• Tidak ada hasil yang ditemukan

Cooling Towers

N/A
N/A
Protected

Academic year: 2023

Membagikan "Cooling Towers"

Copied!
59
0
0

Teks penuh

(1)

Cooling Towers

MEP 460 Heat Exchanger design

King Abdulaziz University

Mechanical Engineering Department

Nov. 2018

1

(2)

Cooling towers 0-What is a cooling tower

1-Introduction

2-Review of psychrometery 3-Evaporative cooling

4-Cooling tower applications

5-Anaology between heat and mass transfer 6-Basic simplified analysis of cooling tower 7-CTC (NTU) calculations

Approximate methods By integration

8-Cooling tower effectiveness 9-Cooling tower fill packing

10-Estimating the design liquid/air flow ratio

2

(3)

0-What is a cooling tower

Cooling tower is a heat rejection heat exchanger

Where heat is rejected to atmospheric air

3

(4)

0-What is a cooling tower

4

(5)

0-What is a cooling tower

5

(6)

Cooling towers

6

(7)

Cooling towers

7

(8)

1-Introduction

Wet cooling towers and Dry cooling towers

Cooling towers types

Can be forced or induced cooling towers

Counter flow cooling towers Cross flow cooling towers

8

(9)

1-Introduction

9

(10)

T

wi

Hot water in

Cold water out

Air in

Air out

Packing material

Fill

𝑇

𝑎𝑖

, 𝑇

𝑎𝑖

𝑊

𝑖

𝑊

𝑜

Range R= 𝑇 𝑤𝑖 − 𝑇 𝑤𝑜

Approach 𝑨 = 𝑇

𝑤𝑜

− 𝑇

𝑎𝑖

Range and approach of a cooling tower

T

wo

1-Introduction

𝑇

𝑎𝑖

= wet bulb temperature of entering air

Range

10

(11)

2-Review of psychrometery moist air thermodynamic properties

Dry, wet bulb, and dew point temperatures (T, T

*

, T

dew

) Humidity ratio W

Relative humidity 𝜙 Air enthalpy, h

Saturated air enthalpy, h

s

Humidification efficiency, 𝜂 𝐻

11

(12)

2-Review of psychrometery moist air

W

T

a

𝑻 𝒂

Saturation line

Dry bulb temp.

Humidity ration

12

(13)

2-Review of psychrometery moist air

Moist air ( dry and saturated ) properties

13 p s t

W W

,

 

Degree of saturation ℎ = ℎ𝑑𝑎 + 𝜇 ℎ𝑠 − ℎ𝑑𝑎

(14)

2-Review of psychrometery moist air

Water properties

14

(15)

3-Evaporative cooling Desert cooler

15

يوارحصلا فَيكملا

(16)

3-Evaporative cooling

16

(17)

An evaporative cooler (also swamp cooler, desert cooler and wet air cooler) is a device that cools air through the evaporation of water. Evaporative

cooling differs from typical air conditioning systems, which use vapor-compression or absorption

refrigeration cycles.

3-Evaporative cooling

17

(18)

18

(19)

Evaporative cooling in

Mina

.

Cooling the Hajji’s tents

19

(20)

Huge number of tents in

Madina provided with fans and water sprays

20

(21)

Using water sprays (Evaporative cooling in ARAFAT and Mina)

21

(22)

Evaporative cooling

1 2

𝜂 𝐻 = 𝜙 2 − 𝜙 1 𝜙 𝑠 − 𝜙 1

Humidification efficiency

22

(23)

4-Cooling tower applications

Power plant heat rejection

Refrigeration and air conditioning heat rejection (HVAC)

Oil refineries

Petrochemical industries

Cooling tower used mainly as a heat rejection heat exchanger

23

(24)

ሶ 𝑄 = ℎ

𝑐

𝐴 (𝑇

𝑠

− 𝑇

)

𝑚 = ℎ

𝑚

𝐴𝜌(𝑊

𝑠

− 𝑊

)

𝑚 = 𝑚

𝑠 𝑚

2

𝑘𝑔 𝑚

3

𝑘𝑔

𝑘𝑔 = 𝑘𝑔 𝑠

𝑚 = ℎ

𝑚

𝐴(𝜌

𝑠

− 𝜌

)

𝑚 = ℎ𝑚𝐴 𝐶𝑠 − 𝐶

Heat transfer Mass transfer

hm is the mass transfer coefficient [m/s]

h

c

is heat transfer

coefficient [W/(m

2

.K)

𝑑

= 𝜌ℎ

𝑚

h

d

is the mass conductance coefficient

5-Anaology between heat and mass transfer

Driving force for heat transfer is the

temperature difference

Driving force for mas transfer is the concentration difference

h

d

=[kg/(m

2

.s]

24

(25)

𝑃𝑟 = 𝜈

𝛼 = 𝑚𝑜𝑚𝑒𝑛𝑢𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑆𝑐 = 𝜈

𝐷𝐴𝐵 = 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑚𝑎𝑠𝑠 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝐿𝑒 = 𝛼

𝐷𝐴𝐵 = 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦

𝑚𝑎𝑠𝑠 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝐿𝑒 = 𝑆𝑐 Pr Prandtl number

Schmidt number

Lewis number

Nusselt number

𝑁𝑢 = ℎ𝑐𝐿 𝑘 Sherwood Number

𝑆ℎ = ℎ𝑚𝐿 𝐷𝐴𝐵 Stanton Number

𝑆𝑡 = 𝑁𝑢

𝑅𝑒 𝑃𝑟 = ℎ𝑐 𝜌𝑉𝐶𝑝

Dimensionless numbers

mass transfer Stanton

number 𝑆𝑡𝑚 = 𝑆ℎ

𝑅𝑒 𝑆𝑐 = ℎ𝑚 𝑉 Coburn modulus j 𝐽𝐻 = St 𝑃𝑟2 3Τ

5-Anaology between heat and mass transfer

25

𝜈 = 𝜇 𝜌 𝛼 = 𝑘

𝜌 𝐶𝑝

(26)

𝑓

2 = 𝑆𝑡𝑚𝑆𝑐2 3Τ 𝑓

2 = 𝑆𝑡𝑃𝑟2 3Τ Pr≠1, Sc≠1

Relation between momentum transfer and heat transfer

Relation between momentum transfer and mass transfer

𝑁𝑢 = ℎ𝑐𝐿 𝑘 𝑆ℎ = ℎ𝑚𝐿

𝐷𝐴𝐵 𝑆𝑐 = 𝜈

𝐷𝐴𝐵

𝐿𝑒 = 𝛼

𝐷𝐴𝐵 = 𝑆𝑐 𝑃𝑟 𝑃𝑟 = 𝜈

𝛼

𝑐

𝜌𝐶𝑝𝑉𝑃𝑟2 3Τ = ℎ𝑚

𝑉 𝑆𝑐2 3Τ 𝑓

2 = 𝑆𝑡𝑃𝑟2 3Τ = 𝑆𝑡𝑚𝑆𝑐2 3Τ

𝑐

𝑚 = 𝜌𝐶𝑝 𝑆𝑐 𝑃𝑟

Τ 2 3

= 𝜌𝐶𝑝 𝐿𝑒2 3Τ

For Le1 Good for air

𝑐

𝑚 = 𝜌𝐶𝑝 or

𝑐 = 𝜌𝐶𝑝𝑚 = ℎ𝑑𝐶𝑝

5-Anaology between heat and mass transfer

𝑆𝑡 = ℎ𝑐 𝜌𝐶𝑝𝑉 𝑆𝑡𝑚 = ℎ𝑚

𝑉

26

(27)

Mass and energy balance for a small control volume of volume dV

6-Analysis of counter current cooling towers

Objective of a cooling tower is to cool hot water from T

wi

to T

wo

by rejecting heat to air.

27

(28)

𝑑 ሶ 𝑚

𝑤

= ሶ 𝑚

𝑎

𝑑𝑊 = ℎ

𝑑

𝑎

𝑣

𝑑𝑉(𝑊

𝑠

− 𝑊

𝑎

)

( ሶ 𝑚

𝑤

+ ሶ 𝑚

𝑎

𝑑𝑊) ℎ

𝑓

+ 𝑑ℎ

𝑓

+ ሶ 𝑚

𝑎

𝑎

= ሶ 𝑚

𝑤

𝑓

+ ሶ 𝑚

𝑎

(ℎ

𝑎

+ 𝑑ℎ

𝑎

)

𝑚

𝑤

𝑑ℎ

𝑓

+ ሶ 𝑚

𝑎

𝑑𝑊ℎ

𝑓

+ ሶ 𝑚

𝑎

𝑑𝑊𝑑ℎ

𝑓

= ሶ 𝑚

𝑎

𝑑ℎ

𝑎

Mass balance for water

Energy balance

Re-arranging terms

6-Analysis of counter current cooling towers

28

a

v

=surface area per unit volume=m

2

/m

3

𝑑 ሶ 𝑚

𝑤

(29)

𝑚

𝑤

𝑑ℎ

𝑓

= ℎ

𝑐

𝑎

𝑣

𝑑𝑉 𝑇

𝑠

− 𝑇

𝑎

+ ℎ

𝑑

𝑎

𝑣

𝑑𝑉 𝑊

𝑠

− 𝑊

𝑎

𝑓𝑔

𝑚

𝑤

𝑑ℎ

𝑓

+ ሶ 𝑚

𝑎

𝑑𝑊ℎ

𝑓

+ ሶ 𝑚

𝑎

𝑑𝑊𝑑ℎ

𝑓

= ሶ 𝑚

𝑎

𝑑ℎ

𝑎

𝑚

𝑎

𝑑ℎ

𝑎

= ℎ

𝑐

𝑎

𝑣

𝑑𝑉 𝑇

𝑠

− 𝑇

𝑎

+ ℎ

𝑑

𝑎

𝑣

𝑑𝑉 𝑊

𝑠

− 𝑊

𝑎

𝑓𝑔

+ ℎ

𝑑

𝑎

𝑣

𝑑𝑉 𝑊

𝑠

− 𝑊

𝑎

𝑓

𝑐

= ℎ

𝑑

𝐶

𝑝𝑎

𝑚

𝑎

𝑑ℎ

𝑎

= 𝐶

𝑝𝑎

𝑑

𝑎

𝑣

𝑑𝑉 𝑇

𝑠

− 𝑇

𝑎

+ ℎ

𝑑

𝑎

𝑣

𝑑𝑉 𝑊

𝑠

− 𝑊

𝑎

𝑔

𝑚

𝑎

𝑑ℎ

𝑎

= ℎ

𝑑

𝑎

𝑣

𝑑𝑉 𝐶

𝑝𝑎

𝑇

𝑠

− 𝑇

𝑎

+ 𝑊

𝑠

− 𝑊

𝑎

𝑔

Heat lost by water due to heat and mass transfer i.e.

Can be neglected

Using heat mass analogy and

Assuming Le=1

Substitute in the above equation to get the energy balance becomes

Energy balance

hc heat transfer coeff [W/(m2.K)]

hd mass transfer

conductance [kg/(m2.s]

29

(30)

𝑎

= 𝐶

𝑝𝑎

𝑇

𝑎

+ 𝑊

𝑎

(ℎ

𝑔0

+ 𝐶

𝑝𝑣

𝑇

𝑎

) ℎ

𝑠

= 𝐶

𝑝𝑎

𝑇

𝑠

+ 𝑊

𝑠

(ℎ

𝑔0

+ 𝐶

𝑝𝑣

𝑇

𝑠

)

𝑠

− ℎ

𝑎

= 𝐶

𝑝𝑎

𝑇

𝑠

− 𝑇

𝑎

+ 𝑊

𝑠

− 𝑊

𝑎

𝑔0

+ 𝐶

𝑝𝑣

(𝑊

𝑠

𝑇

𝑠

− 𝑊

𝑎

𝑇

𝑎

)

𝑚

𝑎

𝑑ℎ

𝑎

= ℎ

𝑑

𝑎

𝑣

𝑑𝑉(ℎ

𝑠

− ℎ

𝑎

)

𝑚

𝑤

𝑑ℎ

𝑤

= ሶ 𝑚

𝑤

𝐶

𝑝𝑤

𝑑𝑇

𝑤

= ሶ 𝑚

𝑎

𝑑ℎ

𝑎

𝑚

𝑤

𝐶

𝑝𝑤

𝑑𝑇

𝑤

= ℎ

𝑑

𝑎

𝑣

𝑑𝑉 ℎ

𝑠

− ℎ

𝑎

𝐶

𝑝𝑤

𝑑𝑇

𝑤

𝑠

− ℎ

𝑎

= න

𝑑

𝑎

𝑣

𝑑𝑉

𝑚

𝑤

=

𝑑

𝑎

𝑣

𝑉

𝑚

𝑤

= 𝐶𝑇𝐶

Enthalpy of moist air Saturated air

Small term

Assuming negligible difference between h

g

and h

g0

The difference

CTC or NTU can be found by several methods 𝑁𝑇𝑈 = ℎ

𝑑

𝑎

𝑣

𝑉

𝑚

𝑎

= 𝐶𝑇𝐶 𝑚 ሶ

𝑤

𝑚

𝑎

30

(31)

Calculation of CTC or NTU for a cooling tower

1-Using Nomograph (Perry’s Chemical Engineering HB) 2-Approximate methods

a- ( Fraas Design of heat exchanger Book) b-Chebyshev integration

3-Trapizodial rule or similar integration procedure

31

(32)

From Perry’s Chemical Engineers’ Hand book

1-Using Nomograph (Perry’s Chemical Engineering HB)

32

Cooling tower characteristic=CTC

𝐶𝑇𝐶 = ℎ

𝑑

𝑎

𝑣

𝑉

𝑚

𝑤

= 𝐾𝑎𝑉

𝐿

(33)

33

1- At the given range and cold

temperature located the first point say A.

2-At the air inlet wet bulb temperature locate the second point say point B.

3-Connect the two point A, and by a straight line (call it line 1)

4-On the L/G scale locate point C 5-Draw a line parallel to the first line (line1 ) and passing through point C. call it line 2

6-Line 2 will intersect KaV/L at a point.

Read the value of this CTC (cooling tower characteristics)

Using the nomograph to approximately find the cooling tower characteristics (KaV/L)

A B

C

Hot water temp =100 F

Cold water temp. 80 F

Wet bulb temp. 70 F

L/G=1.

(34)

𝑑𝑎𝑣𝑉

𝑚𝑎 = 𝐾𝑎𝑣𝑉

𝑚𝑎

34

(35)

𝛿ℎ = ℎ

𝑠𝑤𝑖

+ ℎ

𝑠𝑤𝑜

− 2ℎ

𝑠𝑤𝑚

4

Δ𝐻

𝑜

= ℎ

𝑠𝑤𝑖

− ℎ

𝑎𝑜

Δ𝐻

𝑖

= ℎ

𝑠𝑤𝑜

− ℎ

𝑎𝑖

Δ𝐻

𝑚

= (Δ𝐻

𝑜

− Δ𝐻

𝑖

) 𝑙𝑛 Δ𝐻

𝑜

− 𝛿ℎ

Δ𝐻

𝑖

− 𝛿ℎ 𝑡

𝑚

= 𝑡

𝑤𝑖

+ 𝑡

𝑤𝑜

2

𝑚

𝑎

Δℎ

𝑎

= ሶ 𝑚

𝑤

Δℎ

𝑤

𝐶𝑇𝐶 = 𝐶

𝑝𝑤

Δ𝑡

𝑤

Δ𝐻

𝑚

1-Crude approximation for CTC

h

sw

is the saturated air enthalpy at t

w

hsw= Saturated air at water temperature

35

Ref. Fraas, A.P., Heat exchanger design, 2nd edition, John Wiely, 1989

(36)

Example on finding the CTC

Hot water in

Cold water out

Air in

Air out

Packing material

Fill

𝑇𝑎𝑖, 𝑇𝑎𝑖

𝑊

𝑖

𝑊

𝑜 Twi=50 C

Two=29 𝑇𝑎𝑖 = 24 𝐶

Given:

Twi=50 C Two=29 C 𝑇𝑎𝑖 = 24 𝐶

𝑚𝑤

𝑚𝑎 = 𝐿𝑤

𝐺𝑎 = 1.25 Find

CTC or NTU

36

(37)

න 𝐶

𝑝𝑤

𝑑𝑇

𝑤

𝑠

− ℎ

𝑎

= න ℎ

𝑑

𝑎

𝑣

𝑑𝑉

𝑚

𝑤

= ℎ

𝑑

𝑎

𝑣

𝑉

𝑚

𝑤

= 𝐶𝑇𝐶

The cooling Tower characteristic CTC is given by

twi two hswi hswo hai twm hsm Δ𝐻𝑜 Δ𝐻𝑖 𝛿ℎ Δ𝐻𝑚

50 29 275.35 94.87 72.39 39.5 162.59 93.08 22.49 11.26 35.55

𝑚𝑎𝑑ℎ𝑎 = ሶ𝑚𝑤𝐶𝑝𝑤𝑑𝑡𝑤 𝐺𝑎 Δℎ𝑎 = 𝐿𝑤𝐶𝑝𝑤Δ𝑤

𝑚𝑤 = 𝐿𝑤 𝑚ሶ 𝑎 = 𝐺𝑎

𝐶𝑇𝐶 = 𝐶

𝑝𝑤

Δ𝑡

𝑤

Δ𝐻

𝑚

Δ𝐻

𝑚

= (Δ𝐻

𝑜

− Δ𝐻

𝑖

) 𝑙𝑛 Δ𝐻

𝑜

− 𝛿ℎ

Δ𝐻

𝑖

− 𝛿ℎ 𝛿ℎ = ℎ

𝑠𝑤𝑖

+ ℎ

𝑠𝑤𝑜

− 2ℎ

𝑠𝑤𝑚

4

Δ𝐻

𝑜

= ℎ

𝑠𝑤𝑖

− ℎ

𝑎𝑜

Δ𝐻

𝑖

= ℎ

𝑠𝑤𝑜

− ℎ

𝑎𝑖

𝐶𝑇𝐶 = 𝐶𝑝𝑤 ∗ (𝑡𝑤𝑖 − 𝑡𝑤𝑜) Δ𝐻𝑚

𝐶𝑇𝐶 = 4.186 ∗ (50 − 29)

35.55 = 2.47

37

(38)

2- Using Chebyshev integration method

𝑡𝑤𝑜

𝑡𝑤𝑖𝐶𝑝𝑤𝑑𝑡𝑤

𝑠 − ℎ𝑎 = 𝐶𝑝𝑤 𝑡𝑤𝑖 − 𝑡𝑤𝑜 1

𝑠 − ℎ𝑎 𝑎𝑣𝑔

𝑡𝑤𝑜

𝑡𝑤𝑖 𝑑𝑡𝑤

𝑠 − ℎ𝑎 = 𝐶𝑝𝑤 4

1 ℎ𝑠 − ℎ𝑎

0.1 + 1 ℎ𝑠 − ℎ𝑎

0.4 + 1 ℎ𝑠 − ℎ𝑎

0.6 + 1 ℎ𝑠 − ℎ𝑎

0.9

1

𝑠 − ℎ𝑎 𝑎𝑣𝑔 = 1 4

1

𝑠 − ℎ𝑎 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑎𝑡 0.1, 0.4, 0.6 𝑎𝑛𝑑 0.9 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒

1

𝑠 − ℎ𝑎 𝑎𝑣𝑔 = 1 4

1

𝑠 − ℎ𝑎 0.1 + 1

𝑠 − ℎ𝑎 0.4 + 1

𝑠 − ℎ𝑎 0.6 + 1

𝑠 − ℎ𝑎 0.9

𝐶

𝑝𝑤

𝑑𝑇

𝑤

𝑠

− ℎ

𝑎

= න

𝑑

𝑎

𝑣

𝑑𝑉

𝑚

𝑤

=

𝑑

𝑎

𝑣

𝑉

𝑚

𝑤

= 𝐶𝑇𝐶

hs is the enthalpy of air at saturation

38

(39)

Given:

twi=50 C two=29 C 𝑇𝑎𝑖 = 24 °𝐶

𝑚𝑤

𝑚𝑎 = 𝐿𝑤

𝐺𝑎 = 1.25

twi two Lw /Gg 𝑇𝑎 hai

50 29 1.25 24 72.4

Range=twi-two=50-29=21 C

0.1 Δ𝑡𝑤 0.4 Δ𝑡𝑤 0.6 Δ𝑡𝑤 0.9 Δ𝑡𝑤

2.1 8.4 12.6 18.9

twi 31.1 37.4 41.6 47.9

hsi 105.6 145.8 180.0 246.8

hai 83.21 116.2 138.1 171.1

hsi-hai 22.41 29.62 41.89 75.69

𝑑𝑎𝑣𝑉

𝑚𝑤 = 𝐶𝑝𝑤 𝑡𝑤𝑖 − 𝑡𝑤𝑜 4

1

22.41 + 1

29.62 + 1

41.89+ 1

75.69 = 2.538

Example on Chebyshev integration method

𝑚𝑎Δℎ𝑎 = ሶ𝑚𝑤𝐶𝑝𝑤Δ𝑡𝑤

39

1

𝑠 − ℎ𝑎 𝑎𝑣𝑔 = 1 4

1

𝑠 − ℎ𝑎 0.1 + 1

𝑠 − ℎ𝑎 0.4 + 1

𝑠 − ℎ𝑎 0.6 + 1

𝑠 − ℎ𝑎 0.9

𝐶𝑝𝑤 = 4.186 𝑘𝐽/𝑘𝑔

(40)

3-Integration of the equation with Merkel Approximation

න 𝐶

𝑝𝑤

𝑑𝑡

𝑤

𝑠

− ℎ

𝑎

= ℎ

𝑑

𝑎

𝑣

𝑚

𝑤

𝑉 = 𝐶𝑇𝐶

𝑚

𝑎

𝑑ℎ

𝑎

= ሶ 𝑚

𝑤

𝑑ℎ

𝑓

= ሶ 𝑚

𝑤

𝐶

𝑝𝑤

𝑑𝑡

𝑤

By starting from the bottom of the tower with t

wi

(the exit

temperature of water and assuming a small dt

w

(temperature difference for the water). The inlet air state is known. From Eq. 2 one can get dh

a

and the term on left hand side of

equation 1 above can be found

1

2

40

(41)

y0

y1

y2

y3

y4

Δ𝑥

𝐴𝑟𝑒𝑎 = 𝑦0 + 𝑦1

2 Δ𝑥 +𝑦1 + 𝑦2

2 Δx + y2 + y3

2 Δ𝑥 + 𝑦3 + 𝑦4 2 Δ𝑥 𝐴𝑟𝑒𝑎 = Δ𝑥

2 𝑦0 + 2𝑦1 + 2𝑦2 + 2𝑦3 + 𝑦4

The Trapezoidal Rule

x y

𝐴𝑟𝑒𝑎 = න

𝑎 𝑏

𝑦 𝑥 𝑑𝑥

41

(42)

𝑎 𝑏

𝑓 𝑥 = 𝑑𝑥 = 𝑏 − 𝑎

𝑛 𝑦0 + 2𝑦1 + 2𝑦2 + ⋯ . 2𝑦𝑛−1 + 𝑦𝑛

The Trapezoidal Rule

42

(43)

8-Cooling tower Effectiveness

Temperature potential

(T

w

-T

a

) Enthalpy potential

(h

sw

-h

a

)

43

Direct contact heat exchanger

(44)

Sensible heat exchangers

𝑇ℎ𝑖

𝑇𝑐𝑖 𝑇ℎ𝑜

𝑇𝑐𝑜 Δ𝑇 = 𝑇 − 𝑇𝑐

𝑑𝑞 = 𝐶𝑐𝑑𝑇𝑐 𝑑𝑞 = 𝐶𝑑𝑇 𝑑𝑞 = 𝑈𝑑𝐴 𝑇 − 𝑇𝑐

𝑑Δ𝑇 = 𝑑𝑇 − 𝑑𝑇𝑐 𝑑𝑇𝑐 = 𝑑𝑞

𝐶𝑐 = 𝑈𝑑𝐴

𝐶𝑐 𝑇 − 𝑇𝑐 𝑑𝑇 = 𝑑𝑞

𝐶 = 𝑈𝑑𝐴

𝐶 𝑇 − 𝑇𝑐

Δ𝑇

𝜖 = 1 − 𝑒

−𝑁𝑇𝑈 1−𝐶𝑟

1 − 𝐶

𝑟

𝑒

−𝑁𝑇𝑈 1−𝐶𝑟

8-Cooling tower Effectiveness

44

𝑑Δ𝑇

Δ𝑇 = 𝑈𝑑𝐴 1

𝐶 − 1 𝐶𝑐 ln Δ𝑇2

Δ𝑇1 = 𝑈𝐴 1

𝐶 + 1 𝐶𝑐

Counter flow sensible heat

exchanger

(45)

𝑁𝑇𝑈 = ℎ𝑑𝑎𝑣𝑉

𝑚𝑎 = 𝐶𝑇𝐶 ሶ Τ

𝑚𝑎 𝑚ሶ 𝑤

𝑚 = 𝑚ሶ 𝑎𝐶𝑠

𝑚𝑤 𝐶𝑝𝑤 𝑑ℎ𝑎 = 𝑁𝑇𝑈𝑑𝑉

𝑉 (ℎ𝑠 − ℎ𝑎)

𝑚𝑤𝐶𝑝𝑤𝑑𝑇𝑤 = ሶ𝑚𝑎𝑑ℎ𝑎 𝐶𝑠 = 𝑑ℎ𝑠

𝑑𝑇𝑤

𝑚𝑤𝐶𝑝𝑤𝑑ℎ𝑠

𝐶𝑠 = ሶ𝑚𝑎𝑑ℎ𝑎 = ሶ𝑚𝑎𝑁𝑇𝑈𝑑𝑉

𝑉 (ℎ𝑠 − ℎ𝑎) 𝑑ℎ𝑠 = 𝑚ሶ 𝑎𝐶𝑠

𝑚𝑤𝐶𝑝𝑤 𝑁𝑇𝑈 𝑑𝑉

𝑉 ℎ𝑠 − ℎ𝑎

𝑑ℎ𝑠 = 𝑚 𝑁𝑇𝑈𝑑𝑉

𝑉 ℎ𝑠 − ℎ𝑎

𝑠𝑖

𝑠𝑜𝑎𝑖

𝑎𝑜

8-Cooling tower Effectiveness

𝑚𝑎𝑑ℎ𝑎 = ℎ𝑑𝑎𝑣𝑑𝑉 ℎ𝑠 − ℎ𝑎

45

𝑑𝑇 = 𝑑𝑞

𝐶 = 𝑁𝑇𝑈 𝐶𝑚𝑖𝑛𝑑𝐴

𝐶𝐴 𝑇 − 𝑇𝑐 For Sensible heat exchangers

(46)

𝜖 = ℎ𝑎𝑜 − ℎ𝑎𝑖

𝑠𝑖 − ℎ𝑎𝑖 = 𝑞 𝑞𝑚𝑎𝑥

𝑎𝑜 = 𝜖 ℎ𝑠𝑖 − ℎ𝑎𝑖 + ℎ𝑎𝑖 𝑑ℎ𝑠 = 𝑚 𝑁𝑇𝑈𝑑𝑉

𝑉 ℎ𝑠 − ℎ𝑎

𝜖 = 1 − 𝑒−𝑁𝑇𝑈 1−𝑚 1 − 𝑚𝑒−𝑁𝑇𝑈 1−𝑚

8-Cooling tower Effectiveness

Sensible heat exchanger

𝑚 = 𝑚ሶ 𝑎𝐶𝑠

𝑚𝑤 𝐶𝑝𝑤 𝐶𝑠 = 𝑑ℎ𝑠 𝑑𝑇𝑤

𝜖 = 1 − 𝑒−𝑁𝑇𝑈 1−𝐶𝑟 1 − 𝐶𝑟𝑒−𝑁𝑇𝑈 1−𝐶𝑟

46

𝑑𝑇 = 𝑑𝑞

𝐶 = 𝑁𝑇𝑈 𝐶𝑚𝑖𝑛𝑑𝐴

𝐶𝐴 𝑇 − 𝑇𝑐

(47)

Assuming fixed effective value for Ws such as Wswe and integrate the above equation

𝑊𝑎𝑜 = 𝑊𝑠𝑤𝑒 + 𝑊𝑎𝑖 − 𝑊𝑠𝑤𝑒 𝑒−𝑁𝑇𝑈

8-Cooling tower Effectiveness

Also the change in humidity ratio is given by

Wswe is effective humidity ratio at effective saturated enthalpy hswe

47

𝑑 ሶ 𝑚

𝑤

= ሶ 𝑚

𝑎

𝑑𝑊

𝑎

= ℎ

𝑑

𝑎

𝑣

𝑑𝑉(𝑊

𝑠

− 𝑊

𝑎

)

𝑑𝑊𝑎 = −ℎ𝑑𝑎𝑣𝑑𝑉

𝑚𝑎 (𝑊𝑎 − 𝑊𝑠) 𝑑𝑊𝑎

𝑊𝑎 − 𝑊𝑠𝑤𝑒 = −ℎ𝑑𝑎𝑣𝑑𝑉

𝑚𝑎

𝑊𝑎𝑜 − 𝑊𝑠𝑤𝑒

𝑊𝑎𝑖 − 𝑊𝑠𝑤𝑒 = 𝑒−𝑁𝑇𝑈

(48)

48

𝑠𝑤𝑒 = ℎ𝑎𝑖 + ℎ𝑎𝑜 − ℎ𝑎𝑖 1 − 𝑒−𝑁𝑇𝑈 𝑑ℎ𝑎 = −ℎ𝑑𝑎𝑣𝑑𝑉

𝑚𝑎 (ℎ𝑎 − ℎ𝑠)

At this value of saturated air enthalpy find the effective Wswe and then use the equation below to find the mass of water leaving the tower

From the enthalpy (energy) balance

𝑚𝑤𝑜 = ሶ𝑚𝑤𝑖 − ሶ𝑚𝑎(𝑊𝑎𝑜 − 𝑊𝑎𝑖)

Amount of water evaporated= 𝑚ሶ 𝑎 (𝑊𝑎𝑜 − 𝑊𝑎𝑖)

8-Cooling tower Effectiveness

𝑑ℎ𝑎

𝑎 − ℎ𝑠𝑤𝑒 = −ℎ𝑑𝑎𝑣𝑑𝑉

𝑚𝑎

𝑎𝑜 − ℎ𝑠𝑤𝑒

𝑎𝑖 − ℎ𝑠𝑤𝑒 = 𝑒−𝑁𝑇𝑈 Integrate

or

(49)

𝑚𝑤𝑜 = ሶ𝑚𝑤𝑖 − ሶ𝑚𝑎(𝑊𝑎𝑜 − 𝑊𝑎𝑖)

or

Amount of water evaporated= 𝑚ሶ 𝑎 (𝑊𝑎𝑜 − 𝑊𝑎𝑖) ℎ𝑠𝑤𝑒 = ℎ𝑎𝑖 + ℎ𝑎𝑜 − ℎ𝑎𝑖

1 − 𝑒−𝑁𝑇𝑈

use phsychromery chart or moist air tables to find the corresponding Wse 𝑊𝑎0 = 𝑊𝑠𝑒 + 𝑊𝑎𝑖 − 𝑊𝑠𝑒 𝑒−𝑁𝑇𝑈 Then

8-Cooling tower Effectiveness

49

(50)

Given:

twi=50 C ta=40 C 𝑡𝑎𝑖 = 24 𝐶 CTC=2.54

𝑚𝑤

𝑚𝑎 = 𝐿𝑤

𝐺𝑎 = 1.25

CTC 𝑚ሶ 𝑤Τ𝑚ሶ 𝑎 NTU Twi 𝑇𝑎𝑖 hswi hai Wai

2.54 1.25 3.175 50 24 275.35 72.22 0.0121

4

𝐶𝑆 = 𝑑ℎ𝑠𝑤

𝑑𝑡𝑤 = ℎ𝑠𝑤 𝑡𝑤 = 50 − ℎ𝑠𝑤(𝑡𝑤 = 49)

1 = (275.35 − 261.8)

1 = 13.55

𝑚 = 𝑚ሶ 𝑎𝐶𝑠

𝑚𝑤𝐶𝑝𝑤 = 13.55

1.25 ∗ 4.186 = 2.59

𝑁𝑇𝑈 1 − 𝑚 = 2.032 ∗ 1 − 2.59 = −5.05

𝜖 = 1 − 𝑒−𝑁𝑇𝑈 1−𝑚

1 − 𝑚𝑒−𝑁𝑇𝑈 1−𝑚 = 0.38

𝑎𝑜 = ℎ𝑎𝑖 + 𝜖 ℎ𝑠𝑤𝑖 − ℎ𝑎𝑖 =72.22+0.38(275.35-72.22)=148.7 Example on cooling tower effectiveness

and finding the state of air and water leaving the tower

50

(51)

𝑠𝑤𝑒 = ℎ𝑎𝑖 + ℎ𝑎𝑜 − ℎ𝑎𝑖 1 − 𝑒−𝑁𝑇𝑈𝑠𝑤𝑒 = 160.3 𝑘𝐽/𝑘𝑔 𝑊𝑠𝑤𝑒 = 0.0469𝑘𝑔𝑤

𝑘𝑔𝑎

𝑊𝑎0 = 𝑊𝑠𝑤𝑒 + 𝑊𝑎𝑖 − 𝑊𝑠𝑤𝑒 𝑒−𝑁𝑇𝑈

𝑊𝑎𝑜 = 0.04235 𝑘𝑔𝑤 𝑘𝑔𝑎

𝑚𝑎Δℎ𝑎 = ሶ𝑚𝑤𝐶𝑝𝑤Δ𝑡𝑤 Δ𝑡𝑤 = ℎ𝑎𝑜 − ℎ𝑎𝑖

ሶ Τ

𝑚w 𝑚ሶ a 𝐶𝑝𝑤 = 14.62

𝑡𝑤𝑜 = 𝑡𝑤𝑖 − Δ𝑡𝑤 = 50 − 14.62 = 35.38 From moist air

thermodynamics tables Find Wswe at hswe

51

(52)

Another iteration with two=35.38

𝐶𝑠 = 𝑑ℎ𝑠

𝑑𝑡𝑤 = ℎ𝑠 50 − ℎ𝑠(35.38)

14.62 = 274.3 − 131.6

14.62 = 9.759

Cs 𝑚  hao hswe Wswe Wao two

9.759 1.865 0.489 171 185.9 0.0556 0.04989 31.1

52

(53)

9-Cooling tower Fill packing

53

(54)

Fill types

54

(55)

Fill types

55

(56)

Ref.: Process heat transfer, Hewitt et al Triangular slats

Rectangular slats

𝑑𝑎𝑣𝑉

𝑚𝑤 = 0.32 𝑚ሶ 𝑤

𝑚𝑎

−0.45

𝑑𝑎𝑣𝑉

𝑚𝑤 = 0.28𝐻 𝑚ሶ 𝑤

𝑚𝑎

−0.52

𝑑𝑎𝑣𝑉

𝑚𝑤 = 𝑒𝐻 𝑚ሶ 𝑤

𝑚𝑎

−𝑛

General form for the CTC as a function of L/G and packing height

Fill types

Corrugated asbestos sheets

𝑑𝑎𝑣𝑉

𝑚𝑤 = 0.72𝐻 𝑚ሶ 𝑤

𝑚𝑎

−061

56

(57)

𝐶𝑝𝑤𝑑𝑡𝑤

𝑠 − ℎ𝑎 = 𝑑𝑎𝑣

𝑚𝑤 𝑉 = 𝐶𝑇𝐶

Merkel Integral

Packing material

𝑑𝑎𝑣𝑉

𝑚𝑤 = 𝑒𝐻 𝑚ሶ 𝑤

𝑚𝑎

−𝑛

10-Estimating the design flow ratio 𝒎 ሶ 𝒘 Τ 𝒎 ሶ 𝒂

57

(58)

58

Cooling water design

Variation of Cooling tower characteristics with the ratio L/G,

tower height from heat/mass transfer side and from packing

materials side.

(59)

References

1-Braun, J. E. Methodologies for the Design and Control of Central Cooling Plants."

Ph.D. Thesis, University of Wisconsin, 1988

2-Braun J. E., S. A. Klein, JW Mitchell, Effectiveness models for cooling towers and cooling coils

3-D. Stevens, J. E. Braun, SA Klein, An effectiveness model of liquid-desiccant system heat/mass exchangers

4-Kroger air cooled condenser and cooling towers 5-Perry’s chemical engineering handbook, 8

th

edition 6-CRC Thermal Engineering Hand book

7-Fraas, A.P., Heat exchanger design, 2

nd

edition, John Wiely, 1989

59

Referensi

Dokumen terkait

Sistem Cooling Water merupakan suatu sistem pendingin tipe terbuka yang terdiri dari 2 buah Cooling Tower, 2 buah Pompa distribusi dan 1 buah alat penukar panas

Tujuan dari pengujian ini yaitu mengetahui efektivitas dari direct-indirect evaporative cooling sebagai variasi temperatur air sprayer dan kecepatan aliran udara pada heat

Kegiatan ini dilakukan untuk menghitung kebutuhan cooling tower agar mampu menyerap panas yang harus dibuang dari heat exchanger dan selanjutnya dibuang ke lingkungan

Dengan adanya pendinginan air dari proses pendinginan heat exchanger, maka akan diketahui berapa beban kalor yang terjadi di cooling tower, sehingga diketahui

Afsaneh Mojra 2 Figure 2: Cooling of a circular fin by means of convective heat transfer Where h is the convective heat transfer coefficient, P the perimeter, k the thermal

Academic Article Journal of Heat Island Institute International Vol.7-2 2012 Effect of Evaporative Cooling Techniques Sprayed Water Mist on Reducing Urban Heat Flux and Saving Energy

Table 4.12 Models used to validate cooling load due to heat transfer 41 through external walls Table 4.13 Models used to validate cooling load due to solar gain 44 Table 5.1 UND

Advances in Polymer Technology, vol.33 1, 2014, 24 pages Potential of Conformal Cooling Channels in Rapid Heat Cycle Molding: A Review Abstract Rapid heat cycle molding RHCM can