• Tidak ada hasil yang ditemukan

算) • 第八題及第九題只需要寫出完整積分式, 不需要把體積算出來.

N/A
N/A
Protected

Academic year: 2023

Membagikan "算) • 第八題及第九題只需要寫出完整積分式, 不需要把體積算出來."

Copied!
5
0
0

Teks penuh

(1)

Student ID number:

TA/classroom:

Guidelines for the test:

Put your name or student ID number on every page.

If you got more than 100 points, you will only get 100 points. (超過100分以100分計 算)

The exam is closed book; calculators are not allowed.

Please show all work, unless instructed otherwise. Partial credit will be given only for work shown. Print as legibly as possible - correct answers may have points taken off, if they’re illegible.

第八題及第九題只需要寫出完整積分式, 不需要把體積算出來.

Mark the final answer.

(2)

1. (5 pts) Suppose thatg(s, t) = f(x(s, t), y(s, t)), wheref is a differentiable function of xand yand where x=x(s, t) and y=y(s, t) both have continuous first-order partial derivatives. Use the table of values to calculate gs(0,0).

f g fx fy x y xs xt ys yt

(0,0) 3 6 4 8 1 2 1 1 1 0

(1,2) 6 3 2 5 3 6 3 6 4 8

2. (10 pts) Find the critical points of the given function and determine the type of the critical points (local maximum, local minimum, or saddle)

f(x, y) =x33xy+y3

3. (10 pts) Use Lagrange Multipliers to find the maximum and minimum values of the function f(x, y) =exy subject to the constraint x2+y2 = 8

4. (5 pts) Given f(x, y) =

x y

cos (t2)dt, find fx and fy.

(3)

5. (5 pts) Evaluate the iterated integral by first changing the order of integration.∫ 1

0

1

y

ex2dx dy

6. (5 pts) Evaluate

1 0

1 0

emax (x2,y2)dxdy

7. (10 points) Evaluate the integral

∫ ∫

R

y+ 3x dA, where R is the region bounded by y = 33x, y= 13x, y=x−3 and y=x−1, by making an appropriate change of variables.

8. (5 pts) Set up but Do Not Evaluate the triple integral for the volume of the tetrahedron enclosed by the coordinate planes and the plane 2x+y+z = 4

(4)

9. (10 pts) Q is the solid that lies above the cone z = √

x2+y2 and below the sphere x2+y2+z2 =z.

(a) Set up but Do Not Evaluate the triple iterated integral for the volume of Q in Cylindrical coordiantes.

(b) Set up but Do Not Evaluate the triple iterated integral for the volume of Q in Spherical coordiantes.

10. (a) (5 pts) Given that F⃗ =< y, x >, find an f(x, y) such that F⃗ =∇f

(b) (5 pts) 設路徑r為由點(1,0)沿橢圓 x122 + y222 = 1 之上半橢圓到(1,0), 則線積分

r

(y dx+x dy) =?

(5)

11. (5 pts) Evaluate the line integral

C

xsinz ds, whereC is the circular helix given by the equations x= cost,y = sint, z =t, 0≤t 2π.

12. (a) (5 pts) Given F⃗ =< xysinz,cosxz, ycosz >, compute div ⃗F

(b) (5 pts) Use the Divergence Theorem to calculate the surface integral∫ ∫

SF⃗·d ⃗S, whereSis the ellipsoidx2/12+y2/22+z2/32 = 1 andF⃗ =< xysinz,cosxz, ycosz >

13. Given F⃗ =< x2, y4 −x, z2sinz+x >, (a) (5 pts) compute curl ⃗F,

(b) (5 pts) use Stokes’ Theorem to evaluate∫

CF⃗·d⃗r, whereCis the circlex2+y2 = 9 on thexy-plane, oriented so that it is traversed counterclockwise when view from the positive z-axis. (C 為一圓且由上方看為逆時針運動)

Referensi

Dokumen terkait

高,電 阻下降可判知甲為非金屬。D純鍺的電阻= 1 5000*1000 kW=200 W,故判斷應為摻有 雜質的半導體。 今年的命題方式已經趨向合理化,去除了煩雜的計算(如 99 年指考非選第一題),也 降低了記憶性題目的數量(今年只有第 15 題),大部分都是簡單的知識應用、邏輯推理, 只要一些簡單的公式計算都可得出正確的答案。筆者認為這是一份不錯的題目。

主要轉介問題與需求條列式 伍、個案轉介會議可出席時間 請勾選可出席個案轉介會議的時段至少勾選3個以上的時段: 時間 第1節 第2節 第3節 第4節 第5節 第6節 第7節 第8節 星期一 星期二 星期三 星期四