• Tidak ada hasil yang ditemukan

Calculus (I)

N/A
N/A
Protected

Academic year: 2023

Membagikan "Calculus (I)"

Copied!
32
0
0

Teks penuh

(1)

Calculus (I)

WEN-CHING LIEN

Department of Mathematics National Cheng Kung University

2008

(2)

14.2 Limits and Continuity

Definition

An open disk with radius r centered at(x0,y0)∈R2 is the set

Br(x0,y0) ={(x,y)∈R2:p

(xx0)2+ (yy0)2<r}

A closed disk with radius r centered at(x0,y0)∈R2 is the set

B¯(x ,y ) ={(x,y)∈R2 :p

(xx )2+ (yy )2r}

(3)

14.2 Limits and Continuity

Definition

An open disk with radius r centered at(x0,y0)∈R2 is the set

Br(x0,y0) ={(x,y)∈R2:p

(xx0)2+ (yy0)2<r}

A closed disk with radius r centered at(x0,y0)∈R2 is the set

B¯(x ,y ) ={(x,y)∈R2 :p

(xx )2+ (yy )2r}

(4)

14.2 Limits and Continuity

Definition

An open disk with radius r centered at(x0,y0)∈R2 is the set

Br(x0,y0) ={(x,y)∈R2:p

(xx0)2+ (yy0)2<r}

A closed disk with radius r centered at(x0,y0)∈R2 is the set

B¯(x ,y ) ={(x,y)∈R2 :p

(xx )2+ (yy )2r}

(5)

14.2 Limits and Continuity

Definition

An open disk with radius r centered at(x0,y0)∈R2 is the set

Br(x0,y0) ={(x,y)∈R2:p

(xx0)2+ (yy0)2<r}

A closed disk with radius r centered at(x0,y0)∈R2 is the set

B¯(x ,y ) ={(x,y)∈R2 :p

(xx )2+ (yy )2r}

(6)

14.2 Limits and Continuity

Definition

An open disk with radius r centered at(x0,y0)∈R2 is the set

Br(x0,y0) ={(x,y)∈R2:p

(xx0)2+ (yy0)2<r}

A closed disk with radius r centered at(x0,y0)∈R2 is the set

B¯(x ,y ) ={(x,y)∈R2 :p

(xx )2+ (yy )2r}

(7)

(1)

Definition

The limit of f(x,y)is(x,y)approaches (x0,y0)is

(x,y)lim(x0,y0)f(x,y),

which is the number L such that ∀ǫ >0, ∃δ >0 such that

|f(x,y)−L|< ǫ,whenever(x,y)∈Bδ(x0,y0)− {(x0,y0)}

(8)

(1)

Definition

The limit of f(x,y)is(x,y)approaches (x0,y0)is

(x,y)lim(x0,y0)f(x,y),

which is the number L such that ∀ǫ >0, ∃δ >0 such that

|f(x,y)−L|< ǫ,whenever(x,y)∈Bδ(x0,y0)− {(x0,y0)}

(9)

(1)

Definition

The limit of f(x,y)is(x,y)approaches (x0,y0)is

(x,y)lim(x0,y0)f(x,y),

which is the number L such that ∀ǫ >0, ∃δ >0 such that

|f(x,y)−L|< ǫ,whenever(x,y)∈Bδ(x0,y0)− {(x0,y0)}

(10)

(1)

Definition

The limit of f(x,y)is(x,y)approaches (x0,y0)is

(x,y)lim(x0,y0)f(x,y),

which is the number L such that ∀ǫ >0, ∃δ >0 such that

|f(x,y)−L|< ǫ,whenever(x,y)∈Bδ(x0,y0)− {(x0,y0)}

(11)

(1)

Definition

The limit of f(x,y)is(x,y)approaches (x0,y0)is

(x,y)lim(x0,y0)f(x,y),

which is the number L such that ∀ǫ >0, ∃δ >0 such that

|f(x,y)−L|< ǫ,whenever(x,y)∈Bδ(x0,y0)− {(x0,y0)}

(12)

Example:

1 f(x,y) = x2+y2 Find lim

(x,y)(0,0)f(x,y) (ǫ, δargument)

2 lim

(x,y)(0,0)

x2−2y2

x2+y2 (x =0,y =0)

3 lim

(x,y)(0,0)

3xy

x2+y3 (y =mx)

(13)

Example:

1 f(x,y) = x2+y2 Find lim

(x,y)(0,0)f(x,y) (ǫ, δargument)

2 lim

(x,y)(0,0)

x2−2y2

x2+y2 (x =0,y =0)

3 lim

(x,y)(0,0)

3xy

x2+y3 (y =mx)

(14)

Example:

1 f(x,y) = x2+y2 Find lim

(x,y)(0,0)f(x,y) (ǫ, δargument)

2 lim

(x,y)(0,0)

x2−2y2

x2+y2 (x =0,y =0)

3 lim

(x,y)(0,0)

3xy

x2+y3 (y =mx)

(15)

Example:

1 f(x,y) = x2+y2 Find lim

(x,y)(0,0)f(x,y) (ǫ, δargument)

2 lim

(x,y)(0,0)

x2−2y2

x2+y2 (x =0,y =0)

3 lim

(x,y)(0,0)

3xy

x2+y3 (y =mx)

(16)

(2) Remark:

Suppose that lim

(x,y)(x0,y0)f(x,y) =L. If(xn,yn)n−→→∞(x0,y0),

then lim

n→∞

f(xn,yn) =L. 2

(17)

(2) Remark:

Suppose that lim

(x,y)(x0,y0)f(x,y) =L. If(xn,yn)n−→→∞(x0,y0),

then lim

n→∞

f(xn,yn) =L. 2

(18)

(2) Remark:

Suppose that lim

(x,y)(x0,y0)f(x,y) =L. If(xn,yn)n−→→∞(x0,y0),

then lim

n→∞

f(xn,yn) =L. 2

(19)

(2)Continuity

Definition

A function f(x,y)is continuous at(x0,y0)if 1 f(x,y)is defined at(x0,y0)

2 lim

(x,y)(x0,y0)f(x,y)exists 3 lim

(x,y)(x0,y0)f(x,y) = f(x0,y0)

(20)

(2)Continuity

Definition

A function f(x,y)is continuous at(x0,y0)if 1 f(x,y)is defined at(x0,y0)

2 lim

(x,y)(x0,y0)f(x,y)exists 3 lim

(x,y)(x0,y0)f(x,y) = f(x0,y0)

(21)

(2)Continuity

Definition

A function f(x,y)is continuous at(x0,y0)if 1 f(x,y)is defined at(x0,y0)

2 lim

(x,y)(x0,y0)f(x,y)exists 3 lim

(x,y)(x0,y0)f(x,y) = f(x0,y0)

(22)

(2)Continuity

Definition

A function f(x,y)is continuous at(x0,y0)if 1 f(x,y)is defined at(x0,y0)

2 lim

(x,y)(x0,y0)f(x,y)exists 3 lim

(x,y)(x0,y0)f(x,y) = f(x0,y0)

(23)

(2)Continuity

Definition

A function f(x,y)is continuous at(x0,y0)if 1 f(x,y)is defined at(x0,y0)

2 lim

(x,y)(x0,y0)f(x,y)exists 3 lim

(x,y)(x0,y0)f(x,y) = f(x0,y0)

(24)

Example 1:

Use the definition of continuity to show that f(x,y) =p

9+x2+y2 is continuous at (0,0)

(25)

Example 1:

Use the definition of continuity to show that f(x,y) =p

9+x2+y2 is continuous at (0,0)

(26)

Example 1:

Use the definition of continuity to show that f(x,y) =p

9+x2+y2 is continuous at (0,0)

(27)

Example 1:

Use the definition of continuity to show that f(x,y) =p

9+x2+y2 is continuous at (0,0)

(28)

Example 2:

Show that

f(x,y) =

4xy

x2+y2 , (x,y)6= (0,0) 0 , (x,y) = (0,0) is discontinuous at(0,0)

(29)

Example 2:

Show that

f(x,y) =

4xy

x2+y2 , (x,y)6= (0,0) 0 , (x,y) = (0,0) is discontinuous at(0,0)

(30)

Example 2:

Show that

f(x,y) =

4xy

x2+y2 , (x,y)6= (0,0) 0 , (x,y) = (0,0) is discontinuous at(0,0)

(31)

Example 2:

Show that

f(x,y) =

4xy

x2+y2 , (x,y)6= (0,0) 0 , (x,y) = (0,0) is discontinuous at(0,0)

(32)

Thank you.

Referensi

Dokumen terkait

Masyarakat ekonomi syariah Indonesia era 80-an dan sebelumnya bisa dikategorikan sebagai masyarakat yang bertipikal primary rules of obligation, yakni masyarakat

1 Digital Collection Transformation At The Library of National Cheng Kung University Taiwan: An Evaluation Transformasi Koleksi Digital di Perpustakaan National Cheng Kung