乳癌發生關聯之統合分析森林圖(IVhet)

二、3p24.1 (SLC4A7, rs4973768)

附圖 二 rs4973768與乳癌發生關聯之統合分析森林圖(IVhet)

三、5p15.33 (TERT, rs10069690)

附圖 三 rs10069690與乳癌發生關聯之次群組統合分析森林圖(IVhet)

四、8q24.21 (CASC8, POU5F1B, PCAT1, rs13281615)

附圖 四 rs13281615與乳癌發生關聯之統合分析森林圖(IVhet)

61

五、10q22.3 (ZMIZ1, rs704010)

附圖 五 rs704010與乳癌發生關聯之統合分析森林圖(IVhet)

六、10q26.13 (FGFR2, rs2981579)

附圖 六 rs2981579與乳癌發生關聯之次群組統合分析森林圖(IVhet)

七、14q32.11 (CCDC88C, rs941764)

附圖 七 rs941764與乳癌發生關聯之統合分析森林圖(IVhet)

八、16q12.1 (CASC16, rs3803662)

附圖 八 rs3803662與乳癌發生關聯之統合分析森林圖(IVhet)

63

附錄二 Michailidou et al. (2013)的森林圖(random-effects modelinverse variance heterogeneity (IVhet) model)

一、1p11.2 (EMBP1, rs11249433)

附圖 九 rs11249433與乳癌發生關聯之統合分析森林圖(上圖:Random Effects下圖:IVhet)

二、3p24.1 (SLC4A7, rs4973768)

附圖 十 rs4973768與乳癌發生關聯之統合分析森林圖(上圖:Random Effects下圖:IVhet)

65

三、5p15.33 (TERT, rs10069690)

附圖 十一 rs10069690與乳癌發生關聯之次群組統合分析森林圖(上圖:Random Effects下圖:IVhet)

四、8q24.21 (CASC8, POU5F1B, PCAT1, rs13281615)

附圖 十二 rs13281615與乳癌發生關聯之統合分析森林圖(上圖:Random Effects下圖:IVhet)

67

五、10q22.3 (ZMIZ1, rs704010)

附圖 十三 rs704010與乳癌發生關聯之統合分析森林圖(上圖:Random Effects下圖:IVhet)

六、10q26.13 (FGFR2, rs2981579)

附圖 十四 rs2981579與乳癌發生關聯之次群組統合分析森林圖(上圖:Random Effects下圖:IVhet)

69

七、14q32.11 (CCDC88C, rs941764)

附圖 十五 rs941764與乳癌發生關聯之統合分析森林圖(上圖:Random Effects下圖:IVhet)

八、16q12.1 (CASC16, rs3803662)

附圖 十六 rs3803662與乳癌發生關聯之統合分析森林圖(上圖:Random Effects下圖:IVhet)

Dokumen terkait