• Tidak ada hasil yang ditemukan

CHAPTER 4 ECONOMIC ORDER QUANTITY MODEL FOR ITEMS WITH IMPERFECT

5.3 Model Extensions

119

𝑄=οΏ½β„Ž 2𝐴𝑣𝐷

𝑣2οΏ½1βˆ’π·π‘ƒοΏ½βˆ’βˆ‘π‘šπ‘ =1β„Žπ‘ πœ‡π‘ +𝐷 βˆ‘π‘šπ‘ =1β„Žπ‘£1π‘ οΏ½πœ‡π‘ 2EοΏ½πœ‹π‘ 2οΏ½οΏ½1+Eπ‘₯�𝛾𝑠��+πœ‡π‘ E𝑃[πœ‹π‘ ]οΏ½1βˆ’EοΏ½π›Ύπ‘ οΏ½βˆ’π·π‘₯οΏ½οΏ½+2βˆ‘π‘šπ‘ =1β„Žπ‘£1π‘ πœ‡π‘ (1βˆ’E[πœ‹π‘ ])οΏ½1βˆ’π·π‘ƒοΏ½ (5.12) The denominator of Eq. (5.10) is positive since D < P, 0 < E[πœ‹π‘ ] < 1, and E[𝛾𝑠] +𝐷π‘₯ < 1.

To validate this approximation, one thousand examples were tried. That is, the exact and approximate production quantities were computed through Eq. (5.10) and Eq. (5.12) respectively. The difference between the costs calculated with these production quantities, was almost zero in one thousand cases. Thus, a solution procedure for the last two mechanisms would be as follows:

1. Estimate an approximate production quantity, using Eq. (5.12).

2. Estimate an approximate multiplier for supplier s using Eq. (5.11).

3. Determine integer values of the multipliers as βŒŠπΎπ‘ βŒ‹ and βŒˆπΎπ‘ βŒ‰

4. Determine an exact production quantity for each combination of the multipliers from step 3, using Eq. (5.10).

5. Determine an annual cost using Eq. (5.9), for each combination from step 3, using Q from step 4.

6. Determine an optimal annual cost of the supply chain as the minimum of the costs from step 4. This will indicate the optimal production quantity and the optimal set of multipliers.

120 while some defective items as non-defectives. In other words, they will attribute a percentage of defective to each supplier, different from the actual one. Thus, the defective items of type s classified by the inspection process would be

𝑄𝑠′ =π‘„πœ‡π‘ (1βˆ’E[𝛾𝑠])E[π‘š1] +π‘„πœ‡π‘ E[𝛾𝑠](1βˆ’E[π‘š2])

=π‘„πœ‡π‘ {(1βˆ’E[𝛾𝑠])E[π‘š1] + E[𝛾𝑠](1βˆ’E[π‘š2])} =π‘„πœ‡π‘ E[𝑀𝑠]

Thus, the fraction accommodating the leftovers of type s in a cycle, will be given as E[πœ‹π‘ π‘’] = 1βˆ’(E[𝑀max]βˆ’E[𝑀𝑠])

where E[𝑀max] = max{E[𝑀𝑠], 𝑠 = 1,2, … ,π‘š} and Eq. (5.1) can be written as

𝑄𝑠 =π‘„πœ‡π‘ {1βˆ’(E[𝑀max]βˆ’E[𝑀𝑠])} =π‘„πœ‡π‘ E[πœ‹π‘ π‘’] (5.13)

So, the vendor’s total cost of the raw materials can now be written as

πΆπ‘£π‘Ÿ(𝑄) =βˆ‘π‘šπ‘ =1οΏ½(π‘Žπ‘£π‘ +𝑑𝑠)π‘„πœ‡π‘ E[πœ‹π‘ π‘’] +β„Žπ‘£1𝑠2𝑄2οΏ½πœ‡π‘ 2EοΏ½πœ‹π‘ π‘’2 οΏ½(1+E[𝑀π‘₯ 𝑠])+οΏ½πœ‡π‘ E[πœ‹π‘ƒ 𝑠𝑒]οΏ½ οΏ½1βˆ’ E[𝑀𝑠]βˆ’π·π‘₯οΏ½οΏ½+ β„Žπ‘£1π‘ π‘„πœ‡π‘ (1βˆ’E[πœ‹π‘ π‘’])οΏ½E[𝑇]βˆ’π‘„π‘ƒοΏ½οΏ½

(5.14)

The defective raw material misclassified by an inspector ends up making a defective product. This is assumed to cost the vendor an extra 𝑐𝑓E[π‘š2]𝑄 βˆ‘π‘šπ‘ =1E[𝛾𝑠]. This may be taken as a goodwill cost or warranty cost. The loss due to misclassifying nondefective raw material is neglected for simplicity here. The rest of the model remains the same as in section 5.2.

5.3.2 Learning in Vendor’s Production Process

In this section, it is assumed that the vendor’s production process follows Wright (1936) learning curve. That is, vendor produces the final product at an increasing production rate which is consumed at a constant rate. Let us assume that Tpi, Tdi and Ti are the production time, depletion time and the cycle time, respectively, in any cycle, as shown in Figure 5.3. The process produces a fixed quantity Q and builds up a maximum inventory Zi, in each cycle i. The level of inventory in each cycle can be expressed as a function of time as

121 Φ𝑖(𝑑) =�𝑄(𝑑)βˆ’ 𝐷𝑑 0 <𝑑 <𝑇𝑝𝑖

𝐷𝑇𝑖 βˆ’ 𝐷𝑑 𝑇𝑝𝑖 <𝑑 <𝑇𝑖 (5.15)

Let us now assume that b is the learning exponent, while 0 ≀ bi< 1 is the learning exponent in cycle i of production. Faster learning is associated with higher values of b. The production time in a cycle i is written as

𝑇𝑝𝑖 =∫(π‘–βˆ’1)𝑄𝑖𝑄 𝑇1π‘₯βˆ’π‘π‘–π‘‘π‘₯ or

𝑇𝑝𝑖 =𝑇1𝑄1βˆ’π‘π‘–οΏ½π‘–1βˆ’π‘π‘–(1βˆ’π‘βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖) (5.16)

Figure 5.3 Vendor’s inventory of the final product with learning in ith cycle

where T1 = 1/P is the time to assemble (produce) the first unit on the learning curve. To understand the changing learning rate, assume that the vendor produces x units in one cycle and y units in the next. If T1 and T2 are times to produce the first unit in the two cycles, the time to produce the yth unit can be written as

𝑇𝑦 = 𝑇1(π‘₯+𝑦)βˆ’π‘ (5.17)

and

Time Zi

Tdi

Tpi

Ti

Inventory level

122 𝑇𝑦 = 𝑇2π‘¦βˆ’π‘2 or

𝑇𝑦 = 𝑇1(π‘₯+ 1)βˆ’π‘π‘¦βˆ’π‘2 (5.18)

Equating expressions (5.17) and (5.18), it can be written as 𝑏2 = 𝑏[log(π‘₯+𝑦)βˆ’log(π‘₯+1)]

log(𝑦)

In case of producing a fixed quantity Q in each cycle, the new learning rate can be written as 𝑏𝑖 =𝑏[log(𝑖𝑄)βˆ’log{(π‘–βˆ’1)𝑄+1}]

log(𝑄) (5.19)

Now, the average inventory of finished products in a cycle i can be written as

∫ Ξ¦0𝑇𝑖 𝑖(𝑑)𝑑𝑑= ∫0𝑇𝑝𝑖(𝑄 βˆ’ 𝐷𝑑)𝑑𝑑+𝑍𝑖𝑇2𝑑𝑖 After simplification, it can be written as

∫ Ξ¦0𝑇𝑖 𝑖(𝑑)𝑑𝑑= 𝑄2𝐷2βˆ’π‘‡1𝑄2βˆ’π‘π‘–(1βˆ’π‘οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖)(2βˆ’π‘π‘–) (5.20)

So, the vendor’s total cost of the finished products in cycle i would be 𝐢𝑣𝑓(𝑄) =𝐴𝑣+𝑐𝑇1𝑄1βˆ’π‘π‘–οΏ½π‘–(1βˆ’π‘1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖) +β„Žπ‘£2οΏ½2𝐷𝑄2βˆ’π‘‡1𝑄2βˆ’π‘π‘–(1βˆ’π‘οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖)(2βˆ’π‘π‘–) οΏ½

Inventory buildup behaves linearly when learning in production is fast. Therefore, using Eq. (5.2), the vendor’s total cost of the raw material, in cycle i would be

πΆπ‘£π‘Ÿ(𝑄)=βˆ‘π‘šπ‘ =1οΏ½(π‘Žπ‘£π‘ +𝑑𝑠)π‘„πœ‡π‘ E[πœ‹π‘ ] +β„Žπ‘£1π‘ π‘„πœ‡π‘ (1βˆ’E[πœ‹π‘ ])οΏ½E[𝑇]βˆ’π‘„π‘ƒοΏ½+ β„Žπ‘£1𝑠2𝑄2οΏ½πœ‡π‘ 2EοΏ½πœ‹π‘ 2οΏ½(1+E[𝛾π‘₯ 𝑠])+π‘„βˆ’π‘π‘–πœ‡π‘ E[πœ‹π‘ ]𝑇(1βˆ’π‘1�𝑖1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖) οΏ½1βˆ’E[𝛾𝑠]βˆ’π·π‘₯οΏ½οΏ½οΏ½

So, the vendor’s total cost in a cycle would be

123 𝐢𝑣(𝑄)=𝐴𝑣+

βˆ‘ οΏ½(π‘Žπ‘£π‘  +𝑑𝑠)π‘„πœ‡π‘ E[πœ‹π‘ ] +β„Žπ‘£1𝑠2𝑄2οΏ½πœ‡π‘ 2EοΏ½πœ‹π‘ 2οΏ½(1+E[𝛾π‘₯ 𝑠])+π‘„βˆ’π‘π‘–πœ‡π‘ E[πœ‹π‘ ]𝑇(1βˆ’π‘1�𝑖1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖) οΏ½1βˆ’E[𝛾𝑠]βˆ’

π‘šπ‘ =1

𝐷

π‘₯οΏ½οΏ½+β„Žπ‘£1π‘ π‘„πœ‡π‘ (1βˆ’E[πœ‹π‘ ])οΏ½E[𝑇]βˆ’π‘„π‘ƒοΏ½οΏ½+𝑐𝑇1𝑄1βˆ’π‘π‘–οΏ½π‘–(1βˆ’π‘1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖) +

β„Žπ‘£2�𝑄2𝐷2βˆ’ 𝑇1𝑄2βˆ’π‘π‘–(1βˆ’π‘οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖)(2βˆ’π‘π‘–) οΏ½ and the vendor’s annual cost would be E[π‘‡πΆπ‘ˆπ‘£(𝑄)]=𝐴𝑣𝐷

𝑄 +β„Žπ‘£2�𝑄2 βˆ’π‘‡1𝐷𝑄1βˆ’π‘π‘–(1βˆ’π‘οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖)(2βˆ’π‘π‘–) οΏ½+𝐷 βˆ‘π‘šπ‘ =1οΏ½β„Žπ‘£1𝑠2π‘„οΏ½πœ‡π‘ 2EοΏ½πœ‹π‘ 2οΏ½(1+E[𝛾π‘₯ 𝑠])+

π‘„βˆ’π‘π‘–πœ‡π‘ E[πœ‹π‘ ]𝑇1�𝑖1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

(1βˆ’π‘π‘–) οΏ½1βˆ’E[𝛾𝑠]βˆ’π·π‘₯οΏ½οΏ½+ (π‘Žπ‘£π‘ +𝑑𝑠)πœ‡π‘ E[πœ‹π‘ ]οΏ½+

βˆ‘π‘šπ‘ =1β„Žπ‘£1π‘ π‘„πœ‡π‘ (1βˆ’E[πœ‹π‘ ])οΏ½1βˆ’π·π‘ƒοΏ½+𝑐𝐷𝑇1π‘„βˆ’π‘π‘–οΏ½π‘–(1βˆ’π‘1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖)

(5.21)

Using Eq. (5.5), the total annual cost of the supply chain for the equal cycle time can be written as

E[π‘‡πΆπ‘ˆ(𝑄)]=(𝐴𝑣+βˆ‘π‘šπ‘ =1𝐴𝑠)𝐷

𝑄 +β„Žπ‘£2�𝑄2βˆ’π‘‡1𝐷𝑄1βˆ’π‘π‘–(1βˆ’π‘οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖)(2βˆ’π‘π‘–) οΏ½+ 𝐷 βˆ‘ οΏ½β„Žπ‘£1𝑠2π‘„οΏ½πœ‡π‘ 2EοΏ½πœ‹π‘ 2οΏ½(1+E[𝛾π‘₯ 𝑠])+π‘„βˆ’π‘π‘–πœ‡π‘ E[πœ‹π‘ ]𝑇(1βˆ’π‘1�𝑖1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖) οΏ½1βˆ’E[𝛾𝑠]βˆ’π·π‘₯οΏ½οΏ½+

π‘šπ‘ =1

(π‘Žπ‘£π‘ +𝑑𝑠)πœ‡π‘ E[πœ‹π‘ ]οΏ½+βˆ‘π‘šπ‘ =1β„Žπ‘£1𝑠𝑄𝑒𝑠(1βˆ’E[πœ‹π‘ ])οΏ½1βˆ’π·π‘ƒοΏ½+𝑐𝑇1π·π‘„βˆ’π‘π‘–οΏ½π‘–(1βˆ’π‘1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖)

(5.22)

Eq. (5.22) is convex in Q (see Appendix 6 for proof). An iterative procedure will be carried out to determine the level of learning, production quantity and the annual cost for ten cycles of learning. An average of these measures will be used to compare the results with those for the other scenarios studied in the chapter.

Using Eqs. (5.8) and (5.22), the annual cost of the supply chain in a cycle, for the integer multiplier mechanism, would be

E[π‘‡πΆπ‘ˆ(𝑄)]=𝐷�𝐴𝑣+βˆ‘

𝐴𝑠𝐾𝑠 π‘šπ‘ =1 οΏ½

𝑄 +β„Žπ‘£2�𝑄2βˆ’π‘‡1𝐷𝑄1βˆ’π‘π‘–(1βˆ’π‘οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖)(2βˆ’π‘π‘–) οΏ½+ (5.23)

124 𝐷 βˆ‘ οΏ½β„Žπ‘£1𝑠2π‘„οΏ½πœ‡π‘ 2EοΏ½πœ‹π‘ 2οΏ½(1+E[𝛾π‘₯ 𝑠])+π‘„βˆ’π‘π‘–πœ‡π‘ E[πœ‹π‘ ]𝑇(1βˆ’π‘1�𝑖1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖) οΏ½1βˆ’E[𝛾𝑠]βˆ’π·π‘₯οΏ½οΏ½+

π‘šπ‘ =1

(π‘Žπ‘£π‘ +𝑑𝑠)πœ‡π‘ E[πœ‹π‘ ]οΏ½+βˆ‘π‘šπ‘ =1β„Žπ‘£1π‘ π‘„πœ‡π‘ (1βˆ’E[πœ‹π‘ ])οΏ½1βˆ’π·π‘ƒοΏ½+

𝑐𝐷𝑇1π‘„βˆ’π‘π‘–οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

(1βˆ’π‘π‘–) +𝑄 βˆ‘π‘šπ‘ =1(𝐾2π‘ βˆ’1)β„Žπ‘ πœ‡π‘ 

For an approximate value of the multipliers in Eq. (5.23), substituting Ksfrom Eq. (5.11) in Eq. (5.23), we get

E[π‘‡πΆπ‘ˆ(𝑄)]=𝐴𝑣𝐷

𝑄 +βˆ‘π‘šπ‘ =1οΏ½οΏ½2π΄π‘ π·β„Žπ‘ πœ‡π‘  βˆ’π‘„β„Ž2π‘ πœ‡π‘ οΏ½+β„Žπ‘£2�𝑄2 βˆ’π‘‡1𝐷𝑄1βˆ’π‘π‘–(1βˆ’π‘οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖)(2βˆ’π‘π‘–) οΏ½+ 𝐷 βˆ‘ οΏ½β„Žπ‘£1𝑠2π‘„οΏ½πœ‡π‘ 2EοΏ½πœ‹π‘ 2οΏ½(1+E[𝛾π‘₯ 𝑠])+π‘„βˆ’π‘π‘–πœ‡π‘ E[πœ‹π‘ ]𝑇(1βˆ’π‘1�𝑖1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖) οΏ½1βˆ’E[𝛾𝑠]βˆ’π·π‘₯οΏ½οΏ½+

π‘šπ‘ =1

(π‘Žπ‘£π‘ +𝑑𝑠)πœ‡π‘ E[πœ‹π‘ ]οΏ½+ βˆ‘π‘šπ‘ =1β„Žπ‘£1π‘ π‘„πœ‡π‘ (1βˆ’E[πœ‹π‘ ])οΏ½1βˆ’π·π‘ƒοΏ½+

𝑐𝐷𝑇1π‘„βˆ’π‘π‘–οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

(1βˆ’π‘π‘–)

(5.24)

The convexity of Eq. (5.24) can be shown in a similar manner to that of Eq. (5.22) (see Appendix 6 for proof). Again, an approximate value of the production quantity and the learning rate would be computed through iterating Eq. (5.25). This will be used to calculate the real- numbered values of multipliers by employing Eq. (5.11). The integer multipliers would be the values βŒŠπΎπ‘ βŒ‹, βŒˆπΎπ‘ βŒ‰ respectively. The minimum for the second policy will be found by plugging these integer values in Eq. (5.24). Again, an average of the ten cycles of learning will be calculated here.

5.3.3 Learning in Suppliers’ Quality

In this section, it is assumed that the percentage of defectives per lot, from each supplier decreases following a learning curve. This improved quality may be attributed to the human learning in production and/or inspection at suppliers’ end. Jaber et al. (2008) discovered this behavior in the items of an automotive industry. They showed that the data follows a logistic learning curve of the form

125

𝛾(𝑖) =𝑔+π‘’π‘Žπ‘π‘– (5.25)

where a and g are the fit parameters while b is the learning rate and i is the number of shipments.

Substituting this in Eq. (5.9), it becomes

E[π‘‡πΆπ‘ˆ(𝑄)] =𝐷�𝐴𝑣+βˆ‘π‘„π‘šπ‘ =1𝐴𝑠𝐾𝑠�+𝑐𝐷𝑃 +𝑄2οΏ½β„Žπ‘£2οΏ½1βˆ’π·π‘ƒοΏ½+βˆ‘π‘š (πΎπ‘ βˆ’1)β„Žπ‘ πœ‡π‘ 

𝑠=1 οΏ½

+𝐷 βˆ‘π‘šπ‘ =1οΏ½(π‘Žπ‘£π‘ +𝑑𝑠)πœ‡π‘ E[πœ‹π‘ ] +β„Žπ‘£1𝑠2𝑄�𝑒𝑠2EοΏ½πœ‹π‘ 2οΏ½(1+E[𝛾π‘₯ 𝑠(𝑖)])+οΏ½πœ‡π‘ E[πœ‹π‘ƒ 𝑠]οΏ½ οΏ½1βˆ’ E[𝛾𝑠(𝑖)]βˆ’π·π‘₯οΏ½οΏ½οΏ½+βˆ‘π‘šπ‘ =1β„Žπ‘£1π‘ π‘„πœ‡π‘ (1βˆ’E[πœ‹π‘ ])οΏ½1βˆ’π·π‘ƒοΏ½

(5.26)

The second derivative test proves the convexity of above cost function, as in Eq. (5.6). This annual cost function will be iterated through ten shipments. The average level of quality (Ξ³s) will be used to approximate Eq. (5.12) and the procedure to find the multipliers will remain the same as in section 5.2.

5.3.4 Integrated Model

It would be more realistic to consider all the human factors at the same time in our model.

To do this, the inspection errors and learning in supplier’s quality will have to be incorporated in Eq. (5.22), i.e. the case of learning in production. The resulting equation would be

E[π‘‡πΆπ‘ˆ(𝑄)]=(𝐴𝑣+βˆ‘π‘šπ‘ =1𝐴𝑠)𝐷

𝑄 +β„Žπ‘£2�𝑄2βˆ’π‘‡1𝐷𝑄1βˆ’π‘π‘–(1βˆ’π‘οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖)(2βˆ’π‘π‘–) οΏ½+ 𝐷 βˆ‘ οΏ½β„Žπ‘£1𝑠2π‘„οΏ½πœ‡π‘ 2EοΏ½πœ‹π‘ π‘’2 οΏ½(1+E[𝛾π‘₯ 𝑠(𝑖)])+π‘„βˆ’π‘π‘–πœ‡π‘ E[πœ‹π‘ π‘’]𝑇(1βˆ’π‘1�𝑖1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖) οΏ½1βˆ’E[𝛾𝑠(𝑖)]βˆ’

π‘šπ‘ =1

𝐷

π‘₯οΏ½οΏ½+ (π‘Žπ‘£π‘  +𝑑𝑠)πœ‡π‘ E[πœ‹π‘ π‘’]οΏ½+ βˆ‘π‘šπ‘ =1β„Žπ‘£1𝑠𝑄𝑒𝑠(1βˆ’E[πœ‹π‘ π‘’])οΏ½1βˆ’π·π‘ƒοΏ½+

𝑐𝐷𝑇1π‘„βˆ’π‘π‘–οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

(1βˆ’π‘π‘–)

(5.27)

Similarly, for the integer multiplier mechanism, the annual cost would be

E[π‘‡πΆπ‘ˆ(𝑄)]=𝐷�𝐴𝑣+βˆ‘

𝐴𝑠𝐾𝑠 π‘šπ‘ =1 οΏ½

𝑄 +β„Žπ‘£2�𝑄2βˆ’π‘‡1𝐷𝑄1βˆ’π‘π‘–(1βˆ’π‘οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖)(2βˆ’π‘π‘–) οΏ½+ (5.28)

126 𝐷 βˆ‘ οΏ½β„Žπ‘£1𝑠2π‘„οΏ½πœ‡π‘ 2EοΏ½πœ‹π‘ π‘’2 οΏ½(1+E[𝛾π‘₯ 𝑠(𝑖)])+π‘„βˆ’π‘π‘–πœ‡π‘ E[πœ‹π‘ π‘’]𝑇(1βˆ’π‘1�𝑖1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

𝑖) οΏ½1βˆ’E[𝛾𝑠(𝑖)]βˆ’

π‘šπ‘ =1

𝐷

π‘₯οΏ½οΏ½+ (π‘Žπ‘£π‘  +𝑑𝑠)πœ‡π‘ E[πœ‹π‘ π‘’]οΏ½+βˆ‘π‘šπ‘ =1β„Žπ‘£1π‘ π‘„πœ‡π‘ (1βˆ’E[πœ‹π‘ π‘’])οΏ½1βˆ’π·π‘ƒοΏ½+

𝑐𝑇1𝑄1βˆ’π‘π‘–οΏ½π‘–1βˆ’π‘π‘–βˆ’(π‘–βˆ’1)1βˆ’π‘π‘–οΏ½

(1βˆ’π‘π‘–) +𝑄 βˆ‘π‘šπ‘ =1(𝐾2π‘ βˆ’1)β„Žπ‘ πœ‡π‘ 

Eq. (5.28) is convex in Q. A similar proof to the one in Appendix 6 can be applied here. An average of ten cycles of learning will be computed here for the production size and the annual cost.