h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /
Environmental Microbiology
Analysis of bacterial communities
and characterization of antimicrobial strains from cave microbiota
Muhammad Yasir
KingAbdulazizUniversity,KingFahdMedicalResearchCenter,SpecialInfectiousAgentsUnit,Jeddah,SaudiArabia
a r t i c l e i n f o
Articlehistory:
Received12October2016 Accepted15August2017 Availableonlinexxx
AssociateEditor:JohnMcCulloch
Keywords:
Caves
16SribosomalRNA Microbiota Antimicrobial Sediments
a bs t r a c t
Inthisstudyforthefirst-timemicrobialcommunitiesinthecaveslocatedinthemountain rangeofHinduKushwereevaluated.Thesampleswereanalyzedusingculture-independent (16S rRNA gene amplicon sequencing) and culture-dependent methods.The amplicon sequencing results revealed a broad taxonomic diversity, including 21 phyla and 20 candidatephyla.Proteobacteriaweredominantinbothcaves,followedbyBacteroidetes,Acti- nobacteria,Firmicutes,Verrucomicrobia,Planctomycetes,andthearchaealphylumEuryarchaeota.
RepresentativeoperationaltaxonomicunitsfromKoatMaqbariGhaarandSmasse-Rawo Ghaarweregroupedinto235and445differentgenera,respectively.Comparativeanalysis oftheculturedbacterialisolatesrevealeddistinctbacterialtaxonomicprofilesinthestud- iedcavesdominatedbyProteobacteriainKoatMaqbariGhaarandFirmicutesinSmasse-Rawo Ghaar.MajorityofthoseisolateswereassociatedwiththegeneraPseudomonasandBacillus.
Thirtystrainsamongtheidentifiedisolatesfrombothcavesshowedantimicrobialactiv- ity.Overall,thepresentstudygaveinsightintothegreatbacterialtaxonomicdiversityand antimicrobialpotentialoftheisolatesfromthepreviouslyuncharacterizedcaveslocatedin theworld’shighestmountainsrangeintheIndiansub-continent.
©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction
Caves withsurface entrances represent oneof the unique andpoorlystudiedecosystemsonEarth.Theyincludehydro- logicalsystemsthatarerelativelyisolatedfromthesurface, andsharebasicphysicochemicalconditions,includingcom- pletedarkness, constant humidity, and thermal stability.1,2 Caves comprised of unique underground communities of
E-mail:[email protected]
organisms,andcavemicroclimatesoftensupportdensepop- ulationsofextremophiles.3Multidisciplinarystudiesoncave microbiologyhaveimplicatedmicroorganismsinthegeolog- ical processes of caves, and have opened several avenues ofresearch,includingcavegeochemistry,caveenvironmen- talmicrobiologyandidentificationofnewmicrobialspecies andexplorationofnovelbiotechnologicalmoleculesfromcave sources.4,5Recently,severalnewmembersofthegeneraCatel- latosporaandNonomuraeawerediscoveredincavesofMexico
https://doi.org/10.1016/j.bjm.2017.08.005
1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Pleasecitethisarticleinpressas:YasirM.Analysisofbacterialcommunitiesandcharacterizationofantimicrobialstrainsfromcavemicrobiota.
and NorthernThailand.6,7 In 2005,Agromyces subbeticussp.
nov.,wasisolatedfromacaveintheCordobaareaofsouth- ernSpain.8 Juradoet al. reported Aurantimonasaltamirensis sp. nov., a Gram-negative member of the order Rhizobiales fromAltamiraCave,locatedintheCantabria,Spain.9These microorganismsnewlydiscoveredincavesdemonstratethe potentialforidentifyingsecondarymetabolitesthathaveyet tobefullyevaluatedandexploited.4,7
Cavesarefoundworldwide,andbiospeleologicalresearch hasbeenmuchincreasedinthe lasttwentyyears.2,4 Avail- ableliteratureindicatesthe existenceofshortcavesinthe world’s highest mountains range called Karakoram, Hindu Kush,andPamir,whichincorporatesomeoftheworld’shigh- estpeaks,includingtheK2(8610m)andNangaParbat(8125m) located inthe sub-continent.10 In the Chitral area of Pak- istan, the Hindu Kush mountain is surrounded by a high limestoneplateau,andtherearevariousunverifiedreportsof cavesinthisregion.11 TheNangaParbathasRakhiotCave, whichis73.2mlongandthehighestknowncaveatanalti- tude of6644m.11 So far, no systematic studies have been conductedtoexplorethecavessysteminthosemountains.
The caves identified by local people have never been sur- veyed formicroorganisms. In this study for the first time, microbial communitieswere investigatedinthe twocaves, KoatMaqbari Ghaar (KMG)and Smasse-Rawo Ghaar (SRG), locatedintheHinduKushMountainandsituatedinthenorth- ernKhyberPakhtunkhwaprovinceofPakistan.Advancesin sequence-basedmetagenomicapproacheshavemadestudies onmicrobialdiversityandcommunitycompositionindiverse environmentsmorepossibleandinformative.However,using high-throughputsequencing techniquesalone tostudy the microbialcommunityinanenvironmenthasthepossibilities tomissthelowabundanttaxaaspreviouslyobserved.12Inthis study,anintegratedapproachofculture-basedandculture- independentpyrosequencing methodswere usedto gain a moreaccuraterepresentationofthemicrobialcommunities inthestudysites.Bacterialstrainsisolatedinthisstudywere screenedforantibacterialandantifungalactivities.
Materials and methods
Samplescollectionandchemicalanalysis
Thisstudyrepresentsapolyphasicanalysisofmicrobialcom- munitiesfromtwocavesintheHinduKushmountainrange situatedintheNorth-WestregionofPakistan.Thelocalnames ofthosecavesareKoatMaqbariGhaar(KMG,34◦4913.06N, 72◦3041.81E) and Smasse-Rawo Ghaar (SG, 34◦3338.1N, 71◦5103.4E),andtheyarelocatedintheSwatandMalakand division,respectively.TheKMGcaveisabout2.5mwideand 15mdeep,andislocatedatabout1260mabovesealevel.The SRG cavehasanalmost horizontalorientationandaround 2mwide,10mlong,andislocatedat1062mabovesealevel.
Bothcavesareofdriednatureandverylimitedlyinfluencedby anthropogenicactivities.Sedimentsamplesinthreereplicates werecollectedfromeachcaveusingautoclavedandsterilized bottles.Thesampleswere collectedinFebruary2013.Allof thesampleswerestoredat4◦Cforaround20hduringtrans- portation,andwereimmediatelyprocessedforculturingafter
arrivinginthelaboratory.Apartofeachsamplewasstoredat
−80◦CformetagenomicDNAextraction.Nospecificpermis- sionwasrequiredforsamplingthestudiedcaves.Theselands were notprivatelyowned orprotectedinany wayand the cavesarenotpartofanationalparkorreserve.Oursampling didnotinvolveendangeredorprotectedspecies.
ThepHofeachsamplewasmeasuredusingSartoriuspH meters (Denver, Germany) ina 1/10 (w/v)saturated colloid solution ofsediment in deionized water. Temperaturewas measuredusingASTMthermometers(Gilson,USA)oneach site.Totalsoilorganicmatterandtotalnitrogenweredeter- minedusingthepartialoxidationmethodandmicroKjeldahl method.13Totalphosphoruswasmeasuredcolorimetrically.13 Physicochemicalanalysiswereperformedintriplicateforeach sample.
DNAextractionandpyrosequencing
TotalDNAwasextractedfrom eachhomogenizedcavesed- imentreplicatesusingtheprotocolforthePowerSoil® DNA extractionkit(MoBioLaboratories,Carlsbad).Amplification of the 16S rRNA gene hypervariable region V4 was per- formed using bar-coded 515F and 806R universal primers containing A and B sequencing adaptors, following the procedure previouslydescribed.14 PCRproductswerequan- tified using high-sensitivity Qubit technology (Invitrogen, USA), and were purified using Agencourt Ampure beads (Agencourt, USA). The 454 FLX–titanium pyrosequencing platform (Roche, Basel Switzerland) was used to perform high-throughput sequencing following the manufacturer’s protocol. Raw pyrosequencing data was processed using the analysis pipelineof MRDNA (Texas, USA).14 Sequence reads<150bpwere removed,andtheremainingreadswere screened for homopolymer runs exceeding 6bp, chimeric sequences,and sequences containingNs;all ofthese were also excluded. Barcodes and primers were depleted from sequences.Highqualitysequencereadswereclusteredinto OTUsusingathresholdof97%sequencesimilarity.Forsingle- tonreadsthedefaultvalueof2readsinQIIMEv1.9software was used to exclude from further analysis.15 OTUs were taxonomically classified using BLASTn againstthe curated databases GreenGenes, RDP (http://rdp.cme.msu.edu), and NCBI(www.ncbi.nlm.nih.gov).16Thealphadiversityanalysis wasperformedwithChao1andthenon-parametricShannon formulausingQIIMEv1.9software.15
Culture-dependentsamplesprocessing
Sediment sampleswere seriallydilutedfortheisolationof bacterialcolonieswithimprovedculturemethods,basedon anincreasednumberofinoculationplatesforeachdilution, longerincubationtimes,selectionofmicro-colonies,anduse ofmodifiedculturemediaaspreviouslydescribed.17Briefly, two different concentrations ofR2A medium(full strength 18g/Landhalfstrength9g/L)anddilutednutrientbroth(1/5 strength 3g/Land 1/10strength 1.3g/L) supplementedwith 1.5% agar, 20% aqueousextract ofthe collected cave sedi- ment,andtwoincubationconditions, 17◦Cand 37◦C,were usedtoculturebacteriafromthecavessamples.Theplates were incubated in aerobic condition for one week in seal
plasticbagscontainingwettissuepaperstoavoiddryingof culturemediaduring this long incubation. Colonyforming units(CFU)werecounted,andtheCFUofthethreereplicates were usedtoestimatethe sizeofthe bacterialpopulation.
Colonieswerepurifiedbysub-culturingandthenstoredusing a15%glycerolstockincryogenicvialsat−80◦C.Eighty-four isolateswereselectedfor16SrRNAgenesequencingbasedon thecolonymorphologyandgrowthcharacteristics.Genomic DNAwasextractedfromtheisolatedstrainsusing1%TritonX- 100(Sigma)andboilingat95◦Cfor20min.The16SrRNAgene wasamplifiedusingtheuniversalbacterialprimers,27Fand 1492R,asdescribedpreviously.17PurifiedPCRproductswere sequencedwithABIPrismSequencer3730(AppliedBiosys- tems,USA)accordingtomanufacturer’sprotocol.Ananalysis ofchimerasinthe16SrRNAgenesequenceswasperformed usingBellerophonsoftware.18Sequenceswereblastedatthe EzTaxon server(http://www.ezbiocloud.net/)to identifythe related typestrains.19 A multiplesequence alignment was performed,andaphylogenetic treewasconstructedbythe neighbor-joiningdistancemethodusingJukes-Cantormodel tocomputeevolutionarydistanceinMEGA6software.20Boot- strapvalueswerecalculatedbasedon1000replications.The 16SrDNAsequencesweredepositedinGenBank(NCBI)under accessionnumbersKF747002–KF747085.
Antimicrobialactivity
Antimicrobial activities of the isolated strains on growth ofthe pathogenic bacteria Salmonellatyphi and Staphylococ- cusaureus, and the yeastCandidaalbicanswere determined by confrontationbioassay using paper discs. A concentra- tion of0.5 McFarland ofthe target strains were spread on media-agarplates.Twentymicrolitersofeachbacterialsus- pensioncontainingapproximately108cfu/mLwasadded to asterilepaperdisk(Advantec, Japan),and thendiscs were placed on the target strain plates. The plates were incu- batedfor72h at25◦C,andzones ofinhibitionaround the paperdiscs weremeasured.21 Chloramphenicol(30g/disk) andamphotericin-B(20g/disk)wereusedasreferencetoesti- matetheantimicrobialactivitiesofthetestedisolatesagainst bacteriaandyeastrespectively.
Statisticalanalysis
One-wayANOVAandTukey’sHSD(HonestlySignificantDiffer- ence)testswereusedtostatisticallycomparephysicochemical parameters,and CFUobtainedatdifferentmediacomposi- tionsandincubationtemperature.TheStatisticalPackagefor theSocialSciences(SPSS)version20wasusedforthestatisti- calanalysis.
Results
Physicochemicalanalysis
ThepHvaluesofKMG(7.6±0.21)and SRG(8.0±0.25)were notsignificantly(p=0.29)differentfromoneanother,andthe sedimentofSRGwasslightlybasic.TemperatureofKMGwas 14◦C and SRG17◦C.Chemical analysisindicatedthat both
caveswerenutritionallypoor.Totalorganicmatterandnitro- gencontentinKMG(1.7±0.08%and0.09±0.002%)andSRG (1.05±0.02%and0.05±0.004%)weresignificantly(p=0.01and p=0.001)differentbetweenthetwocaves.Phosphoruslevel intheKGMandSRGwere191.4±0.4ppmand82.6±0.6ppm, respectively.
Microbialtaxonomicdiversity
Taxonomicassignmentofabout44,015high-qualitypyrose- quencing reads from KMG (23,838) and SRG (20,177) were obtained using the V4 region of the 16S rRNA gene. The taxonomic composition of the bacterial communities was highly diverse in both caves sediments. The majority of the identified operational taxonomic units (OTUs), defined by 97% sequence similarity, were affiliated with 21 phyla that included 19 bacterial phyla, 2 archaea, and 20 can- didate phyla. Among the identified phyla, 10 phyla and 5 candidates divisionsweredetectedinboth caves.Theper- centagesequence readsfrom KMG andSRG were affiliated with 6 bacterial phyla detected at relatively higher abun- dance including; Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes,VerrucomicrobiaandPlanctomycetes(Fig.1).Among theProteobacteria,␣-Proteobacteria(45.6%KMGand34.1%SRG) and ␥-Proteobacteria(35.2%KMG and32.1% SRG)weredom- inantinbothcaves,followedby␦-Proteobacteria(12.6%KMG and16.9%SRG)and-Proteobacteria(9.2%KMGand16.7%SRG).
Thephylum Deinococcus-ThermuswasdetectedonlyinKMG (6.8%),andWS3(candidatedivision,4.3%)wasdetectedinSRG.
The15candidatedivisionsand10bacterialphyla,including 2.9%Acidobacteria,2.8%KSB1,and1.2%OP3(candidatedivi- sion),weredetectedspecificallyinSRG.Thearchaealphylum Euryarchaeota wasdetectedat 3.4%and 0.2%abundancein KMGandSRG,respectively.Cyanobacteriaweredetectedat<1%
abundanceinbothcaves.
Atotalof498differentgeneraweredetected.Thehighest numberofgenera(445)wasdetectedinSRG,while235genera werepresentinKMG.Amongthese,185generawerepresent inbothcaves, while53generawerespecificallydetectedin KMGand263inSRG.Moreover,17generainKMGand21gen- era inSRG werepresent atanabundance≥1%,accounting for74%and58%ofthetotalsequencereadsintherespective samples(Fig.2).InKMG,thefollowingbacterialgenerawere detectedatrelativelyhighabundances:Cellvibrio(17.1%),Sac- charophagus(15.5%),Bacillus(7.6%),andDeinococcus(6.6%).In SRG,thedominantgenerawere Chthoniobacter(6.9%), Opitu- tus(6.6%),Chondromyces(3.4%),Rubrobacter(3.4%),Rhodoplanes (3.1%),andProsthecobacter(3%).OnlythegenusCytophagawas presentinbothcavesat≥1%abundance.
In thenext step,weanalyzedthe OTUsatspecieslevel inthe KMGand SRGcaves. Atotalof873differentspecies wereidentified,including384speciesinKMGand628species inSRG.Only139specieswerepresentinbothcaves.Ineach cave,morethan60%specieswereaffiliatedwithfourbacterial phyla:Proteobacteria,Firmicutes,Bacteroidetes,andActinobacte- ria.Intotal,170(44.3%)identifiedspeciesfromKMGand309 (35.4%)from SRG wereaffiliated withProteobacteria.Among them,89specieswerecommonlypresentinbothcavesinclud- ing Saccharophagus degradans and Lysobacter spongicola that werepresentatrelativelyhigherabundanceinKMG,andwere
Pleasecitethisarticleinpressas:YasirM.Analysisofbacterialcommunitiesandcharacterizationofantimicrobialstrainsfromcavemicrobiota.
KMG(%)
0 0.3 1.1 1.5 3.4 5.4 6.8 14.6 17.3 49.7
36.7 16.6 12.1 8.9 5.5 4.7 4.5 4.2 2.9 2.8 1.2 0.2 0
SRG(%)
Acidobacteria Actinobacteria Bacteroidetes Deinococcus-Thermus
Euryarchaeota Firmicutes
KSBI (candidate division) OP3 (candidate division) Others
Planctomycetes Proteobacteria Verrucamicrobia WS3 (candidate division)
Fig.1–DistributionofmicrobialphylaandcandidatedivisionsdetectedatrelativelyhigherabundanceintheKMGandSRG caves.PercentageabundancefromKMGareshownonthex-axisandfromSRGonthey-axis.Thecategory“others”
representsmicrobialphylaandcandidatedivisionsthatwerepresentat<1%abundanceineachcave.KMG,KoatMaqbari Ghaar;SRG,Smasse-RawoGhaar.
18 15 12 9 6 5 4 3 2 1 0
%
Cellvibrio Lysobacter Teredinibacter Bacillus Devosia Actinomadura Saccharophagus Rhodothermus Ammoniphilus Virgibacillus Persicobacter Sporosarcina Cytophaga Deinocooccus Agrobacterirum Oceanobacillus Rhodocyclus Streptomyces Chthonibacter Acidimicrobium Bradyrhizobium Chitinophaga Segetibacter Rubrobacter Rhodoplanes Prosthecobacter KSB1 WS3 Planctomyces Candidatus Haliangium Chondromyces Thauera Methylosinus Opitutus OP3 KMG SRG
Fig.2–PercentagedistributionoftherelativelydominantgeneradetectedintheKMGandSRGcaves.KMG,KoatMaqbari Ghaar;SRG,Smasse-RawoGhaar.
detectedat<0.01%abundanceinSRG(Fig.3).TheHaliangium spp.andBradyrhizobiumlupiniwerepresent athigherabun- dancesinSRGthaninKMG.ThespeciesCellvibrioostraviensis, Cellvibriojaponicus,andTeredinibacterturneraeweredominant and specific to KMG. While, Rhodoplanes spp., Methylosinus trichosporium, Chondromyces crocatus, Rhodocyclus tenuis, and ChondromycesapiculatuswerespecificallydetectedinSRG at
≥1%abundance. From the phylum Firmicutes, 250different
specieswereidentifiedincluding27speciesthatwerecom- monlypresentinbothcaves.While,79Firmicutesassociated species were specifically detected in KMG and 71 species OTUs were specificto SRG.Onlythe species;Ammoniphilus oxalaticus,Bacillusasahii,Sporosarcinaginsengisoli,andVirgibacil- lushalodenitrificansweredetectedat>1%abundanceinKMG.
OtherFirmicutesspeciesweredetectedat<1%abundancein KMG and SRG.From the phylum Actinobacteria, Rubrobacter
Planc to my ces bras iliensis; Planctom ycetes KMG
% Abundance
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SRG Prostheco bacter debon tii; Verrucomicrobia
Optitutus terrae; Verrucom icrobia Chthonio bacter flavus; Verrucomicrobia Halococcus hamelinensis; Eury archaeota Deinococcus papagonensis; Deinococcus-Thermus Chitinophaga flexibacter sancti; Bacteroidetes Riemerella anatipestifer; Bacteroidetes Flexibacter flexilis; Bacteroidetes Rhodothermus marinus; Bacteroidetes Persicobacter diffluens; Bacteroidetes Cytophaga hutchinsonii; Bacteroidetes Candidatus solibacter usitatus; Acidobacteria Actinom adura napierensis; Actinobacteria Acidimicrobium ferrooxidans; Actinobacteria Rubrobacter xylanophilus; Actinobacteria Virgibacillus halodenitrificans; Fimicutes Sporosarcina ginsengisoli; Fimicutes Bacillus asahii; Fimicutes Ammoniphilus oxalaticus; Fimicutes Chondromyces apiculatus; Proteobacteria Rhodocyclus tenuis; Proteobacteria Chondromyces crocatus; Proteobacteria Methy losinus trichosporium; Proteobacteria Rhodoplanes spp; Proteobacteria Bradyrhizobium lupini; Proteobacteria Haliangium spp; Proteobacteria Teredinibacter turnerae; Proteobacteria Cellvibrio japonicus; Proteobacteria Lysobacter spongicola; Proteobacteria Saccharophagus degradans; Proteobacteria Cellvibrio ostraviensis; Proteobacteria Segetibacter spp.; Bacteroidetes
Fig.3–PercentagedistributionofrelativelydominantOTUsatspeciesleveldetectedin≥1%atleastinonecave.KMG,Koat MaqbariGhaar;SRG,Smasse-RawoGhaar.
xylanophilusandAcidimicrobiumferrooxidansweredetectedin bothcavebutpresent atrelativehigherabundanceinSRG.
ActinomaduranapierensisandCandidatussolibacterwerethetwo dominantspicesdetectedat>1%abundancespecifically in KMG and SRG,respectively. From the phylum Bacteroidetes, Cytophagahutchinsoniiwasdetectedatarelativelyhighabun- danceinbothcaves.ThespeciesChitinophagaflexibacterand Segetibacterspp.were moreabundantinthe SRG,andPersi- cobacterdiffluensand Rhodothermusmarinusweredetectedat
>1%abundanceinKMG.ApartfromtheOTUsatspecieslevel from dominantphyla,the C.solibacter usitatus, Opitutuster- rae and Planctomyces brasiliensis were detectedat relatively higher abundancein SRG sample.The Gram-negativebac- terium Deinococcus papagonensis and Halococcus hamelinensis fromarchaeaphylumEuryarchaeotawerespecificallydetected inKMG(Fig.3).
Chao1andShannonindex
Chao1 and Shannon indices were calculated to estimate alphadiversity.Rarefactioncurveswereestablishedata97%
sequencesimilarityleveltodefineOTUs.Inrarefactioncurves, bothsamplesweretendedtoapproachsaturationplateau,and
thesamplesSRGwasplottedintheupperpartofthegraph (Fig.4A).TheChao1analysisdemonstratedadecreasedtrend ofrichnessinthesampleKMG(3622)comparedtoSRG(4701, Fig.4B).TheShannondiversityindexforKMGwas9.0andfor SRGwas10.0,indicatinghighdiversityinbothcaves(Fig.4C).
However,speciesdiversityinSRGwashigherthanthatofKMG.
Culturedbacterialdiversityandantimicrobialactivityof isolates
Incubationat37◦Candinfull-strengthR2Amediumyielded higher numbersofbacteria frombothcaves KMG(8.5) and SRG (8.4)(countsexpressedaslog10cfu/g)thatweresignifi- cantly(p<0.05)higherthantheCFUobtainedfromallother testedculturemediaandtemperatureusedinthisstudy.From incubationat17◦C,significantlyhighernumbersofbacteria were noticed onhalf-strength R2A from KMG(7.5), and on full-strength R2A from SRG (7.7) compared toother tested mediawithrespectivesamples.Overall,therecoveryofviable bacteriacolonieswashigherat37◦Cthanat17◦C.Initially, 350 strainswere purifiedonthe basisofcolonymorpholo- gies and were screened for antimicrobialactivity. The 16S rRNAgenesof84isolatesfromthetwocavesweresequenced,
Pleasecitethisarticleinpressas:YasirM.Analysisofbacterialcommunitiesandcharacterizationofantimicrobialstrainsfromcavemicrobiota.
A
5000
Observed OTUs Chaol estimated OTUs
Shannon index
Sequences per sample
Sequences per sample KMG KMG SRG
KMG SRG
SRG 5000
4000 3000 2000 1000
10000150002000025000 30000
15 12 9 6 3 0 0
5000 6000
4000 3000 2000 1000 0 0
5000 100001500020000 25000 30000 0
B
C
Fig.4–Alphadiversityofthesequencereads.(A)RarefactioncurvesoftheexperimentallyobservedOTUsversusdiversity (B)estimatedbyChao1.(C)BoxplotsoftheShannonindex.KMG,KoatMaqbariGhaar;SRG,Smasse-RawoGhaar.
andtheydisplayed96.2–100%identitytothesequencesavail- ableinGenBank,andwereassignedtomajorbacterialgroups using phylogenetic analysis (Fig. 5). Three strains showed
<97%sequencesimilaritywiththeclosestrelatedtypestrain, suggestingascandidatenovelspecies.Proteobacteriawasthe dominantphylumamongKMGisolates(52.6%),andrepresent- ing25.9%ofisolatesfromSRG.The␥-Proteobacteriasequences representedmajorityofisolatesfromKMG(43.5%)andSRG (11.1%).␣-Proteobacteriaand -Proteobacteriasequences were evidentin8.8%ofKMGisolates,and14.8%ofisolatesfromSRG wereaffiliatedwith␣-Proteobacteria.FirmicutesandActinobac- teriaaccountedfor40.4%and7%,respectively,ofisolatesfrom KMG.FirmicuteswasthedominantphyluminSRG(71.4%),and noActinobacteria isolatesweredetectedfrom SRG.Cultured isolatesfrombothcaveswereclassifiedinto14distinctgen- era.Majorityoftheisolateswereassociatedwiththegenera Pseudomonas(40.3%KMGand11.1%SRG)andBacillus(22.8%
KMGand44.4%SRG).Intotal39distinctspecieswereidenti- fiedamongtheculturedisolatesfrombothcaves.Fourspecies werecommonbetweenthetwocaves.Twenty-sixspecieswere uniquetoKMG,and9specieswerespecificallydetectedinSRG.
Thefollowingfourspecies,Exiguobacteriumundae,Pseudomonas koreensis,Sphingomonasmelonis,andPseudomonasmosseliiwere isolatedfromthesedimentofbothcaves.InKMG,thedom- inant cultured specieswas P. koreensis, followed byBacillus humi,Pseudomonaspeli,Pseudomonasbaetica,andPseudomonas cremoricolorata. InSRG,thedominantcultured specieswere Paenibacillus lautus, Bacillus timonensis, Bacillus simplex, and Caulobactervibrioides.
Thirty strains showed antimicrobial activity among the totalisolatesfrombothcaves(Table1).Fifteenstrainsshowed antibacterial activity against S. typhi, and 20 strains were activeagainstS.aureus.Sixstrainsshowedantibacterialactiv- ityagainstbothbacterialpathogenstested. Isolatedstrains belongingtothegeneraPseudomonasandBacillusweremore antagonistic,as demonstrated strong antimicrobialactivity
againsttestedpathogenic bacteria.Onlytwostrains,which showed around 100% sequence similarity with Brevibacillus borstelensisandP.mosselii,inhibitedthegrowthofthehuman fungalpathogenC.albicans.
Discussion
Organic material inthe studied caveswas close tostarva- tion level; this is common in caves with limited external influence.22 Microorganisms residing insuch cave systems aremostlyoligotrophicorchemolithotrophicinnature,and requirespecificnutrientsfortheirgrowth.5Therefore,many bacteriaaredifficulttocultivatefromthesesources.Despite thestarvedcondition,phylogeneticallydiversebacterialtaxa colonizedbothcaves,andmainlycomprisedofProteobacteria followedbyFirmicutes,Bacteroidetes,Actinobacteria,Verrucomi- crobia, and Planctomycetes as observed in previous caves studies.23,24 Wefoundan importantdifference inthe rela- tive abundanceof differentProteobacteria subdivisions.The
␣-Proteobacteria and ␥-Proteobacteria were dominant in the studiedcaves,followedby␦-Proteobacteriaand-Proteobacteria.
Inthemicrobiologicallywell-studiedSpanishAltamiracave, cosmopolitanProteobacteriagroupsweredominantindripping watersandcavewalls.5,25Similarly,Proteobacteriarepresented halfofanentirewall’sbacterialcommunityintheTitoBustillo caveinSpain,andprobablyduetotheirversatilemetabolic capabilities survive on available ions in the rock contents and used them forchemolithotrophicenergyproduction.26 TheGram-negativeProteobacteria,S.degradansthatdegrades anumberofcomplexpolysaccharidesasenergysource,was commonly identifiedin the studiedKMG and SRG caves.27 While,C.crocatusfrommyxobacteriathatpredominantlylives in the soil and feed on insoluble organic substances was specificallypresentathigherabundanceintheSRG.28
Fig.5–Phylogeneticanalysisbasedon16SrRNAgenesequencesofthebacterialisolates.Theneighbor-joiningclustering methodwasusedtoconstructthetree.Bootstrapvalueswerecalculatedbasedon1000replicationsandareshownat branchpoints.Thebarrepresents0.01sequencedivergence.SequencesderivedfromtheNCBIGenBankdatabaseare shownwiththeiraccessionnumbers.FilledcirclesfollowingtheexperimentalsequencenamescorrespondtoKMG,and non-filledcirclescorrespondtoSRG.KMG,KoatMaqbariGhaar;SRG,Smasse-RawoGhaar.
Overthepastdecade,anabundanceofActinobacteriahas beenfound incavesand other subterraneanenvironments suggesting that caves are favored habitats for this group ofbacteria, andactively involvedinthe formation ofcrys- talsincavewallsandbiomineralization process.29,30 Inour study,severalActinobacteriawerecommonlyidentifiedinboth cavesincludingtheR.xylanophilusandA.ferrooxidans.Member fromRubrobacteriscommonlyfoundinbiodeterioratedmon- uments,inducecrystalformationincavesandformbiofilm onthelimestone.31ThephylotypesrelatedtoA.ferrooxidans identifiedinthisstudywerepreviouslydetectedincavewalls
oftheBudathermalkarstsystem.32Similarly,Firmicutesare frequently identifiedin moreextremeecosystems, andare comparativelymoreresistanttonutrientstress.2,33Inparticu- lar,thebacillusgroupretrievedfromthecavesinthisstudyhas theabilitytoformendospores.33Leeetal.constructedaphy- logenetictreeof16SrRNAgenesequencesretrievedfrom60 cavesaroundtheworld.23Thetreeshowedtherelativeabun- dancesofdifferentclassesofbacteriaincaves,withthemost abundant groups being Proteobacteria, Chlorobi/Bacteroidetes, Actinobacteria,andChloroflexi.24However,proportionsofthese groupsdependedontheparticularfeaturesofeachcave.
Pleasecitethisarticleinpressas:YasirM.Analysisofbacterialcommunitiesandcharacterizationofantimicrobialstrainsfromcavemicrobiota.
Table1–Invitroantimicrobialactivityoftheculturedisolatesagainstpathogenicbacteriaandyeast.
Species Isolates S.typhi S.aureus C.albicans
Fictibacillusnanhaiensis MY-CB9 + + −
Microbacteriumoleivorans MY-CA97
Paenibacilluslautus MY-CB14
Pseudomonasgraminis MY-CA27
Pseudomonaskoreensis MY-CA28,MY-CA50
Bacillushumi MY-CA172 + − −
Bacillusmuralis MY-CB146
Bacillussimplex MY-CB11,MY-CB152
Bacillustequilensis MY-CA3
Bacillustimonensis MY-CB12
Brevibacillusborstelensis MY-CA2
Paenibacilluslautus MY-CB145
Bacilluseiseniae MY-CA109 − + −
Bacillushumi MY-CA167
Bacillusmycoides MY-CA84
Bacillusniacini MY-CB144
Bacillusthaonhiensis MY-CA168
Bacillustimonensis MY-CB128
Carnobacteriuminhibens MY-CA29
Caulobactervibrioides MY-CB65
Pseudomonasbaetica MY-CA85
Pseudomonascremoricolorata MY-CA66
Pseudomonaskoreensis MY-CA169
Pseudomonasmosselii MY-CA17
Pseudomonassimiae MY-CA99
Staphylococcuswarneri MY-CA92
Pseudomonasmosselii MY-CB149 + − +
Brevibacillusborstelensis MY-CA127 − − +
Intheisolatenames,CArepresentsKoatMaqbariGhaar(KMG)andCBrepresentsSmasse-RawoGhaar(SRG).Symbols:−,noactivity;+,activity.
Several functionally important strains were identified from genera that were reported in others cave studies, includingMethylobacterium, Rhizobiumand isolatesfrom the generaKocuria,Acinetobacter,RenibacteriumandBacillus.4,26,33,34 These bacteria can utilize a wide variety of carbon sub- strates, and play species-specific roles in nitrogenfixation andcalcification.5,25ThegenusThiothrix,detectedbypyrose- quencing were previously reported to make up thick mats of filamentous sulfur-oxidizing epsilon.23,35 Rapidly digestingcrystalline cellulosebacterium C.hutchinsonii and ionizing-radiationresistant bacteriasuchasD.papagonensis and R. xylanophilus were detected in both caves.36,37 Sev- eral oligotrophicand facultative oligortophic bacteria such as Nitrospira moscoviensis, Prochlorococcus spp., Sphingopyxis alaskensis, Sphingomonas oligophenolica, Bacillus cereus, Paeni- bacillus polymyxa, Streptomyces sp., Brevibacillus laterosporus, Bacillussubtilis,Arthrobacterspp.werefoundinculturedinde- pendentpyrosequencinganalysisofthisstudy,andwerepre- viouslyreportedfromdifferentoligotrophicenvironments.38 In addition, mesophilic Crenarchaeota and particularly Eur- yarchaeota were detected atrelatively higher abundance in the KMG that were previously found in the Lechuguilla Cave (United States)33 and inthe AltamiraCave (Spain).39 Legatzkietal.reportedthepresenceofanarchaealcommu- nityoncalcitespeleothemsfromKartchnerCaverns,Arizona, USA.40
Oneofthelimitationofthisstudywasthatonlyaerobic conditionalong withtwomediacompositionsand temper- atureconditionswere usedforculture-dependentanalysis.
Overall, lower diversity was observed among cultured iso- lates that cannot be compared to the diversity observed withthepyrosequencinganalysis.Theculturedisolatesfrom bothcaveswereclassifiedintothephylaProteobacteria,Acti- nobacteria,andFirmicutes.Amongthe13generaidentifiedby culture, a few ofthem were detectedin the pyrosequenc- ing analysis,including Bacillus, Microbacterium, Pseudomonas, andPsychrobacter.However,bacteriafromthegeneraCarnobac- terium,Exiguobacterium,Paucisalibacillus,andFictibacilluswere not detected in pyrosequencing data. Interestingly,among the39distinctculturedbacterialspecies,onlysevenspecies, B. humi, Bacillusniacin, B.simplex, C.vibrioides,P. lautus,Psy- chrobacter alimentarius, and S. melonis were found in the pyrosequencingdataindicatethatthebacteriainlowabun- dance in a community can be only captured by cultured analysisaspreviouslyobserved.12Thephylogeneticanalysis and16SrRNAgenesequencesimilarityindicatedthatthree oftheculturedisolateshavenocloserelativeamongthecul- turedtypestrains.Thesestrainsrepresentnovelcandidatesin cavesbiodiversity,indicatingthatculturetechniquesprovide uswiththeopportunitytodiscovernewmicroorganismsfrom cavesecosystem.30Theidentificationofnewpathogenicbac- teriaandtherapiddevelopmentofantimicrobialresistance highlight theimportanceofdiscovery ofnewantimicrobial agents.41Severalstrainsisolatedfromthecavesinthisstudy, includingActinobacteria,Myxobacteria,Pseudomonas,andBacil- lusspp.showedantimicrobialactivityagainsttwoimportant pathogenicbacteria,S.typhiandS.aureus.Inrecentyears,sev- eral studieshighlightedthat rarelystudiedcave microbiota
couldbeapotentialsourceofnewmicroorganismandasource forfutureantimicrobialagents.42
In conclusion, diverse microbial communities were observed within the studied caves that were correspond- ing to other caves at higher taxonomic level. However, at lowertaxonomiclevelseveraldistincttaxawereidentified.In addition,nitrogenfixation,crystallinecellulosedigestingand ionizing-radiationresistantrelatedbacteriaweredetectedin theculture-independentanalysis.Cultivatedisolatesfromthe generaBacillusandPseudomonasweredominantinbothcaves andexhibitedantimicrobialactivityagainstpathogenicbac- teriaandyeast.Thereisaneedforfurtherstudiestoexplore virgincavessystemsintheworld’shighestmountainsrangein northernPakistan,andtoexploitthemicrobialcommunities ofthosecavesfornewbiomolecules.
Conflicts of interest
Theauthordeclaresnoconflictsofinterest.
Acknowledgments
ThisworkwasfundedbytheDeanshipofScientificResearch (DSR),KingAbdulazizUniversity,Jeddah,undergrantno.(141- 003-D1434).Theauthor,therefore,acknowledgewiththanks DSRtechnicalandfinancialsupport.
references
1.BartonHA,TaylorNM,KreateMP,SpringerAC,OehrleSA, BertogJL.Theimpactofhostrockgeochemistryonbacterial communitystructureinoligotrophiccaveenvironments.IntJ Speleol.2007;36:93–104.
2.ChenY,WuL,BodenR,etal.Lifewithoutlight:microbial diversityandevidenceofsulfur-andammonium-based chemolithotrophyinmovilecave.ISMEJ.2009;3:1093–1104.
3.JohnsonDB.Geomicrobiologyofextremelyacidicsubsurface environments.FEMSMicrobiolEcol.2012;81:2–12.
4.CuezvaS,Fernandez-CortesA,PorcaE,etal.The biogeochemicalroleofActinobacteriainAltamiracave, Spain.FEMSMicrobiolEcol.2012;81:281–290.
5.PortilloMC,GonzalezJM,Saiz-JimenezC.Metabolically activemicrobialcommunitiesofyellowandgrey colonizationsonthewallsofAltamiracave,Spain.JAppl Microbiol.2008;104:681–691.
6.QuintanaET,BadilloRF,MaldonadoLA.Characterisationof thefirstActinobacterialgroupisolatedfromaMexican extremophileenvironment.AntonieVanLeeuwenhoek.
2013;104:63–70.
7.NakaewN,Pathom-areeW,LumyongS.Firstrecordofthe isolation,identificationandbiologicalactivityofanew strainofspirillosporaalbidafromThaicavesoil.
Actinomycetologic.2009;23:1–7.
8.JuradoV,GrothI,GonzalezJM,LaizL,Saiz-JimenezC.
Agromycessubbeticussp.Nov.,isolatedfromacavein southernSpain.IntJSystEvolMicrobiol.2005;55:897–1901.
9.JuradoV,GonzalezJM,LaizL,Saiz-JimenezC.Aurantimonas altamirensissp.Nov.,amemberoftheorderrhizobiales isolatedfromaltamiracave.IntJSystEvolMicrobiol.
2006;56:2583–2585.
10.KhanNA,NisarA,OlivieriLM,VitaliM.Therecentdiscovery ofcavepaintingsinswat,apreliminarynote.EastWest.
1995;45:33–353.
11.WalthamAC.CavingintheHimalaya.HimalJ.1971;31:9.
12.StefaniFO,BellTH,MarchandC,etal.Culture-dependent and-independentmethodscapturedifferentmicrobial communityfractionsinhydrocarbon-contaminatedsoils.
PLoSONE.2015;10(6):e0128272.
13.BremnerJM,MulvaneyR.MethodsofSoilAnalysis.2nded.
Madison:AmericanSocietyofAgronomy;1982.
14.DowdSE,SunY,WolcottRD,DomingoA,CarrollJA.Bacterial tag-encodedFLXampliconpyrosequencing(bTEFAP)for microbiomestudies:bacterialdiversityintheileumofnewly weanedsalmonella-infectedpigs.FoodbornePathogDis.
2008;5:459–472.
15.CaporasoJG,KuczynskiJ,StombaughJ,etal.Qiimeallows analysisofhigh-throughputcommunitysequencingdata.
NatMethods.2010;7:335–336.
16.DeSantisTZ,HugenholtzP,LarsenN,etal.Greengenes,a chimera-checked16SrRNAgenedatabase,workbench compatiblewithARB.ApplEnvironMicrobiol.
2006;72:5069–5072.
17.YasirM,AslamZ,KimSW,LeeSW,JeonCO,ChungYR.
Bacterialcommunitycomposition,chitinasegenediversity ofvermicompostwithantifungalactivity.BioresourTechnol.
2009;100:4396–4403.
18.HuberT,FaulknerG,HugenholtzP.Bellerophon:aprogram todetectchimericsequencesinmultiplesequence alignments.Bioinformatics.2004;20:2317–2319.
19.KimOS,ChoYJ,LeeK,etal.IntroducingEzTaxon-e:a prokaryotic16SrRNAgenesequencedatabasewith phylotypesthatrepresentunculturedspecies.IntJSystEvol Microbiol.2012;62:716–721.
20.TamuraK,StecherG,PetersonD,FilipskiA,KumarS.Mega6:
molecularevolutionarygeneticsanalysisversion6.MolBiol Evol.2013;30:2725–2729.
21.MohseniM,NorouziH,HamediJ,RoohiA.Screeningof antibacterialproducingactinomycetesfromsedimentsof theCaspiansea.IntJMolCellMed.2013;2(2):
64–71.
22.BartonHA,NorthupDE.Geomicrobiologyincave
environments:past,current,futureperspectives.JCaveKarst Stud.2007;69:163–178.
23.MacaladyJL,LyonEH,KoffmanB,etal.Dominantmicrobial populationsinlimestone-corrodingstreambiofilms,Frasassi cavesystem,Italy.ApplEnvironMicrobiol.2006;72:
5596–5609.
24.LeeN,MeisingerD,AubrechtR,etal.Cavesandkarst environments.In:BellEM,ed.LifeatExtremes:Environments, OrganismsandStrategiesforSurvival.UK:CABInternational;
2012:320–344.
25.PortilloMC,Saiz-JimenezC,GonzalezJM.Molecular characterizationoftotal,metabolicallyactivebacterial communitiesof“Whitecolonizations”intheAltamiracave, Spain.ResMicrobiol.2009;160:41–47.
26.Schabereiter-GurtnerC,Saiz-JimenezC,PinarG,LubitzW, RollekeS.Phylogenetic16SrRNAanalysisrevealsthe presenceofcomplex,partlyunknownbacterialcommunities inTtitobustillocave,Spain,onitspalaeolithicpaintings.
EnvironMicrobiol.2002;4:392–400.
27.EkborgNA,GonzalezJM,HowardMB,TaylorLE,Hutcheson SW,WeinerRM.Saccharophagusdegradansgen.nov.,sp.nov., aversatilemarinedegraderofcomplexpolysaccharides.IntJ SystEvolMicrobiol.2005;55(Pt4):1545–1549.
28.ZaburannyiN,BunkB,MaierJ,OvermannJ,MullerR.
Genomeanalysisofthefruitingbody-forming
myxobacteriumChondromycescrocatusrevealshighpotential fornaturalproductbiosynthesis.ApplEnvironMicrobiol.
2016;82(6):1945–1957.
Pleasecitethisarticleinpressas:YasirM.Analysisofbacterialcommunitiesandcharacterizationofantimicrobialstrainsfromcavemicrobiota.
29.BartonHA,SpearJR,PaceNR.Microbiallifeinthe underworld:biogenicityinsecondarymineralformations.
GeomicrobiolJ.2001;18:359–368.
30.JuradoV,KroppenstedtRM,Saiz-JimenezC,etal.Hoyosella altamirensisgen.Nov,spNov.,anewmemberoftheorder actinomycetalesisolatedfromacavebiofilm.IntJSystEvol Microbiol.2009;59:3105–3110.
31.LaizL,MillerAZ,JuradoV,etal.IsolationoffiveRubrobacter strainsfrombiodeterioratedmonuments.
Naturwissenschaften.2009;96(1):71–79.
32.BorsodiAK,KnábM,KrettG,etal.Biofilmbacterial communitiesinhabitingthecavewallsoftheBudaThermal KarstSystem,Hungary.GeomicrobiolJ.2012;29(7):
611–627.
33.IknerLA,ToomeyRS,NolanG,NeilsonJW,PryorBM,Maier RM.Culturablemicrobialdiversity,theimpactoftourismin Kartchnercaverns,Arizona.MicrobEcol.2007;53:
30–42.
34.NorthupDE,BarnsSM,YuLE,etal.Diversemicrobial communitiesinhabitingferromanganesedepositsin LechuguillaandSpiderCaves.EnvironMicrobiol.
2003;5:1071–1086.
35.MacaladyJL,DattaguptaS,SchaperdothI,JonesDS,Druschel GK,EastmanD.Nichedifferentiationamongsulfur-oxidizing bacterialpopulationsincavewaters.ISMEJ.2008;2:590–601.
36.MbaMedieF,DaviesGJ,DrancourtM,HenrissatB.Genome analyseshighlightthedifferentbiologicalrolesofcellulases.
NatRevMicrobiol.2012;10(3):227–234.
37.RaineyFA,RayK,FerreiraM,etal.Extensivediversityof ionizing-radiation-resistantbacteriarecoveredfromSonoran Desertsoilanddescriptionofninenewspeciesofthegenus Deinococcusobtainedfromasinglesoilsample.ApplEnviron Microbiol.2005;71(9):5225–5235.
38.HayakawaDH,HuggettMJ,RappMS.Ecologyandcultivation ofmarineoligotrophicbacteria.In:HorikoshiK,ed.
ExtremophilesHandbook.Tokyo:SpringerJapan;
2011:1161–1178.
39.GonzalezJ,PortilloM,Saiz-JimenezC.Metabolicallyactive CrenarchaeotainAltamiracave.Naturwissenschaften.
2006;93:42–45.
40.LegatzkiA,OrtizM,NeilsonJW,etal.Archaealcommunity structureoftwoadjacentcalcitespeleothemsinKartchner caverns,Arizona,USA.GeomicrobiolJ.2011;28:99–117.
41.BhullarK,WaglechnerN,PawlowskiA,etal.Antibiotic resistanceisprevalentinanisolatedcavemicrobiome.PLoS ONE.2012;7:e34953.
42.NakaewN,Pathom-areeW,LumyongS.Genericdiversityof rareactinomycetesfromThaicavesoilsandtheirpossible useasnewbioactivecompounds.Actinomycetologica.
2009;23:21–26.