Uniform Distribution Normal Distribution % Error Ξ³ Avg. Ξ³ Q EC Avg. Ξ³ Q EC % Q % EC 0.01 0.0050 1432 7074.2 0.0050 1419 7081.4 0.86% -0.10%
0.02 0.0100 1434 7084.7 0.0100 1424 7091.7 0.65% -0.10%
0.03 0.0150 1440 7098.0 0.0150 1429 7101.8 0.75% -0.05%
0.04 0.0200 1442 7108.9 0.0200 1435 7114.8 0.48% -0.08%
0.05 0.0250 1445 7115.2 0.0250 1440 7124.8 0.37% -0.13%
0.06 0.0300 1452 7132.0 0.0300 1445 7136.7 0.46% -0.07%
0.07 0.0350 1456 7144.6 0.0350 1449 7145.9 0.47% -0.02%
0.08 0.0399 1459 7153.9 0.0399 1455 7159.8 0.28% -0.08%
0.09 0.0450 1464 7166.5 0.0449 1460 7170.9 0.32% -0.06%
0.10 0.0500 1471 7181.5 0.0501 1466 7186.6 0.30% -0.07%
0.11 0.0549 1477 7195.9 0.0551 1472 7201.0 0.35% -0.07%
0.12 0.0600 1480 7205.9 0.0600 1474 7207.1 0.37% -0.02%
0.13 0.0650 1484 7221.3 0.0649 1482 7225.6 0.17% -0.06%
0.14 0.0699 1500 7235.4 0.0701 1487 7240.3 0.84% -0.07%
0.15 0.0750 1496 7248.5 0.0749 1490 7249.5 0.38% -0.01%
0.16 0.0800 1509 7262.2 0.0800 1496 7267.1 0.84% -0.07%
0.17 0.0850 1508 7284.8 0.0849 1501 7280.3 0.43% 0.06%
0.18 0.0900 1507 7287.9 0.0902 1510 7306.0 -0.20% -0.25%
0.19 0.0951 1516 7315.3 0.0950 1516 7321.7 0.04% -0.09%
0.20 0.1000 1523 7333.0 0.1003 1520 7334.8 0.20% -0.03%
177 APPENDIX 2 Expected Value of A in Equation (3.5)
From Eq. (3.5):
π΄ = 1βπ·
π₯ β(π1+πΎ) +πΎ(π1+π2) π΄2 = οΏ½οΏ½1βπ·
π₯οΏ½ β(π1+πΎ) +πΎ(π1+π2)οΏ½2 π΄2 = οΏ½1βπ·
π₯οΏ½
2
+ (π1+πΎ)2+πΎ2(π1+π2)2 β2οΏ½1βπ·
π₯οΏ½(π1+πΎ) β2πΎ(π1+πΎ)(π1+π2) + 2πΎ οΏ½1βπ·
π₯οΏ½(π1+π2) π΄2 = οΏ½1βπ·
π₯οΏ½
2
+ (π12+ 2π1πΎ+πΎ2) +πΎ2(π12+ 2π1π2+π22)β2οΏ½1βπ·
π₯οΏ½(π1+πΎ) β2πΎ(π12+π1π2+πΎπ1+πΎπ2) + 2πΎ οΏ½1βπ·
π₯οΏ½(π1+π2)
Now, the expected value of above expression including three random variables, is E[π΄2] =οΏ½1βπ·
π₯οΏ½
2
+ (E[π12] + 2E[π1]E[πΎ] + E[πΎ2])
+E[πΎ2](E[π12] + 2E[π1]E[π2] + E[π22])β2οΏ½1βπ·
π₯οΏ½(E[π1] + E[πΎ]) β2E[πΎ](E[π12] + E[π1]E[π2] + E[πΎ]E[π1] + E[πΎ]E[π2])
+2οΏ½1βπ·π₯οΏ½(E[πΎ]E[π1] + E[πΎ]E[π2])
(A2.1)
178 APPENDIX 3 Independence of Ξ³, m1 and m2
Assume x and y are independent random variables that are uniformly distributed; x~[a,b] and y~[d,c]. Then,
β« β«ππ ππ(1βπ₯)πβπ (1βπ¦)πβπ dπ¦dπ₯=(π+π)(π+π)4 β(π+π+π+π)2 + 1 (A3.1)
Now, (1βE[π₯])(1βE[π¦]) =οΏ½1βπ+π2 οΏ½ οΏ½1βπ+π2 οΏ½= 1β(π+π+π+π)2 +(π+π)(π+π)4 Therefore
(1βE[π₯])(1βE[π¦]) = β« β«ππ ππ(1βπ₯)πβπ (1βπ¦)πβπ dπ¦dπ₯ (A3.2)
Similarly,
β« β«ππ πππβππ₯ πβππ¦ dπ¦dπ₯=14οΏ½π2(πβπ)(πβπ)βπ2οΏ½(π2βπ2)=(π+π)(π+π)4 (A3.3)
and
E[π₯]E[π¦] =οΏ½π+π2 οΏ½ οΏ½π+π2 οΏ½= (π+π)(π+π)4 So,
E[π₯]E[π¦] =β« β«ππ πππβππ₯ πβππ¦ dπ¦dπ₯ (A3.4)
Now, let us assume that x and y are independent random variables that are exponentially distributed; x~[0,β) and y~[0,β), where Ξ» and Β΅ are the parameters of their exponential distributions. Then,
β« β«0β 0β(1β π₯)(1β π¦)πππβππ¦πβππ₯dπ¦dπ₯= οΏ½limπ₯ββlimπ¦ββ(1βπ+ππ₯)(1βπ+ππ¦)
πππππ¦+ππ₯ οΏ½ β(1βπ)(1βπ)ππ
β« β«0β 0β(1β π₯)(1β π¦)πππβππ¦πβππ₯dπ¦dπ₯= (πβ1)(πβ1)ππ (A3.5) and
(1βE[π₯])(1βE[π¦]) = οΏ½1β1ποΏ½ οΏ½1β1ποΏ½=(πβ1)(πβ1)ππ
179 Therefore,
(1βE[π₯])(1βE[π¦]) = οΏ½ οΏ½β(1β π₯)
0 (1β π¦)πππβππ¦πβππ₯dπ¦
β
0 dπ₯ (A3.6)
Similarly,
E[π₯]E[π¦] =β« β« π₯0β 0β π¦πππβππ¦πβππ₯dπ¦dπ₯= οΏ½limπ₯ββlimπ¦ββ(1+ππ₯)(1+ππ¦)
πππππ¦+ππ₯ οΏ½+ππ1
E[π₯]E[π¦] =β« β« π₯0β 0β π¦πππβππ¦πβππ₯dπ¦dπ₯= ππ1 (A3.7) and
E[π₯]E[π¦] =οΏ½1ποΏ½ οΏ½1ποΏ½= ππ1 Therefore,
E[π₯]E[π¦] =οΏ½ οΏ½ π₯β
0 π¦πππβππ¦πβππ₯dπ¦
β
0 dπ₯ (A3.8)
Based on the above, it can be cautiously assumed that when x and y are independent random variables that are normally distributed with probability density functions f(x) and f(y), then,
β« β«ββ+β ββ+β(1β π₯)(1β π¦)π(π₯)π(π¦)dπ¦dπ₯= (1β πΈ[π₯])(1β πΈ[π¦]).
Note that, for simplicity, the uniform distribution will be used throughout the thesis.
180 APPENDIX 4 Concavity of the Annual Profit in Eq. (4.15)
The expected total net revenue per cycle is:
πΈ[π ππΏ] = {π (1βE[πΎ]) +πE[πΎ]β π1}ππ = π΄ππ , where A > 0 since s > π1. The expected total cost per cycle is:
πΈ[ππΆππΏ(ππ)] =πΎ+ππΏππ+ β
2π·{ππ2E[(1β πΎ)2] +2ππππ(1βE[πΎ]) +ππ2} β2π·β οΏ½1βπππ ποΏ½2+(βππE[πΎ]+π1)οΏ½(ππ₯ π+π’π)1βπβπ’π1βποΏ½
1(1βπ) +βπ·(1βπ)ππ π2 β β οΏ½π₯1π·ππ ποΏ½
1 1βπ ππ π
π·(1βπ) The expected cycle time E[πππΏ] is:
E[ππππΏ(ππ)] =(1βE[πΎ])ππ π· βππ π
π· +π‘π π =(1βE[πΎ])ππ
π· βπ·1βππ
π₯11/π + π·1βππ (1β π)π₯11/π
= (1βE[πΎ])ππ
π· +π·1βππ π₯11/π οΏ½ π
1β ποΏ½= (1βE[πΎ])ππ π· +ππ π
π· οΏ½ π
1β ποΏ½= (1βE[πΎ])ππ+ππ
π· E[πππΏ] =(1βE[πΎ])ππ
π· βππ π
π· +π‘π π = (1βE[πΎ])ππ
π· βπ·1βππ
π₯11/π + π·1βππ (1β π)π₯11/π
=(1βE[πΎ])ππ· π+π·
1βππ
π₯11/ποΏ½1βππ οΏ½=(1βE[πΎ])ππ· π+ππ·π ποΏ½1βππ οΏ½= πΉππ +πΊ, where πΉ = (1βE[πΎ])π· > 0 and πΊ = ππ·π ποΏ½1βππ οΏ½> 0.
and Zi = (Dtsi β πsi), ππ = ππ π= οΏ½π· π₯οΏ½ οΏ½1 1
π , π‘π =π‘π π = π·
1βππ
(1βπ)π₯11/π =π·(1βπ)ππ π , π= ππ
or Zi = οΏ½π· π·
1βππ
(1βπ)π₯11/π β οΏ½π· π₯οΏ½ οΏ½1 1ποΏ½=οΏ½ π·
1π
(1βπ)π₯11/π β π·
π1
π₯11/ποΏ½=1βππ οΏ½π· π₯οΏ½ οΏ½1 1π =1βππ ππ π, Therefore, Zi is a constant.
The expected total profit per cycle is E[πππππΏ] =E[ππE[πππΏ]
ππΏ] =E[π ππΏE[π]βπΈ[ππΆππΏ]
ππΏ] = E[π E[πππΏ]
ππΏ]βπΈ[ππΆE[πππΏ]
ππΏ].
181 The per unit time revenue π= E[π E[πππΏ]
ππΏ] = π΄ππ
πΉππ+πΊ , ππ
πππ =π΄(πΉπ(πΉππ+πΊ)βπΉ(π΄ππ)
π+πΊ)2 = (πΉππΊ
π+πΊ)2> 0,βππ > 0 ,
π2π
πππ2 =β(πΉππΊ
π+πΊ)3 < 0,βππ > 0 is strictly increasing function in ππ. Furthermore, limππββπ β
π΄ πΉ > 0.
We need now to show that π = E[ππΆE[πππΏ]
ππΏ] is a convex function. To do so, it is easier to tackle each term or few terms together but not the whole function as this is a bit complex.
π1 =πΎ+ππΉπ πΏππ
π+πΊ , π
ππππ1 = βπΉ(πΎ+π(πΉπ πΏππ)
π+πΊ)2 , π2
πππ2π1 =2πΉ(πΉπ2(πΎ+ππΏππ)2
π+πΊ)3 >0, βππ > 0 (A4.1) π2 = 2π·β οΏ½ππ2EοΏ½(1βπΎ)2οΏ½+2ππΉπ πππ(1βE[πΎ])+ππ2οΏ½
π+πΊ (A4.2)
π2β² = ππ2EοΏ½(1βπΎ)πΉπ 2οΏ½
π+πΊ , π2β²β²= 2ππππΉππ(1βE[πΎ])
π+πΊ , π2β²β²β²= πΉπππ2
π+πΊ π
ππππ2β² = EοΏ½(1βπΎ)2οΏ½οΏ½2π(πΉππ(πΉππ+πΊ)βπΉππ2οΏ½
π+πΊ)2 =EοΏ½(1βπΎ)(πΉπ2οΏ½οΏ½πΉππ2+2πππΊοΏ½
π+πΊ)2 π2
πππ2π2β² =2EοΏ½(1βπΎ)2οΏ½οΏ½2(πΉπ(πΉππ+πΊ)2β2πΉππ(πΉππ+2πΊ)οΏ½
π+πΊ)4 =2EοΏ½(1βπΎ)(πΉπ 2οΏ½πΊ2
π+πΊ)3 > 0,βππ (A4.2a)
π
ππππ2β²β² =2ππ(1βE[πΎ]){(πΉππ+πΊ)βπΉππ}
(πΉππ+πΊ)2 = 2π(πΉππ(1βE[πΎ])πΊ
π+πΊ)2
π2
πππ2π2β²β²= β4πΉπΊπ(πΉππ(1βE[πΎ])
π+πΊ)3 <0,βππ
π
ππππ2β²β²β²= β(πΉππΉππ2
π+πΊ)2 , π2
πππ2π2β²β²β² =(πΉπ2πΉ2ππ2
π+πΊ)3 >0,βππ
Now since, ππ =1βππ ππ π , πΉ= (1βE[πΎ])π· and πΊ = ππ·π ποΏ½1βππ οΏ½=ππ·π
π2
πππ2π2β²β²+πππ
ππ2β²β²β²=β4πΉπ(πΉπππΊ(1βE[πΎ])
π+πΊ)3 +(πΉπ2πΉ2ππ2
π+πΊ)3=(πΉπ2πΉ2ππ2
π+πΊ)3β4πΉπΊπ(πΉππ(1βE[πΎ])
π+πΊ)3 π2
πππ2π2β²β²+πππ2
π2π2β²β²β²=(πΉπ2πΉππ
π+πΊ)3{πΉππ β2πΊ(1βE[πΎ])} =(πΉπ2πΉππ
π+πΊ)3[πΉππβ2πΉππ] =β(πΉπ2πΉ2ππ2
π+πΊ)3,
182 π3 = πΉπ1
π+πΊοΏ½βπ·(1βπ)ππ π2 β β οΏ½π₯1π·ππ ποΏ½
1 1βπ ππ π
π·(1βπ)β2π·β οΏ½1βπππ ποΏ½2οΏ½=πΉπ1
π+πΊοΏ½βπ·(1βπ)ππ π οΏ½ππ πβ οΏ½π₯1π·ππ ποΏ½
1 1βπβ
ππ π
2(1βπ)οΏ½οΏ½= πΉπ1
π+πΊοΏ½2π·β (1βπ)ππ π2 2οΏ½=πΉπ1
π+πΊοΏ½2π·β (1βπ)πππ2 2οΏ½=β
2π· π»ππ2 πΉππ+πΊ
π
ππππ3 = β2π·β (πΉππΉπ»ππ2
π+πΊ)2, π2
πππ2π4 = +(πΉππΉ2π»ππ2
π+πΊ)3 (A4.2b)
π2
πππ2π2β²β²+πππ
ππ2β²β²β²+πππ2
π2π3= β(πΉπ2πΉ2ππ2
π+πΊ)3+(πΉππΉ2π»ππ2
π+πΊ)3> 0 ββ2 +π» > 0ββ2 +(1βπ)π1 2> 0
Note that, (1β π)π2 holds its maximum value when b = 2/3 (set the first derivative to zero), where 1
(1βπ)π2 holds a minimum value of 1
(1β2/3)(2/3)2 =274, which means that β2 +(1βπ)π1 2is always positive for 0 < b < 1. Therefore, π2
πππ2π2+πππ2
π2π4 =πππ2
π2π2β²+πππ2
π2π2β²β²+πππ2
π2π2β²β²β²+πππ2
π2π3
>0, βQi.
Let π4 =(βππE[πΎ]+ππ₯ 1)οΏ½(ππ+π’π)1βπβπ’π1βποΏ½
1(1βπ)(πΉππ+πΊ) = βE[πΎ]
π₯1(1βπ)
πποΏ½(ππ+π’π)1βπβπ’π1βποΏ½
(πΉππ+πΊ) + βπ1
π₯1(1βπ)
οΏ½(ππ+π’π)1βπβπ’π1βποΏ½ (πΉππ+πΊ)
For simplicity, and without loss of generality, assume ππ =π, and π’π = (π β1)π, where i
β₯0, πΉπ+πΊ β ππ and
Let πβ²4 =πΌπππ2βπ, πβ²β²4 =π½πππ1βπ, where πΌ= βπΈ[πΎ]οΏ½ππ₯1βπβ(πβ1)1βποΏ½
1(1βπ)
and π½ =βπ1οΏ½π1βππ₯ β(πβ1)1βποΏ½
1(1βπ) π2
ππ2πβ²4 = βπΌπβππ(1βπ)ππ , π2
ππ2πβ²β²4 =π½(1+π)ππππβ1βπ
π2
ππ2πβ²4+πππ22πβ²β²4 = βπΌπβππ(1βπ)ππ + π½(1+π)ππππβ1βπ, π2
ππ2πβ²4+ π2
ππ2πβ²β²4 = 1
ππ1+ποΏ½βπΌπ(1β π) + π½(1 +π)π π οΏ½
βπΌπ(1β π) + π½(1+π)ππ > 0β1
π>πΌ
π½ (1βπ)
1+πβ π< πΈ[πΎ](1βπ)π1(1+π), which implies that π2
ππ2πβ²4+πππ22πβ²β²4
183 is positive for 0 <π < πΈ[πΎ](1βπ)π1(1+π). For larger values of Q, we notice that π2
ππ2πβ²5+πππ22πβ²β²5 will go asymptotic to zero. Showing that π2
ππ2πβ²5 +πππ22πβ²β²5>0 βπ> 0 my not be as strong as the other terms, but we can reasonably conclude that the sum of
π2
πππ2π1+πππ2
π2π2+πππ2
π2π3 +πππ2
π2π4 > 0,βππ > 0, suggesting that the expected unit time cost function, E[ππΆE[πππΏ]
ππΏ] , is convex in Q, of the form π΄
π₯+π΅π₯. It was shown that the expected unit time net revenue, π =E[π E[πππΏ]
ππΏ], is a monotonically increasing function in Q, πΆπ₯ The difference of these two functions, π= πΆπ₯ βπ΄π₯β π΅π₯, would be a concave function, π2π
ππ₯2 =β2π΄π₯2<0,βπ₯> 0, with a unique maximizer. Therefore Eq. (4.14) is a concave function in Q > 0.
184 APPENDIX 5 π[π π] in Chapter 5
It is assumed that the fraction of imperfect quality items per shipment from supplier s, πΎπ , is independent of those from other suppliers. So, it can be reasonably assumed that πΎπ are independent and identically distributed (i.i.d.) random variables with known probability density functions π(πΎπ ). The expected leftovers in a cycle are
E[ππ ] =ππ (E[πΎmax]βE[πΎπ ]) =ππ οΏ½ πΎ+β maxπ(πΎmax)π
ββ πΎmaxβ ππ οΏ½ πΎ+β sπ(πΎπ )π
ββ πΎπ (A5.1)
The fraction ππ is defined as ππ = 1β(πΎmaxβ πΎπ )
(ππ )2 = [1β(πΎmaxβ πΎπ )]2
(ππ )2 = 1β2(πΎmaxβ πΎπ ) + (πΎmaxβ πΎπ )2
(ππ )2 = 1β2πΎmaxβ2πΎπ + (πΎmax2β2πΎmaxπΎπ +πΎπ 2)
For i.i.d. fractions of defectives, the expected value of the above expression is
E[ππ 2] = 1β2E[πΎmax]β2E[πΎπ ] + E[πΎmax2]β2E[πΎmax]E[πΎπ ] + E[πΎπ 2] (A5.2)
185 APPENDIX 6 Convexity of the Annual Cost in Eq. (5.22)
Let us assume π΄π΄=
E[ππΆπ(π)]=(π΄π£+βππ =1π΄π )π·
π +βπ£2οΏ½π2βπ1π·π1βππ(1βποΏ½π1βππβ(πβ1)1βπποΏ½
π)(2βππ) οΏ½+ π· β οΏ½βπ£1π 2ποΏ½ππ 2EοΏ½ππ 2οΏ½(1+E[πΎπ₯ π ])+πβππππ E[ππ ]π(1βπ1οΏ½π1βππβ(πβ1)1βπποΏ½
π) οΏ½1βE[πΎπ ]βπ·π₯οΏ½οΏ½+
ππ =1
(ππ£π +ππ )ππ E[ππ ]οΏ½+ βππ =1βπ£1π ππ’π (1βE[ππ ])+ππ1π·πβπποΏ½π(1βπ1βππβ(πβ1)1βπποΏ½
π)
It should be noticed that the production quantity in every cycle of learning was taken to be Q.
ππ΄π΄
ππ = β(π΄π£+βπππ =12 π΄π )π·+βπ£2οΏ½12βπ1π·πβπποΏ½π(2βπ1βππβ(πβ1)1βπποΏ½
π) οΏ½+π· βππ =1οΏ½βπ£1π 2 οΏ½ππ 2EοΏ½ππ 2οΏ½(1+E[πΎπ₯ π ])+ πβππππ E[ππ ]π1{π1βππβ(π β1)1βππ}οΏ½1βE[πΎπ ]βπ·π₯οΏ½οΏ½οΏ½+ βππ =1βπ£1π π’π (1βE[ππ ])β ππππ1π·πβππβ1(1βποΏ½π1βππβ(πβ1)1βπποΏ½
π)
π2π΄π΄
ππ2 =2(π΄π£+βπππ =13 π΄π )π·+βπ£2οΏ½πππ1π·οΏ½ππ1βππ1+ππ(2βπβ(πβ1)1βπποΏ½
π) οΏ½ β
β οΏ½ππβπ£1π ππ E[ππ ]π1π·οΏ½π1βππ2π1+ππβ(πβ1)1βπποΏ½οΏ½1βE[πΎπ ]βπ·π₯οΏ½οΏ½+ππ(1+ππ)πππ12+πππ·οΏ½π1βππ(1βπβ(πβ1)1βπποΏ½
π)
ππ =1
(A6.1)
where
2(π΄π£+βπ π΄π π =1 )π·
π3 > 0, βQ > 0 since D > 0, Av > 0, and As > 0.
πππ(1+ππ)ππ12+πππ·οΏ½π1βππ(1βπβ(πβ1)1βπποΏ½
π) > 0, since 0β€ ππ < 1, π1 > 0, c > 0, and π1βππβ(π β1)1βππβ₯ 0 Now we need to need to prove that:
πππ1π·οΏ½π1βππβ(πβ1)1βπποΏ½ π1+ππ οΏ½(2βπβπ£2
π)οΏ½ β βππ =1οΏ½βπ£1π ππ E[ππ ]οΏ½1βE[πΎ2 π ]βπ·π₯οΏ½οΏ½> 0 As πππ1π·οΏ½π1βππβ(πβ1)1βπποΏ½
π1+ππ > 0, it reduces to
οΏ½(2βπβπ£2
π)οΏ½ β βππ =1οΏ½βπ£1π ππ E[ππ ]οΏ½1βE[πΎ2 π ]βπ·π₯οΏ½οΏ½> 0 (A6.2)
186 For the case of the supplier with maximum fraction of defectives, where πΎπππ₯ β πΎπ =0, E[ππ ] = 1. Besides, we can assume without loss of generality, that ππ =π, βπ£1π = βπ£1, ππ = π and πΎπ = πΎ. Expression (A6.2) can then be written as
οΏ½(2βπ)βπ£2 οΏ½ β βπ£1ππ2 οΏ½1β πΈ[πΎ]βπ·π₯οΏ½ (A6.3)
By definition, each unit of a finished product consist of mΒ΅ units with unit cost of a finished product being πππ’π+ππ where ππ’ and ππ are the unit purchase cost of raw material and the unit production cost of the finished product respectively. Therefore, βπ£2 =ποΏ½ππ’ππ+πποΏ½ and βπ£1= ππ’π, where k is the interest rate. So, following the Eq. (A6.3), we are left to prove
οΏ½ποΏ½ππ’(2βπ)ππ+πποΏ½ οΏ½ β πππ’ππ2 οΏ½1β πΈ[πΎ]βπ·π₯οΏ½> 0 or
πππ
(2βπ)+ππ(2βπ)π’ππ βπππ’2πποΏ½1β πΈ[πΎ]βπ·π₯οΏ½> 0 or
πππ
(2βπ)+πππ’ππ οΏ½(2βπ) 1 β12οΏ½1β πΈ[πΎ]βπ·π₯οΏ½οΏ½> 0 which is true if
1
2βπβ12οΏ½1β πΈ[πΎ]βπ·π₯οΏ½> 0 or
1
2βπβπ2 > 0 where π=1β πΈ[πΎ]βπ·π₯
β 1
2βπ>π2 or
1
π>2βπ2 .
Since 0β€ π< 1 and W < 1, then 2βπ
2 < 1, which makes 1
π>2βπ2 True.
Therefore,
οΏ½(2βπβπ£2
π)οΏ½ β βππ =1οΏ½βπ£1π ππ E[ππ ]οΏ½1βE[πΎ2 π ]βπ·π₯οΏ½οΏ½> 0, and π2π΄
ππ2 > 0βQ > 0, suggesting that AA is convex in Q.
187 APPENDIX 7 Convexity of the Annual Cost in Eq. (6.14)
E[ππΆππ] =π·π2
π οΏ½ π΄π£
π +π΄ποΏ½+ππ·π2+βπππ·π1π2
π₯ +βπ£π·π2π1βπ
π(1β π) οΏ½{1 + (π β1)π}1βπβ{(π β1)π}1βπ βπ1βπ{π1βπβ(π β1)1βπ}
(2β π) οΏ½
+βπ£(π β1)ππ2
2π· +ππ2(ππ)βπ{π1βπβ(π β1)1βπ}
π(1β π) +βππ(1β π1) 2 d
dQ E[ππΆππ] =βπ·π2
π2 οΏ½π΄π£
π +π΄ποΏ½+βππ·π1π2
π₯ +βπ£π·π2πβπ
π οΏ½{1 + (π β1)π}1βπβ{(π β1)π}1βπ βπ1βπ{π1βπβ(π β1)1βπ}
(2β π) οΏ½
+βπ£(π β1)π2
2π· βπππ2πβππβ1βπ{π1βπβ(π β1)1βπ}
π(1β π) +βπ(1β π1) 2 d2
dQ2E[ππΆππ] =2π·π2
π3 οΏ½π΄π£
π +π΄ποΏ½ βπβπ£π·π2πβ1βπ
π οΏ½{1 + (π β1)π}1βπβ{(π β1)π}1βπ βπ1βπ{π1βπβ(π β1)1βπ}
(2β π) οΏ½
+πππ2πβππβ2βπ{π1βπ β(π β1)1βπ} π
π1βπ{π1βπβ(π β1)1βπ} > 0, since π β₯1, π β₯1, and 0β€ π < 1.
2π·π2
π3 οΏ½π΄ππ£+π΄ποΏ½> 0,βπ> 0 , since all the other parameters are > 0
πππ2πβππβ2βποΏ½π1βπβ(πβ1)1βποΏ½
π > 0,βπ> 0 , since all the parameter are positive and π1βπ β (π β1)1βπ > 0,βπ β₯1 πππ 0β€ π < 1
+πβπ£π·π2ππβ1βποΏ½π1βποΏ½π1βπ(2βπ)β(πβ1)1βποΏ½οΏ½> 0,βπ> 0, , since all the parameter are positive and π1βπβ (π β1)1βπ > 0,βπ β₯1 πππ 0β€ π < 1.
188 Observation 1
π= {1 + (π β1)π}1βπ β{(π β1)π}1βπ holds a maximum value of 1 when π= 1 when π β₯1, 0β€ π< 1. As i increase, f approaches zero. It approaches zero faster when n is large and b is close to 1. (the proof is below)
:
πβ²= (1β π)(1β π){1 + (π β1)π}βπβ(1β π)(1β π)1βππβπ β€0,β
{1 + (π β1)π}βπβ(1β π)βππβπβ€ 0β{1 + (π β1)π}βπ β€ (1β π)βππβπβ
οΏ½1+(πβ1)π(1βπ)π οΏ½βπ β€1 βοΏ½(1βπ)π1 + 1οΏ½βπ β€ 1, True
πβ²β² =βπ(1β π)(1β π)2{1 + (π β1)π}β1βπ+ (1β π)π(1β π)1βππβ1βπ< 0β
β(1β π){1 + (π β1)π}β1βπ+ (1β π)βππβ1βπ < 0ββ(1β π){1 + (π β1)π}β1βπ<
β(1β π)βππβ1βπββ(π β1)1+ποΏ½1+(πβ1)π(πβ1)π οΏ½β1βπ > 1 for every i > 1
Observation 2
Since the term πβπ£π·π2ππβ1βπ β0 as Q increases (where 0<b<1, (D/P<1), M2 >0, hv>0), then from observations 1 and 2, we can safely assume that the impact of πβπ£π·π2ππβ1βππ in d2
dQ2E[ππΆππ] is insignificant as it is very close to zero.
:
Therefore, π2
ππ2E[ππΆππ] > 0,βπ> 0, and Eq. (6.14) is convex with a unique minimizer.
189 APPENDIX 8 Hill (1997) Generalized Model
The behavior of vendorβs inventory in the Hillβs (1997) generalized model is described in Figure 6.1.
The vendorβs total inventory in a cycle is πΌπ£ =π2π2
2π +ππ2(π β1)(π β π·)
ππ· βπ(π β1)π2
2π· =ππ2
2π· οΏ½(π β1)β(π β2)π· ποΏ½
So, the total annual cost of the supply chain would be ππΆ(π,π) =(π΄π£+ππ΄π)π·
ππ +βπ£π
2 οΏ½(π β1)β(π β2)π·
ποΏ½+βππ 2 or
ππΆ(π,π) =(π΄π£+ππ΄π)π·
ππ +βπ£οΏ½π·π
π +(π β π·)ππ
2π οΏ½+(βπβ βπ£)π 2
190 APPENDIX 9 Optimality of the Annual Cost in Eq. 7.16
Let
πΆ = E[ππΆππ] =π·π2
π οΏ½ π΄π£
π +π΄ποΏ½+ππ·π2 +οΏ½βπ+βπ£β²οΏ½π
2 οΏ½π+π·
π+π·π2οΏ½2π1
π₯ β π ποΏ½οΏ½
+π·π2 π οΏ½
βπ£{π1βπβ(π β1)1βπ}(ππ)1βπ
2β π +π(ππ)βπ{π1βπβ(π β1)1βπ}
1β π οΏ½
(A9.1)
π=π·π2οΏ½π΄π£
π +π΄ποΏ½,π=π·π2{π1βπβ(π β1)1βπ} π
Differentiating Eq.(A9.1) with respect to Q:
ππΆ
ππ= β π
π2+οΏ½βπ+βπ£β²οΏ½
2 οΏ½π+π·
π +π·π2οΏ½2π1 π₯ β
π
ποΏ½οΏ½+(1β π)βπ£ππ1βππβπ
2β π βπππβπππβπβ1 1β π π2πΆ
ππ2 =2π
π3βπ(1β π)βπ£ππ1βππβπβ1
2β π +π(1 +π)πππβππβπβ2
1β π (A9.2)
From the other Appendices, we know that the bracket of i in Y is positive. The first term in Eq.
(A9.2) is positive. So, we are left to prove that
βπ(1β π)βπ£ππ1βππβπβ1
2β π +π(1 +π)πππβππβπβ2 1β π > 0 π(1 +π)ππ
ππ(1β π)ππ+2 β π(1β π)βπ£π
ππβ1(2β π)ππ+1> 0 (1 +π)π
(1β π)π β(1β π)πβπ£ (2β π) > 0
Substituting ππ/π· for βπ£, where π is the interest rate:
(1 +π)π (1β π)π β
π(1β π) (2β π) οΏ½ππ
π·οΏ½> 0 (1 +π)
(1β π)π β
π(1β π) (2β π) οΏ½π
π·οΏ½> 0 (A9.3)
Rewriting expression (A9.3)
191 (1 +π)
(1β π) >
ππ(1β π) (2β π) οΏ½π
π·οΏ½
(1 +π)(2β π) π(1β π)2 >ππ
π·
The right hand side in the above expression is the cycle time (T ) in years, in our model in chapter seven. So, the condition for a convex annual cost would be:
π< (1 +π)(2β π)
π(1β π)2 (A9.4)
The above condition was tested for ten thousand examples through a simulation by choosing random interest rate (between 1% and 50%) and learning exponent (between 0 and 0.95), which resulted in a reasonable number for T (in years). Thus, the annual cost can be assumed to be positive.
192 REFERENCES
Adler, G.L. and Nanda, R. 1974. The effects of learning on optimal lot size determination-single product case. AIIE Transactions, 6(1): 14β20.
Alamri, A.A. and Balkhi, Z.T. 2007. The effects of learning and forgetting on the optimal production lot size for deteriorating items with time varying demand and deterioration rates. International Journal of Production Economics, 107(1): 125β138.
Allwood, J.M. and Lee, W.L. 2004. The impact of job rotation on problem solving skills.
International Journal of Production Research, 42(5): 865β881.
Anderlohr, G. 1969. What production breaks cost? Industrial Engineering, 1(9): 34β36.
Andersson, J. and Melchiors, P. 2001. Two-echelon inventory model with lost sales.
International Journal of Production Economics, 69(3): 307β315.
Argote, L. and Epple, D. 1990. Learning curves in manufacturing. Science, 247(4945): 920β924.
Atali, A., Lee, H. and Ozer, O. 2009. If the inventory manager knew: Value of RFID under imperfect inventory information. Graduate School of Business, Stanford University, Working Paper.
Badiru, A.B. 1995. Multivariate analysis of the effect of learning and forgetting on product quality. International Journal of Production Research, 33(3): 777β794.
Balkhi, Z.T. 2003. The effects of learning on the optimal production lot size for deteriorating and partially backordered items with time varying demand and deterioration rates. Applied Mathematical Modeling, 27(10): 763β779.
Balkhi, Z.T. 2004. An optimal solution of a general lot size inventory model with deteriorated and imperfect products, taking into account inflation and time value of money.
International Journal of Systems Science, 35(2): 87β96.
Baloff, N. 1970. Startup management. IEEE Transactions on Engineering Management, 17(4):
132β141.
Banerjee, A. 1986a. A joint economic-lot-size model for purchaser and vendor. Decision Sciences, 17(3): 292β311.
193 Banerjee, A. 1986b. A supplier's pricing model under a customer's economic purchasing policy.
Omega, 14(5): 409β414.
Battini, D., Grassi, A., Persona, A. and Sgarbossa, F. 2010. Consignment stock inventory policy:
Methodological framework and model. International Journal of Production Research, 48(7): 2055β2079.
Ben-Daya, M. and Hariga, M. 2000. Economic lot scheduling problem with imperfect production processes. Journal of the Operational Research Society, 51(7): 875β881.
Ben-Daya, M., Darwish, M.A. and Ertogral, K. 2008. Joint economic lot sizing problem: A review and extensions. European Journal of Operational Research, 185(2): 726β742.
Bennett, G.K., Case, K.E. and Schmidt, J.W. 1974. Economic effects of inspection error on attribute sampling plans. Naval Research Logistics, 21(3): 431β443.
Bijari, M., Barzoki, M.R. and Jahanbazi, M. 2007. Effects of imperfect products and rework on lot sizing with work in process inventory. Proceedings of the Industrial Engineering Research Conference, May 19β23, Nashville, TN, USA, pp. 919β925.
Biswas, P. and Sarker, B.R. 2008. Optimal batch quantity models for a lean production system with in-cycle rework and scrap. International Journal of Production Research, 46(23):
6585β6610.
Bonney, M., Ratchev, S. and Moualek, I. 2003. The changing relationship between production and inventory examined in a concurrent engineering context. International Journal of Production Economics, 81β82: 243β254.
Braglia, M., Zavanella, L., 1994. Optimal sampling techniques in off-line quality control.
Production Planning and Control, 5(1): 59β65.
Braglia, M. and Zavanella, L. 2003. Modeling an industrial strategy for inventory management in supply chains: The 'consignment stock' case. International Journal of Production Research, 41(16): 3793β3808.
Cachon, G.P. and Fisher, M. 2000. Supply chain inventory management and the value of shared information. Management Science, 46(8): 1032β1048.
194 Cachon, G.P. 2003. Supply chain coordination with contracts. In: Anonymous (Ed.), Handbooks
in Operations Research and Management Science: Supply Chain Management. North Holland.
CΓ‘rdenas-BarrΓ³n, L.E. 2000. Observation on: Economic production quantity model for items with imperfect quality. International Journal of Production Economics, 67(2): 201.
CΓ‘rdenas-BarrΓ³n, L.E. 2009. Economic production quantity with rework process at a single- stage manufacturing system with planned backorders. Computers and Industrial Engineering, 57(3): 1105β1113.
Cary, D.T., Torrence, W.D. and Schniederjans, M. 1994. Quality assurance in human resource management for computer-integrated manufacturing. International Journal of Operations
& Production Management, 14(2): 18β30.
Chan, W.M., Ibrahim, R.N. and Lochert, P.B. 2003. A new EPQ model: Integrating lower pricing, rework and reject situations. Production Planning and Control, 14(7): 588β595.
Chand, S. 1989. Lot sizes and setup frequency with learning in setups and process quality.
European Journal of Operational Research, 42(2): 190β202.
Chandra, J. and Schall, S., 1988. The use of repeated measurements to reduce the effect of measurement errors. IIE Transactions, 20(1): 83β87.
Chang, H.C. 2004. An application of fuzzy sets theory to the EOQ model with imperfect quality items. Computers and Operations Research, 31(12): 2079β2092.
Chang, H.C. and Ho, C.H., 2010. Exact closed-form solutions for ββoptimal inventory model for items with imperfect quality and shortage backorderingββ, Omega, 38(3β4): 233β237.
Chang, J.H. and Chiu, H.N., 2005. A comprehensive review of lot streaming. International Journal of Production Economics, 43(8): 1515β1536.
Chen, L.H. and Kang, F.S. 2010. Coordination between vendor and buyer considering trade credit and items of imperfect quality. International Journal of Production Economics, 123(1): 52β61.
Cheng, T. 1991. An economic order quantity model with demand-dependent unit production cost and imperfect production processes. IIE Transactions, 23(1): 23β28.
195 Chiou, C.C. and Chen, L.H.C. 2007. Determining the optimal production policy for a system
with imperfect production and shortage. Proceedings in Applied Mathematics and Mechanics, 7(1): 2060077β2060078.
Chiu, H.N. 1997. Discrete time-varying demand lot-sizing models with learning and forgetting effects. Production Planning and Control, 8(5): 484β493.
Chiu, H.N., Chen, H.M. and Weng, L. 2003. Determining time-varying demand lot-sizing models with learning and forgetting in setups and production. Production and Operations Management, 12(1): 120β127.
Chiu, H.N. and Chen, H.M. 2005. An optimal algorithm for solving the dynamic lot-sizing model with learning and forgetting in setups and production. International Journal of Production Economics, 95(2): 179β193.
Chiu, S.W., Gong, D. and Wee, H.M. 2004. Effects of random defective rate and imperfect rework process on economic production quantity model. Japan Journal of Industrial and Applied Mathematics, 21(3): 375β389.
Chiu, S.W. and Chiu, Y.S.P. 2006. Mathematical modeling for production system with backlogging and failure in repair. Journal of Scientific and Industrial Research, 65(6):
499β506.
Chiu, S.W., Chiu, Y.S.P. and Shih, C.C. 2006. Determining expedited time and cost of the end product with defective component parts using critical path method (CPM) and time-costing method. Journal of Scientific and Industrial Research, 65(9): 695β701.
Chiu, S.W. 2007. Optimal replenishment policy for imperfect quality EMQ model with rework and backlogging. Applied Stochastic Models in Business and Industry, 23(2): 165β178.
Chiu, S.W., Shih, C.C. and Chiu, Y.S.P. 2007. A revised cost-benefit algorithm for solving the expediting completion time of end product problem with defective materials in the product structure diagram. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(3): 489β497.
Chiu, Y. and Chang, C.Y. 2009. Optimal JIT production and delivery lot size model that considers vendor reworking process and variable setup cost. Journal of the Chinese Institute of Industrial Engineers, 26(2): 99β108.
196 Chiu, Y.P. 2003. Determining the optimal lot size for the finite production model with random
defective rate, the rework process, and backlogging. Engineering Optimization, 35(4): 427β
437.
Chiu, Y.S.P. and Chiu, S.W. 2005. The finite production model with the reworking of defective items. International Journal of Industrial Engineering, 12(1): 16β22.
Chopra, S. and Meindl, P., 2003. Supply chain management: Strategy, planning and operation.
USA: Prentice Hall.
Chung, C.J. and Wee, H.M. 2008. Scheduling and replenishment plan for an integrated deteriorating inventory model with stock-dependent selling rate. International Journal of Advanced Manufacturing Technology, 35(7β8): 665β679.
Chung, K.J. and Huang, Y.F. 2006. Retailer's optimal cycle times in the EOQ model with imperfect quality and a permissible credit period. Quality and Quantity, 40(1): 59β77.
Chung, K.J., Her, C.C. and Lin, S.D. 2009. A two-warehouse inventory model with imperfect quality production processes. Computers and Industrial Engineering, 56(1): 193β197.
Collins, R.D., Case, K.E. and Bennett, G.K. 1973. Effects of inspection error on single sampling inspection plans. International Journal of Production Research, 11(3): 289β298.
Comeaux, E.J. and Sarker, B.R. 2005. Joint optimization of process improvement investments for supplier-buyer cooperative commerce. Journal of the Operational Research Society, 56(11): 1310β1324.
Copacino, W.C.1997. Supply chain management: The basics and beyond. Florida: CRC Press LLC.
Corbett, C.J. 2001. Stochastic inventory systems in a supply chain with asymmetric information:
Cycle stocks, safety stocks, and consignment stock. Operations Research, 49(4): 487β500.
Crosby, P.B. 1979. Quality is free. New York: McGraw-Hill.
Cunningham, J. 1980. Using the learning curve as a management tool. IEEE Spectrum, 17(6):
43β48.
Dance, D. and Jarvis, R. 1992a. Using yield models to accelerate learning curve progress. IEEE Transactions on Semiconductor Manufacturing, 5(1): 41β46.
197 Dar-El, E.2000. Human learning: From learning curves to learning organizations. USA:
Kluwer.
Darwish, M.A. 2008. EPQ models with varying setup cost. International Journal of Production Economics, 113(1): 297β306.
Deming, W.E. 1982. Quality, productivity, and competitive position. In: Anonymous (Ed.), M.I.T. Center for advanced Engineering Study.
Dobos, I. and Richter, K. 2006. A production/recycling model with quality consideration.
International Journal of Production Economics, 104(2): 571β579.
Duffuaa, S.O. and Raouf, A. 1989. Mathematical optimization models for multi-characteristic repeat inspections. Applied Mathematical Modeling, 13(7): 408β412.
Duffuaa, S.O. and Raouf, A. 1990. An optimal sequence in multi-characteristics inspection.
Journal of Optimization Theory and Applications, 67(1): 79β86.
Duffuaa, S.O. and Nadeem, I.A. 1994. A complete inspection plan for dependent multi- characteristic critical components. International Journal of Production Research, 32(8):
1897β1907.
Duffuaa, S.O. and Al-Najjar, H.J. 1995. Optimal complete inspection plan for critical multicharacteristic components. Journal of the Operational Research Society, 46(8): 930β
942.
Duffuaa, S.O. 1996. Impact of inspection errors on performance measures of a complete repeat inspection plan. International Journal of Production Research, 34(7): 2035β2049.
Duffuaa, S.O. and Khan, M. 2002. An optimal repeat inspection plan with several classifications.
Journal of the Operational Research Society, 53(9): 1016β1026.
Duffuaa, S.O. and Khan, M. 2005. Impact of inspection errors on the performance measures of a general repeat inspection plan. International Journal of Production Research, 43(23):
4945β4967.
Duffuaa, S.O. and Khan, M. 2008. A general repeat inspection plan for dependent multicharacteristic critical components. European Journal of Operational Research, 191(2): 374β385.
198 Dutton, J.M. and Thomas, A. 1984. Treating progress functions as a managerial opportunity.
Academy of Management Review, 9(2): 235β247.
El-Kassar, A.N.M. 2009. Optimal order quantity for imperfect quality items. Proceedings of the Academy of Information and Management Sciences, 13(1): 24β30.
Eroglu, A. and Ozdemir, G. 2007. An economic order quantity model with defective items and shortages. International Journal of Production Economics, 106(2): 544β549.
Fine, C.H. 1986. Quality improvement and learning in productive systems. Management Science, 32(10): 1301β1315.
Fine, C.H. 1988. A quality control model with learning effects. Operations Research, 36(3):
437β444.
Fisk, A.D., Ackerman, P.L. and Schneider, W. 1987. Automatic and controlled processing theory and its applications to human factors problems. Human Factors Psychology, 47: 159β197.
Forker, F.B. 1997. Factors affecting supplier quality performance. Journal of Operations Management, 15(4): 243β269.
Foster, S.J. and Adam, E.E. 1996. Examining the impact of speed of quality improvement on quality-related costs. Decision Sciences, 27(4): 623β646.
Gerchak, Y., Vickson, R.G. and Parlar, M. 1988. Periodic review production models with variable yield and uncertain demand. IIE Transactions, 20(2): 144β150.
Glover, J.H. 1965. Manufacturing progress functions I. an alternative model and its comparison with existing functions. International Journal of Production Research, 4(4): 279β300.
Goyal, S.K. 1977. An integrated inventory for a single product system. Operational Research Quarterly, 28(3): 539β545.
Goyal, S.K. 1985. Economic order quantity under conditions of permissible delay in payments.
Journal of the Operational Research Society, 36(4): 335β338.
Goyal, S.K. 1988. A joint economic-lot-size model for purchaser and vendor: A comment.
Decision Sciences, 19(1): 236β241.