Hedge and safe haven properties during COVID-19: Evidence from Bitcoin and gold
Item Type Article
Authors BenSaïda, Ahmed; Tayachi, Tahar; Chemkha, Rahma; ghorbel, ahmed
Citation Rahma Chemkha, Ahmed BenSaïda, Ahmed Ghorbel, Tahar Tayachi, Hedge and safe haven properties during COVID-19:
Evidence from Bitcoin and gold, The Quarterly Review of Economics and Finance, Volume 82, 2021, Pages 71-85, ISSN 1062-9769, https://doi.org/10.1016/j.qref.2021.07.006.
DOI 10.1016/j.qref.2021.07.006
Publisher Elsevier B.V.
Download date 21/06/2023 04:51:21
Item License https://creativecommons.org/licenses/by/4.0/
Link to Item http://hdl.handle.net/20.500.14131/248
TheQuarterlyReviewofEconomicsandFinance82(2021)71–85
ContentslistsavailableatScienceDirect
The Quarterly Review of Economics and Finance
j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / q r e f
Hedge and safe haven properties during COVID-19: Evidence from Bitcoin and gold
Rahma Chemkha
a, Ahmed BenSaïda
b,∗, Ahmed Ghorbel
c, Tahar Tayachi
b,daGFCLaboratory,FSEGSfax,UniversityofSfax,Sfax,Tunisia
bCollegeofBusiness,EffatUniversity,Jeddah,SaudiArabia
cCODECIlaboratory,FSEGSfax,UniversityofSfax,Sfax,Tunisia
dFSEGMahdia,UniversityofMonastir,Monastir,Tunisia
a r t i c l e i n f o
Articlehistory:
Received18March2021
Receivedinrevisedform12July2021 Accepted14July2021
Availableonline5August2021
JELclassication:
G11 G15 G23 Keywords:
Bitcoin DCC Hedge Gold Safehaven
a b s t ra c t
TheCOVID-19pandemichascausedanunprecedentedhumanandhealthcrisis.Themeasurestaken tocontainthedamagecausedaglobaleconomicslowdown.Investorsfaceliquiditypressuresresulting fromthegeneraldownturninthenancialmarkets,andmightchangetheirriskappetite.Thispaper reassessesthesafehavenpropertyofgoldasatraditionalasset,andBitcoinwhichisgraduallyimposing itselfasanewclassofassetwithuniquecharacteristics.Theempiricalresults,appliedonmajorworld stockmarketindicesandcurrencies,andbasedonthemultivariateasymmetricdynamicconditional correlationmodel,showtheeffectivenessofBitcoinandgoldashedgingassetsinreducingtheriskof international portfolios. Moreover, the analysis provides evidence that during the COVID-19 pandemic, goldisaweaksafehavenfortheconsideredassets,whileBitcoincannotprovideshelterduetoits increasedvariability.
©2021BoardofTrusteesoftheUniversityofIllinois.PublishedbyElsevierInc.Allrightsreserved.
1. Introduction
TheCOVID-19pandemichassucceededinlootinganddesta- bilizingtheentireworld.In justfewmonths,itendangerednot onlylives,butalsoeconomicborders,globalbusinessesandthe veryessenceoftheworld’snancialequilibrium.Thiscrisiscaused theclosureofborders,asharpslowdownintheglobaleconomy andastockmarketcrashonMarch11,2020.Consequently,many investorsturnedtouncorrelatedassetstohedgetheirportfoliosin ordertocopewiththecrisisandsupporttherecovery.
Throughoutitshistory,goldhasbeenviewedasavaluestore, portfoliostabilizerandsourceofliquidityintimesofnancialtur- bulence.Goldisknownasahedgeagainstinationarypressuresin theU.S.andU.K.(Hoang,Lahiani,&Heller,2016).Itreactscounter- cyclicallytomacroeconomic news (Elder,Miao, &Ramchander, 2012)andworksdifferentlyfromotherassets,especiallystocks.
∗Correspondingauthor.
E-mailaddresses:[email protected](R.Chemkha), [email protected](A.BenSaïda),[email protected] (A.Ghorbel),[email protected](T.Tayachi).
When prices of stockmarket indices plummet,gold retains its value.Itseffectivenessasahedgeandsafehavenagainstequitiesin differentmarketsiswellconrmedbynumerousstudies(e.g.,Baur
&Lucey,2010;Beckmann,Berger,&Czudaj,2015,amongothers).
However,BaurandGlover(2012)showedthatinvestorbehavior candestroythehedgingpotentialofgoldduetoincreasedinvest- mentinthepreciousmetalforhedgingandspeculationpurposes.
For example,Klein(2017)usedadynamiccorrelationmodelto showthat preciousmetalshad ahedging rolefor stockmarket indicesinAmericanandEuropeancountries;nevertheless,thisrole havedissipatedafter2013.
Overthepastdecade,attentionhasshiftedfromgoldtoanew asset,Bitcoin. Bitcoinwasrstintroducedin 2009in thewake of thebankruptcy of LehmanBrothersinvestment bank,asthe condenceinnancialinstitutionsdeteriorated.Soonafter,this cryptocurrency succeededin catchingtheattentionofinvestors andinstitutionalbodies.Ithasestablisheditselfthroughitsinno- vativecharacter.TheBitcoinprotocolisbasedonthevoluntary participation oftheparties,it is notsubject toany controland allowseveryonetoaccumulateandtransfervalueina currency thatresistspricemanipulationbycentralbanksandglobalnancial institutions(Chemkha,BenSaïda,&Ghorbel,2021).
https://doi.org/10.1016/j.qref.2021.07.006
1062-9769/©2021BoardofTrusteesoftheUniversityofIllinois.PublishedbyElsevierInc.Allrightsreserved.
Obviously,thishasledBitcoinandgoldtocompeteforthesta- tusofthemosteffectiveprotectiveasset.Comparedtogold,Bitcoin mustovercomeseveralchallenges,particularlyintermsofhistory, acceptance,consumption,intrinsicvalueandlowvolatility.How- ever,goldandBitcoinshareseveralcharacteristics.(i)First,they bothescapepoliticalinuenceandareregulatedlikecommodities, especiallyintheU.S.whereBitcoinisconsideredacommodityby theCFTCinstitution.(ii)Second,nocentralauthorityintervenes toadjustorcontroltheirminingtransactionsandactivities(Baur, Hong,&Lee,2018);therefore,theyarebothindependentfromina- tion.(iii)Third,bothassetshaveanitesupply,anditisthisscarcity thatmakesthemvaluable.SinceBitcoin’snumberofunitsincircu- lationislimitedto21million,makingitananti-inationaryasset, whichbringsitclosertogold.(iv)Fourth,theasymmetricreaction topositiveandnegativenewscharacterizesbothBitcoin(Bouri, Jalkh,Moln’ar,&Roubaud,2017)andgold(Baur&Glover,2012).
Researchesonthelinkbetweenthepricesofgoldandthoseof otherassets,andthepotentialforhedgeandsafehavencontinue togrowremarkably.Indeed,Bitcoin’slowcorrelationwithtradi- tionalassetsmakesitdesirablefordiversication(Corbet,Meegan, Larkin,Lucey,&Yarovaya,2018;Guesmi,Saadi,Abid,&Ftiti,2019;
Ji,Bouri,Gupta,&Roubaud,2018),andavaluablehedgeagainst stockmarkets(Bauretal.,2018;Dyhrberg,2016)andcommodities (Bourietal.,2017).Furthermore,severalstudiesclaimthatBitcoin wasnotaffectedbytheEuropeandebtcrisisnortheCypriotbanking crisis,yetitprospered(Luther&Salter,2017).
TheeconomicimpactoftheCOVID-19crisisonnancialmarkets hasrecentlybecomeatopicofinterest.Thishasreignitedthedebate overwhetherthecryptocurrencyhastheabilitytomimicorbeat goldhedgingandsafehavenpropertyagainststocks.Moreover, tothebestofourknowledge,alimited numberofstudieshave analyzedBitcoinandgold(Bourietal.,2017;Corbetetal.,2018;
Dyhrberg,2016)withoutacomparablestudybetweentheirroles againstnancialassets.Tollthegapintheliterature,ourstudy drawsnewinsightsintothepotentialofBitcoinandgoldtohedge againstuctuationsinnancialmarketsandtheirroleassafehaven duringtheCOVID-19virusoutbreak.
Theremainderofthispaperisorganizedasfollows.Section2isa briefreviewoftheliterature.Section3explainsthemethodological approach.Section4describesthedatasample.Section5analyzes theempiricalresults.Section6concludes.
2. Literaturereview
Sincetheglobalnancialcrisisof2007-2009,therehasbeena resurgenceofinterestamongacademicsandpractitionerstostudy thehedgeandsafehavenpotentialofvariousassetclassesagainst marketdownturns.Indeed,duringtimesofcrisis,investorsseek todisposeoftheirriskyassetsinfavorofothermoresecureassets (ight-to-safety).Thisispreciselythecaseofgold,whosevaluedoes notdependona company’sperformancenora state’sabilityto repayitsdebt.Thus,whenotherassetscollapse,onecanalways relyongold,sinceitcanbeeasilyresoldwhenneeded.
Lawrence(2003)providesanoverviewoftheevolutionofthe relationshipbetweengoldandstockmarkets.Theauthorconcludes thatgoldappearstobeisolatedfromthebusinesscycle–unlike othercommodities–whichmaymakeitmoreattractiveasadiver- sierandevenasasafehaven.Previousstudies(Fleming,Kirby,&
Ostdiek,1998,amongothers)showevidenceinfavorofgovern- mentbondsprovidingequityinvestorswithasafehavenintimes ofcrisis.Chan,Treepongkaruna,Brooks,andGray(2011)showthat U.S.Treasuriesareasafehavenforequityinvestorsduringtimes of market stress.Flavin, Morley, and Panopoulou (2014)show that 1-yearand10-yearU.S.treasurybonds,inadditiontogold,aresafe havenstoprotectportfolios intheeventofa marketdownturn.
However,evenwithsomeoftheadvantages associatedwithinvest- inginTreasuries,therearestilldrawbackstobeawareof,suchas thelowyield.
Other investors, looking for an alternative togloomy nan- cialmarkets,prefertheassetbacked securities(ABS), atype of
xed income assets that offer safereturns against market tur- moil.Bernanke,Bertaut,DeMarco,and Kamin(2011)showthat ABShavebecomeanattractivealternativeforinvestors,offering returnsslightly higherthanthoseofTreasuries.However,these typesofABScollateralhaveproventoberisky(Gennaioli,Martin,
&Rossi,2018),involvingriskofassetdevaluation,andcanhaveseri- ousconsequences,suchasanincreaseindefaultsduringtheU.S.
bornsubprimemortgagecrisisin2007(Bertaut,DeMarco,Kamin,
&Tryon,2012).
Unlikerisk-freeassets,goldhasnaturallybeenconsideredasa safehavengivenitshistoricalroleasanaturalcurrencyandavalue store.Itisnegativelycorrelatedwiththenancialcycle,soittends toprovidepositivereturnsduringcrises(Bouri,Lucey,&Roubaud, 2020).Thereisavastliteraturestudyingthepotentialofgoldas ahedgeandasafehaven,buttheresultsaremixed.Forinstance, basedondatafrommajoremerginganddevelopingcountries,Baur andMcDermott(2010)discusswhethergoldistrulysafe.Their resultsconrmthispropertyofgoldforAmericanandEuropean stockindicesbutnotforothermarkets.HoodandMalik(2013)nd thatgoldisahedgefortheU.S.stockmarket,butitssafehavenprop- ertyislowrelativetothevolatilityindex.Beckmannetal.(2015) showthatgoldservesbothasahedgeandasaneffectivesafehaven.
LuceyandLi(2015)studytheroleofpreciousmetalsassafehavens inatimevaryingframeworkandndthatthestrengthofgoldasa safehavenchangesovertime.Foremergingcountries,Chkili(2016) examinestherelationshipbetweengoldandthestockmarketsof BRICScountriesandsuggeststhatgoldcanserveasasafehaven againstextrememovements.Likewise,Akhtaruzzaman,Boubaker, Lucey,andSensoy(2021)examinetheroleofgoldasasafehaven duringtheCOVID-19crisis.TheyfoundthatduringphaseI(before March16,2020)goldwasastrongsafehaven;however,itsproperty hasweakenedduringphaseIIstartingfromMarch17,2020.
Bitcoinisanotherpopularassetthathassucceededingaining theattentionofinvestors asasafehaven.BouoiyourandSelmi (2017) admit that Bitcoin has both the hedge and safe haven propertiesfor theU.S. stockindex. Theyalso demonstratethat preciousmetals have lost their safehaven property over time.
Bouri,Lucey,etal.(2020)ndthatcryptocurrenciescanbeused asahedgeagainstthedownsideriskofequityinvestments.This propertyappliesduringnormalperiodsandtimesofcrisis.Several researcherssuggestthattheroleofBitcoinasasafehavenandhedg- inginstrumentisquitelimited(Eisl,Gasser,&Weinmayer,2015, amongothers).Forexample,basedonanasymmetricdynamiccon- ditionalcorrelation(A-DCC)model,Bourietal.(2017)statethat Bitcoinoffersdiversicationadvantagesovervariousotherassets, suchasstockindices,bonds,oil,gold,commodityindices,andthe U.S.dollar,butitsuseashedgeorsafehavenonlyappearsincertain caseswhichdifferfromonehorizontoanother.Klein,PhamThu, andWalther(2018)suggestthatBitcoinisnotasafehavenand cannothedgeagainstrisk,evenfordevelopedmarkets.Shahzad, Bouri,Roubaud,Kristoufek,andLucey(2019)ndthatgoldhas an“indisputable”safehavenpropertycomparedtothatofBitcoin.
WhilegoldisaneffectivesafehavenforallG7stockindices,Bitcoin onlyoffersasafehavenrolefortheCanadianstockindex.Likewise, ConlonandMcGee(2020)showthatBitcoindoesnotactasasafe haven.ItisevolvingatthesamerateastheS&P500asthehealth crisisdevelops.
Theaforementionedstudiesonthecharacteristicsofgoldand Bitcoin offer mixed results. Therefore, it becomes essential to reassessthehedgeandsafehavenpropertiesofBitcoinintherecent contextofCOVID-19;andtotestwhethergoldretainsitscharacter-
isticasastablevaluestorethatcanprotectinvestors,policymakers andregulatorsfromtheadverseeffectsofthepandemic.
3. Methodology
ToanalyzewhetherBitcoinandgoldcanserve asahedgeor safehavenforthemaintraditionalassetsofdevelopedmarkets, our methodology is based on the principles presented byBaur and Lucey(2010). Themethods quicklygainedpopularity andhave been appliedin various studies, for example, oncredit default swaps,bonds,metalsand gold(Ciner,Gurdgiev,&Lucey,2013;Li
&Lucey,2017;Lucey&Li,2015).
BaurandLucey(2010)providecleardenitionsanddistinction ofdiversier,hedge,andsafehaven.Anassetisclassiedasdiver- sierifitispositively,butweaklycorrelated,withanotherasset orportfolioonaverage. Ahedgeisanassetthatisuncorrelated (weakhedge)ornegativelycorrelated(stronghedge)withanother assetorportfolioonaverage.Ahedgemaynotreducelossesdur- ingtimesofmarketstressorturbulence,astheassetmayshow positivecorrelationswithotherassetsduringsomeperiods,and negativecorrelationsduringotherperiods,resultinginanegative correlationonaverage.Asafehavenisanassetthatisuncorrelated (weaksafehaven)ornegativelycorrelated(strongsafehaven)with anotherassetorportfoliointimesofturmoil.Thus,asafehaven investmenthasthepotentialtoprotectinvestorsandoffsetlosses intheeventofmarketcrises,suchastheCOVID-19pandemic.
3.1. TheasymmetricDCCmodel
Severalstudiesinnanceusethemultivariatedynamiccon- ditional correlation(DCC) model of Engle (2002) toinvestigate thecorrelationsbetweenassets,andtoconstructreliablehedging strategies(Bourietal.,2017;Chang,McAleer,&Tansuchat,2011;
Cineretal.,2013,amongothers).TheDCCmodelprovidesasimple frameworkforextractingdynamiccorrelationsformultipleassets inasparseparameterconguration.Inthispaper,weextendthe analysisbyemployingtheasymmetricdynamicconditionalcor- relation(A-DCC)modelofCappiello,Engle,andSheppard(2006), whichidentiestheasymmetricresponsesintheconditionalvari- ancesandcorrelationsduringstressperiods.Theasymmetry,also called“leverageeffect”,detectsanoftenobservedstylizedfactof
nancialassets where anunexpected drop(badnews)in asset pricestendstoincreasethevolatilitymorethananunexpectedrise (goodnews)withthesamemagnitude(BenSaïda,2019,2021).
3.1.1. Themodel
Letrt bea(n×1)vectorofreturnsofnassets,suchthatrt=
r1,t,...,rn,t
.Forthebivariatecase,n=2,thevectorrtcontains thereturnsr1,toftheBitcoin(orgold),andr2,tofastockmarket index(orexchangerate).Thereturnsfollowan-variateStudent’s tdistributionwithdegrees-of-freedomasinEq.(1).
rt= t+εt
rt|It−1∼ tn,(t,Ht) (1) wheretstandsfortheconditionalmeanvectorthatmayincludea constantand/orpastobservations.ThemeanequationoftheA-DCC modelisspeciedasanautoregressivemovingaverage(ARMA) process,asdebatedbyKyrtsouandLabys(2007),sinceoverlook- ingthis characteristicmayunderminesomeofthedynamicsof the relationships between the studied variables. The termHtis the conditionalcovariancematrixofrt;andεtdenotesa(n×1)vec- torofresidualsconditionalontheinformationsetIt−1 denedat
timet−1.ThegeneraldynamiccorrelationmodeloftheA-DCCis denedinEq.(2).
Ht=DtRtDt (2)
where Rt represents the time varying conditional correlation matrix,andDtstandsforthe(n×n)diagonalmatrixcontainingthe conditionalstandarddeviationsofunivariateGARCH-typemodels, suchthat:
Dt= diag
h1/21,t,...,h1/2n,t
Rt= diag(Qt)−1/2Qtdiag(Qt)−1/2
(3)
ThetermQtisapositivedenitematrixthatrepresentstheevo- lutionoftheconditionalcorrelationofthestandardizedresiduals zt.Where,ztdenotesa(n×1)randomvectorofindependentand identicallydistributed(i.i.d.)errors(Engle,2002),asinEq.(4).Note thatztaretheresidualsstandardizedbytheirconditionalstandard deviation(Engle&Sheppard,2001).
zt =D−t1(rt−t) zt i.i.d.∼tn,(0,Rt)
(4)
It follows from this specication that Et−1
ztzt
= D−1t Et−1
εtεt
D−1t =D−1t HtD−1t =Rt. A typical element of Rt
willhavetheformij,t=√qqij,t
ii,t qjj,t,suchthatQt=
qij,t
n i,j=1. Eachconditionalvariancehi,tofanasseti,fori=
1,...,n
, is estimatedusingtheunivariateasymmetricThreshold GARCH (TARCH)modelofZakoian(1994).TheTARCHmodeloforders(1,1) isrepresentedinEq.(5).
⎧ ⎪
⎪ ⎨
⎪ ⎪
⎩
ri,t= ci+i,1ri,t−1+εi,t εi,t= zi,t
hi,t,withzi,ti.i.d∼t(i)
hi,t= ωi+˛i,1
εi,t−1
+ˇi,1
hi,t−1+i,11[εi,t−1<0]|εi,t−1| (5) where ci indicatesadriftterm,i,1 is theautoregressivecoef- cientoforder1inthemeanequation.Alternatively,ri,t=i,t+εi,t. In thevarianceequation, ωi isa constantterm,˛i,1 detectsthe ARCHeffect,ˇi,1capturesthepersistenceofthevolatilityprocess, andi,1representstheasymmetriccoefcient.Theindicatorfunc- tion1[εi,t<0] equals1ifεi,t<0and0otherwise.Thecoefcients must satisfy the positivity conditions ωi>0, ˛i,1,ˇi,1>0 and
˛i,1+i,1>0,andthestationaritycondition˛i,1+ˇi,1+12i,1<
1.Theerrortermszi,tarei.i.d.withzeromeanandunitvariance andassumedtofollowastandardStudent’stdistributionwithi degrees-of-freedom.Forthisspecication,apositivevalueofi,1 indicatesthatnegativeconditionalresidualstendtoincreasethe volatilitymorethanpositiveshocksofthesamemagnitude.
ThedynamicsofQtfortheA-DCC(p,q)modelisillustratedin Eq.(6).
Qt=Q+
p i=1ai
zt−izt−i−Q
+
q j=1bj
Qt−j−Q
+
p i=1gi
z−t−iz−t−i−N
(6)
Whenthelagordersp=1andq=1,themodelcanbereduced toA-DCC(1,1)ofCappielloetal.(2006)inEq.(7),
Qt=(1−a−b)Q−gN+azt−1zt−1+bQt−1+gz−t−1z−t−1 (7) where a and b are non-negative scalars that capture the effects ofpreviousshocksandpreviousconditionalcorrelations,
respectively,onthecurrentconditionalcorrelation.Anecessary and sufcient condition for Qt to be positive denite is that a+b+maxg<1, where max is the maximum eigenvalue of
Q−1/2NQ−1/2
.ThetermQistheunconditionalcovariancematrix ofthestandardizedresidualszi,t=
εi,thi,t suchthatQ=E
ztzt
. Theparametergdenotestheasymmetriceffectinthemodel.The quantityz−t =1[zt<0]zt,whereistheHadamardproduct,and 1[zt<0]isa(n×1)indicatorfunctionthattakesonvalue1when theargumentzi,t<0,i=
1,...,n
and0otherwise. Theterm N=E
z−tz−t
representstheunconditionalcovariancematrixof z−t.
In practice, the expectations of Q and N are infeasible;
hence,theyarereplacedwiththesampleanalogs 1T
Tt=1ztztand
1 T
Tt=1z−tz−t,respectively.
3.1.2. Estimation
FollowingEngle(2002),theestimationoftheA-DCCmodelis conductedusingatwo-stepmaximumlikelihoodmethod.(1)Ina
rststep,weseparatelyestimatetheconditionalvariancesusinga univariateGARCH-typemodelforeachtimeseriesinEq.(5).(2)In asecondstep,weestimatetheconditionalcorrelationinEq.(7).
Theconditionaljointdistributionofthereturnshasthefollow- ingform,where(·) isthegammafunction:
fn,(rt|It−1)=
Ht
−12
+n2
2
((−2))n2
1+(rt−t)H−1t (rt−t)
−2
−+n2(8)
DenotethevectorofparametersinDt,i.e.,theparametersof allunivariateconditionalvolatilitymodelsinEq.(5);and the vectorofadditionalparametersinRt,i.e.,theparametersofthe conditionalcorrelationmodelinEq.(7).Thelog-likelihoodfunction tomaximizeiswrittenas:
L
,
=
T t=1lnfn,
rt|,,It−1
(9)
=
T t=1
ln
+n2
−ln
2
−n
2((−2))
−1
2ln
Ht
−
+n2
ln
1+(rt−t)H−t1(rt−t)
−2
=
T t=1
ln
+n2
−ln
2
−n
2((−2))
−ln
Dt
−12ln
Rt
−
+n2
ln
1+ztR−t1zt
−2
(9)
ThelikelihoodfunctionisdividedintovolatilitytermLv
and correlationtermLc
,
inEq.(10).
L
,
=
T t=1
nln
+1 2
−nln
2
−n 2((−2))−ln
Dt
− +12 (−2)(rt−t)D−t2(rt−t)
+
T t=1
ln
+n 2
−nln
+1 2
+(n−1) ln
2
−1 2ln
Rt
−
+n2
ln
1+ztR−1t zt
−2
+ +1 2 (−2)ztzt
= Lv
+Lc
,
(10)
The likelihood function L
,
is maximized by separately maximizingLv
intherststep,then,taketheestimatedcoef-
cients ˆ as input for the second step to maximize Lc
,ˆ
. FollowingthedevelopmentofXu,Chen,Jiang,andYuan(2018), underthemultivariatet distribution,thevolatilitypartcanbe writtenasthesumofindividuallog-likelihoodsinEq.(11).
Lv
=
T t=1
nln
+12
−nln
2
−n
2((−2))
−ln
Dt
− +12 (−2)(rt−t)D−t2(rt−t)
=
T t=1
nln
+12
−nln
2
−n
2((−2))
−1 2
n i=1ln
hi,t
−+1 2
n i=1
ri,t−i,t
2(−2)hi,t
≈
T t=1
n i=1
ln
i+1 2
−ln
i
2
−1
2ln ((i−2))
−
i+1 2
ln
1+
ri,t−i,t
2(i−2)hi,t
−1 2ln
hi,t
≈
n i=1Lv,i
i
(11)
ThemaximizationofLv
isperformedbyseparatelymaximiz- ingthelog-likelihoodofeachassetLv,i
i
undertheunivariate Student’s t distribution with i degrees-of-freedom. The com- mondegrees-of-freedomof themultivariatet distributionis anapproximationofeachasset’sdegrees-of-freedomi.Next,the correlationpartiswrittenas:
Lc
ˆ,
=
T t=1
ln
+n2
−nln
+12
+(n−1) ln
2
−1
2ln
Rt
−
+n 2
ln
1+ˆztR−1t zˆt
−2
+ +1 2 (−2)zˆtzˆt
(12)where ˆzt=Dˆ−t1
rt−ˆt
areobtainedfromtheestimationinthe
rststep.1
The estimated coefcients from thetwo-step procedure are inefcientbutconsistent,sincetheyarelimitedinformationesti- mators,asarguedbyEngle(2002).
3.2. Optimalportfolioweights
Portfoliooptimizationseemstobeanimportantpartofmod- ernquantitativenance thatsolvesmostoftheproblemsposedby investorsthroughseveralalternatives.Inthissection,wecompare therole ofBitcoinandgoldashedgingtoolsfor majorinterna- tionalassets.Inthiscontext,investorsseektominimizetherisk oftheirportfolioswithoutreducingtheexpectedreturns.Forthis purpose,KronerandSultan(1993)introducedamethodbasedon hedgeratios,whichbecamewidelyappliedinnumerousempirical works(Akhtaruzzaman,Boubaker,Lucey,&Sensoy,2021;Chang, McAleer,&Tansuchat,2011;Chkili,2016).Thismethoddetermines
1NumericalestimationsoftheA-DCCmodelareconductedunderRprogramming languageusingtherugarchpackageforunivariatemodelsintherststep,and rmgarchpackageforthecorrelationmodelinthesecondstep.Bothpackagesare availablefromhttps://cran.r-project.org/.
theoptimalweightofBitcoin(orgold)inaone-dollarwalletofasset attimet.TheoptimalweightisexpressedinEq.(13).
wi/(BTCorGLD)
t = hit−hi/(BTCorGLD)
t
hit−2hi/(BTCorGLD)
t +h(BTCorGLD)t (13)
providedthat,
wi/(BTCorGLD)
t =
⎧ ⎪
⎪ ⎨
⎪ ⎪
⎩
0 ifwi/(BTCorGLD)
t <0
wi/(BTCorGLD)
t if06wi/(BTCorGLD)
t 61
1 ifwi/(BTCorGLD)
t >1
where hit and h(BTCorGLD)t are the conditional volatilities of the selected market i and Bitcoin (or gold), respectively; and hi/(BTCorGLD)
t istheconditionalcovariancebetweenBitcoin(orgold) andthereturnoftheassetiattimet.Allthevariancesandcovari- ancesareextractedfromtheA-DCCmodelestimates.Theweight ofassetiintheone-dollarportfolioofBitcoin(orgold)attimet equals
1−wi/(BTCorGLD) t
.3.3. Hedgeratio
Inadditiontotheoptimalportfolioallocationintheprevious section,investorsandmarketparticipantsseektominimizetherisk ofthehedgedportfolio.Oneofthemostusedstrategy istocompute theoptimalhedgeratio(HR)basedonmultivariateGARCH-class modelsattimetinEq.(14),asdenedbyKronerandSultan(1993).
ˇi/(BTCorGLD)
t = hi/(BTCorGLD)
t
h(BTCorGLD)t (14)
Tominimizetheriskofaportfoliooftwoassets,alongposi- tionof$1takeninanygivenassetshouldbehedgedbyshorting ˇi/(BTCorGLD)
t dollarsintheBitcoin(orgold)market.
Forabetteranalysisoftheperformanceoftheoptimalportfo- lio,wecalculatetheHedgingEffectivenessindex(HE)inEq.(15), inalignmentwithChangetal.(2011).Thisindexevaluatestheper- formanceoftheportfoliobycomparingthevarianceofthehedged portfoliowiththatoftheunhedgedportfolio.
HE=varunhedged−varhedged
varunhedged (15)
where
varunhedged
representsthevarianceoftheunhedgedport- folioreturns(i.e.,varianceofthestockindexorcurrencyreturns), and
varhedged
denotesthevarianceofthehedgedportfolioreturns giveninEq.(16).AhigherHEindicatesabetterriskreductionand ahigherhedgingeffectiveness,whichimpliesthattheinvestment methodcanbeconsideredasasuperiorhedgingstrategy.var
rh,t|It−1
=var
rj,t|It−1
−2ˇi,tcov
rj,t,ri,t|It−1
+ˇ2i,tvar
ri,t|It−1
(16) whererh,tisthehedgedportfolioreturn;rj,tistheBitcoin(orgold) return;ri,tisthestockindex(orcurrency)return;andˇi,tisthe optimalhedgeratiocalculatedfromEq.(14).
3.4. Safehaven
TheappliedA-DCCmodelestimatesthedynamicrelationship betweenthedifferentvariablesandthepotentialofBitcoinandgold asahedgingassetoverthetotalperiod.However,itdoesnotspec- ifytheusefulnessofBitcoinandgoldduringcrisisperiods.Thus, this section assesses whether the Bitcoin and gold can serve as safe havensduringtheCOVID-19pandemic.FollowingRatnerandChiu (2013)andAkhtaruzzaman,Boubaker,LuceyandSensoy(2021),
theeconometricmodeltotestthesafehavenpropertyispresented asfollows:
ADCCij,t=ı0+ı1ADCCij,t−1+ı2Dcovid+ϑij,t (17)
where ADCCij,t is thepairwise dynamic conditionalcorrelation betweenBitcoin(orgold)jandeachreturnonachosenasseti, andextractedfromtheestimatedQt=
qij,t
ni,j=1inEq.(7),such that,
ADCCij,t=ij,t= qij,t
qii,t qjj,t
We furthercreateadummyvariableDcovid fortheCOVID-19 period,thatequalsoneifthereturnsareduringthecrisis,andzero otherwise.AccordingtoBaurandMcDermott(2010)andBourietal.
(2017),iftheconstantı0inEq.(17)isweaklypositive,thenBitcoin (orgold)isaweakdiversieragainstmovementsintheotherasset i.Bitcoin(orgold)isahedgeagainstmovementsintheotherasset ifı0isstatisticallynotdifferentfromzero(weakhedge)ornegative (strong hedge).Finally,Bitcoin(orgold)isaweaksafehavenforthe otherassetduringthecrisisperiodifı2isnotsignicantlydifferent fromzero,orastrongsafehavenifı2issignicantlynegative.2 4. Dataanddescriptivestatistics
4.1. Data
Intheempiricalpart,wechosetwomajorclassesofnancial assets,namely,stockindicesandcurrencies.Thedataiscollected from Thomson Reuters Datastream database. The daily closing prices of the mainworld stock marketscorrespondto theU.S.
(Standard&Poor’s500,SP500),Eurozone(EuroSTOXX50,ES50), Japan (Nikkei 225, N225) and the U.K. (Financial Times Stock Exchange100,F100).Forcurrencies,weselecttheEuro(EUR),the Japaneseyen(JPY)andtheBritishpound(GBP).Bitcoin(BTC)prices arecollectedfromwww.coinmarketcap.com;andoneounceOR- LBMAofgoldprices(GLD)areobtainedfromwww.lbma.org.uk.All exchangeratesarequotedagainsttheU.S.dollar(USD).Thesample spanstheperiodfromApril29,2013toJanuary5,2021withatotal of2007observations.
ThesampleperiodencompassesastrongspreadoftheCOVID- 19 pandemic. Consequently, we divide the sample into two sub-periodstocomparethebehaviorofBitcoinandgoldinterms of overallperformance. Therstperiod, fromApril29,2013to March 10, 2020,before thecrisis, and thesecond period from March11,2020toJanuary5,2021duringthecrisis.3Theempirical investigationisconductedonthereturnscomputedastheloga- rithmic differencesbetweenprices pi,t fortheasseti,such that ri,t=lnpi,t−lnpi,t−1.
4.2. Preliminaryanalysis
Fig.1exhibitstheevolutionofdailypricesforallassetclasses.
A dramatic pricedropis observedfromthesecond sub-period, especially for stock indices, indicating an increased variability during thepandemic.Indeed, theCOVID-19has ledtoa global recession anda hugeliquidationinthenancialmarkets(Aloui, Goutte, Guesmi,&Hchaichi,2020).Moreover,Bitcoinlostmore
2NotethatRatnerandChiu(2013)improvedthemethodofBaurandMcDermott (2010)toanalyzethesafehavenpropertyofanassetbysubstitutingthetimevarying coefcientbtintheregressionusedbyBaurandMcDermott(2010)withthepairwise conditionalcorrelationADCCij,t.
3OnMarch11,2020,theWorldHealthOrganization(WHO)hasdeclaredthe COVID-19diseaseasaglobalpandemic.Similarstudieshaveusedthisdateas the onsetdateofthecrisis(Corbet,Larkin,&Lucey,2020).
Fig.1. DailydataforBitcoin,gold,indices,andexchangerates.TheshadedareacorrespondstotheCOVID-19pandemicperiod.
thanhalfofitsvalue,unlikegoldwhichbenetedfromamuch more homogeneous and stabilizing distribution. These qualita- tiveresultsprovidearstindicationthatBitcoininvestmentscan increaseportfoliorisk ratherthanactingas asafehaven.How- ever,this dropwasfollowed bya remarkable sharprisefor all assets.Bitcoinisundoubtedlytheassetthathasgrownthemost, afterits rstall-time high inDecember 2017,the priceof Bit- coinexplodestonewrecordswithmorethan$32,000onJanuary 4,2021.
SummarystatisticsofthereturnsarepresentedinTable1.Going fromtheperiodprecedingthecrisis(PanelA)totheperiodfollow- ingtheannouncementoftheCOVID-19pandemic(PanelB),we noticethat,withtheexceptionofBitcoinandtwoatcurrencies Euroand yen,goldandallotherassetsexperiencedanincrease intheiraveragereturnsaccompaniedwithhighvolatility.More- over,Bitcoinexhibitsthehighestreturnandhighestriskduring bothsub-periods.AsindicatedbyBauretal.(2018),thisspectac- ulargrowthis explainedbyastrongdemandfrominstitutional investors.Forinstance,TeslaannouncedonFebruary8,2021that it has bought $1.5 billion worth of Bitcoin, and it started accepting Bitcoinasapaymentmethodforitsproducts.4Furthermore,the
4Nevertheless,onMay12,2021,TeslastoppedacceptingBitcoinasapayment methodforitsproducts.Asaresult,Bitcoinpriceplungedfromanearly$58,000to below$38,000injust10days.
Jarque–Beratestrejectsnormalityforalldatareturnsduringboth sub-periods.
The Ljung–Box testrejectsthenullhypothesis ofabsenceof autocorrelation in the squared returns. Additionally, the ARCH teststatisticsforconditionalheteroskedasticityaresignicantfor allreturn series, which suggests the presence of ARCH effects.
TheseresultsconrmourchoiceofGARCH-typemodelstoana- lyzethedynamicrelationshipbetweenBitcoin(andgold)onone hand,andstockandforeignexchange(forex)marketsontheother hand.PanelsBpresentstheresultsoftwounitrootandstationar- itytests,namely,theAugmentedDickeyandFuller(1979)(ADF) andKwiatkowski,Phillips,Schmidt,andShin(1992)(KPSS),which showthatallseriesarestationary.
ThePearsoncorrelationsduringbothsub-periodsarepresented inTable2.ThecorrelationsbetweenBitcoin(andgold)withthe returnsofothermarketsarenegativeandclosetozeroduringthe pre-COVID-19period,which suggeststhatBitcoinand goldcan beusedashedgingassetsduringthestableperiod(Baur&Lucey, 2010).Duringthesecondsub-period,withtheexceptionofBTC/JPY pair, the correlations between Bitcoin (and gold) and othernan- cialassetshavebecomepositive,signalingthattheglobalnancial marketsbecamemoreinterconnected.Thus,Bitcoinandgoldmight nothaveanysafehavenproperty,yettheymayoffersomehedging characteristic.Totestthisassertion,weconductmoreadvanced empiricalmodelsinthefollowingsections.
Table1
Summarystatisticsandunitroottestsfordailyreturns.
BTC GLD SP500 ES50 N225 F100 EUR JPY GBP
PanelA:BeforetheCOVID-19pandemic Descriptivestatistics
Mean 0.0022 0.0001 0.0003 0.0000 0.0002 −0.0000 −0.0001 −0.0000 −0.0001
Std.dev. 0.0910 0.0083 0.0086 0.0109 0.0127 0.0086 0.0049 0.0056 0.0056
Skewness 0.1637 0.0693 −0.8002 −0.8587 −0.4860 −0.7607 0.0771 0.2674 −1.6691
Kurtosis 445.28 5.5613 11.196 9.6055 8.33187 9.3755 5.4598 7.4248 30.382
J-Btest 8900.0† 498.02† 5203.7† 3476.2† 2181.5† 3206.1† 322.47† 935.09† 58009†
Q2(10) 445.60c 196.58c 1050.9*** 206.46*** 202.96*** 349.70*** 169.55*** 139.71*** 85.980***
ARCH(10) 799.19*** 130.92*** 594.24*** 140.97*** 105.92*** 255.12*** 109.51*** 104.12*** 71.732***
Unitrootteststatistics
ADF −10.605*** −12.202*** −11.670*** −12.243*** −12.625*** −11.595*** −12.630*** −11.470*** −12.190***
KPSS 0.0799 0.3516 0.0872 0.1337 0.0929 0.1513 0.1279 0.1666 0.0737
Panel B: During the COVID-19 pandemic Descriptivestatistics
Mean 0.0068 0.0007 0.0012 0.0009 0.0015 0.0005 0.0004 0.0001 0.0002
Std.dev. 0.0498 0.0124 0.0216 0.0203 0.0161 0.0185 0.0047 0.0051 0.0071
Skewness −3.6822 −0.0001 −0.9150 −1.0657 0.3498 −0.8713 −0.5058 −1.4630 −0.6630
Kurtosis 40.045 8.7132 13.009 12.792 7.6616 11.435 4.7595 13.256 7.2672
J-Btest 12606† 287.22† 1021.9† 885.68† 206.21† 665.97† 39.226† 1065.6† 199.85†
Q2(10) 55.889** 28.251*** 169.10*** 44.717*** 148.68*** 52.724*** 70.006*** 63.381*** 79.549***
ARCH(10) 5.0270* 2.3238* 91.517*** 31.791*** 86.170*** 62.614*** 28.269*** 31.825*** 48.156***
Unitrootteststatistics
ADF −5.9548*** −9.0835*** −9.0401*** −8.1735*** −8.4121*** −8.1858*** −9.2608*** −9.8608*** −7.8933***
KPSS 0.3888 0.0541 0.0342 0.0342 0.035 0.0533 0.1117 0.1296 0.0531
Note:Thistablereportsthesummarystatisticsofdailyreturnsfordifferentassets.J-BistheJarque–Berratestfornormality,Q2(10)istheLjung–Boxstatisticforserial correlationinthesquaredreturns.ARCH(10)isthetestforconditionalheteroskedasticity.ADFandKPSSstandfortheempiricalstatisticsofAugmentedDickey–Fullerand Kwiakowski–Phillips–Shmidt–Shintestsforunitrootandstationarity,respectively.PanelAsummarizestheresultsduringthepre-COVID-19period,i.e.,fromApril29,2013 toMarch10,2020.PanelBsummarizestheresultsduringtheCOVID-19pandemic,i.e.,fromMarch11,2020toJanuary5,2021.
†Normalityisrejectedat5%signicancelevel.
***Nullhypothesisisrejectedat1%condencelevel.
**Nullhypothesisisrejectedat5%condencelevel.
*Nullhypothesisisrejectedat10%condencelevel.
Table2
Pearsoncorrelationmatrix.
BTC GLD SP500 ES50 N225 F100 EUR JPY GBP
PanelA:BeforetheCOVID-19pandemic
BTC 1 0.0069 0.0280 0.0075 −0.0112 0.0091 0.0047 −0.0007 0.0114
GLD 1 −0.0406 −0.0923 −0.1767 −0.0923 0.1915 0.0001 0.0661
SP500 1 0.1983 0.5560 0.5359 −0.0887 0.0050 0.0625
ES50 1 0.3004 0.8246 −0.2226 0.0038 0.1067
N225 1 0.2974 −0.1163 −0.0494 0.0305
F100 1 0.0019 0.0019 −0.0584
EUR 1 0.4522 0.5161
JPY 1 0.1611
GBP 1
PanelB:DuringtheCOVID-19pandemic
BTC 1 0.1099 0.4604 0.4283 0.0787 0.4111 0.0845 −0.0724 0.1832
GLD 1 0.2209 0.1626 0.3026 0.1881 0.1735 0.0942 0.1854
SP500 1 0.6833 0.2435 0.6741 0.1389 −0.2857 −0.2208
ES50 1 0.4513 0.9124 0.1389 −0.2208 0.3187
N225 1 0.4167 0.2355 0.0489 0.3036
F100 1 0.1369 −0.1815 0.2250
EUR 1 0.5159 0.6089
JPY 1 0.4547
GBP 1
Note:ThistablereportsthePearsoncorrelationmatrix.
5. Empiricalresults
5.1. TheA-DCCmodelestimationresults
Tables A.1–A.3 in Appendix A document thefull estimation results of the A-DCC model of Bitcoin and gold with all the returns of the selected assets before and during the COVID- 19 pandemic. The average conditional correlations are weakly positive indicating the ability of Bitcoin and gold to act as
a hedge in times of market stability and also in times of crisis.
Diagnostic testsontheresidualsareperformedtoverifythe qualityoftheempiricalresults.According toTable3,Ljung–Box’s test shows noserial correlationin thesquared residuals. Like- wise, the ARCH test cannot reject the null hypothesis of the absenceofARCHeffects.Therefore,thereisnoevidenceoferro- neousstatisticalspecication.TheA-DCCapproachwithaTARCH specicationiscorrectlyspeciedtodescribethedynamicrelation-
Table3 Diagnostictests.
BTC GLD SP500 ES50 N225 F100 EUR JPY GBP
PanelA:BeforetheCOVID-19pandemic
Q2(10) 0.013[1.000] 10.72[0.380] 11.23[0.340] 9.081[0.524] 6.329[0.787] 10.18[0.425] 6.613[0.761] 10.36[0.409] 6.606[0.762]
Q2(20) 0.028[1.000] 16.25[0.700] 15.99[0.719] 14.08[0.826] 16.88[0.663] 24.93[0.204] 14.31[0.814] 17.88[0.595] 10.87[0.949]
ARCH(10) 0.013[1.000] 10.46[0.401] 11.08[0.351] 9.302[0.504] 6.246[0.794] 9.963[0.444] 6.922[0.733] 10.80[0.373] 6.711[0.752]
PanelB:DuringtheCOVID-19pandemic
Q2(10) 0.013[1.000] 3.790[0.956] 2.458[0.992] 2.839[0.985] 8.833[0.548] 5.164[0.880] 9.228[0.511] 3.658[0.962] 3.192[0.977]
Q2(20) 0.028[1.000] 6.318[0.998] 4.958[1.000] 3.839[1.000] 13.61[0.850] 6.001[0.999] 16.10[0.710] 4.342[1.000] 7.540[0.995]
ARCH(10) 0.013[1.000] 5.117[0.883] 4.233[0.936] 2.640[0.989] 11.88[0.293] 6.692[0.754] 11.14[0.346] 6.522[0.770] 6.172[0.801]
Note:Thistablereportsthediagnostictestsformodelmisspecication:Ljung–BoxQ2(10)andQ2(20),andtheARCHtestontheresidualsoftheestimatedA-DCCmodel.
p-valuesassociatedwiththestatisticaltestsarereportedinbrackets.Lowerp-valuescastdoubtonthecorrectspecicationofthemodel.
shipbetweenBitcoinandgoldmarketswiththestockandforex markets.
Figs.2and3illustrateindetailthedynamicsoftheconditional correlationsbetweenBitcoinandgoldreturns,respectively,and thevariousnancialmarkets.Correlationlevelsareveryvolatile throughouttheperiodsandmarkets.Forstockindices,theresults showthattheA-DCCmodelalternatesbetweenlowpositiveand negativevalues inalignmentwithJoy(2011),Klein(2017),Bouri, Shahzad,Roubaud,Kristoufek,andLucey(2020)andCharfeddine, Benlagha,andMaouchi(2020),whichindicatetheroleofBitcoin andgoldinhedgingagainststockmarkets.However,sincethestart ofthepandemic outbreak,thesecorrelationshaveincreasedon average.Thiscanbeattributedtotwoeffects.(i)First,thecollapse ofstockmarkets,whichweresimultaneouslyaffectedbyCOVID- 19.Indeed,thehealthcrisishas turnedintoa seriouseconomic crisisthathashitthemarketsmoredeeplythananyother shock (Bakeretal.,2020).Someshocksweredue tothedirecteffects linkedtothespreadofthevirus,i.e.,infectionrate,mortalityrate,as wellastheeconomicandpsychologicalconsequencesduetosocial distancingandlockdownmeasuresatvariouspartsoftheworld, whichhasledtoamassivesell-offinthenancialmarkets.Some other shocks (whether positive or negative) were due to the direct implicationofcentralbankmonetarypolicyinterventions(FOMC meetings,ECB,BOE,CBJdecisions)atvariouspartsofthenan- cialworldandwithdifferenttiming.(ii)Second,thesharprisein thepricesofBitcoinandgoldduetothecrisisepisodesprompted internationalinvestorstochooseanoptimalallocationstrategyby investingintheseassetstoprotecttheirwealth(Bongeretal., 2020).
Goodell and Goutte (2021) suggest that Bitcoin may act as a safe haven during the pandemic due to its co-movement with COVID-19 cases. This explains that when the feeling of fearincreases intheU.S. market,investorsturntootherassets such as cryptocurrencies. However, the decrease in correlation appearstobeonlytemporaryandofshortduration.Indeed,fol- lowinggovernmentinterventionswithmonetaryandbudgetary reliefplanstomitigatetheimpactofthecrisis, thecorrelations have shown episodes of positive values in Fig.2,in alignment withBatten,Kinateder,Szilagyi,and Wagner(2021).For exam- ple,onMarch17,2020,theU.S. Housepassedthe Coronavirus Aid,Relief, andEconomicSecurity(CARES) actforaneconomic stimulus package exceeding $2 trillion to protect the Ameri- cancitizensfromtheunwantedhealthandeconomicimpactsof COVID-19.
Theseresultsareofparticularinteresttoinvestorswhowish tohedgetheirportfolios.Thefollowingsectionsprovideprecise informationonthehedgeandsafehavenproperties.
5.2. Optimalportfoliodesign
Table4summarizestheoptimaldesignofportfoliosconsisting of Bitcoin (or gold) and other nancial assets before and dur-
ingthe COVID-19 crisis. The results indicate that, to minimize riskgiventheexpectedreturn,theoptimalweightsaregenerally above92%forBitcoinand60%forgoldduringbothsub-periods,on average.Mokni,Ajmi,Bouri,andVo(2020)foundsimilarresults whereinvestors holdmore than80% of theirwealth in Bitcoin tominimizetheriskofaU.S.equityportfolio.Likewise,thiscon- clusionissimilartotheworksofHoodandMalik(2013),Arouri, Lahiani,andNguyen(2015)andChkili(2016)thatrevealtheuse- fulnessofgoldinprovidingdownsideriskhedgingininternational portfolios.
It isworthnotingthatduringthecrisis,theoptimalweights of Bitcoin and gold in conventional currency wallets increased signicantly,suggestingthatforexinvestorsareconsideringcryp- tocurrency and gold like a hedge (Longstaff, 2004). Moreover, duringtheCOVID-19pandemic, the optimal weightsof Bitcoin and gold decreased for all stock market indices. The decrease ismore pronounced withgold.For instance,theweight ofthe gold–S&P500portfoliodecreasedfrom74.52%duringtherst phase to 19.31% during the second phase. Overall, the results concludethatinvestorsshouldallocatelargerproportionsofBit- coin than gold in order to minimize the risk of international wallets.
5.3. Hedgingeffectiveness
Optimalhedgeweightsandratiosprovideageneralunderstand- ingofhowhedgeisconstructedtominimizerisk.However,theydo nothelpidentifytheeffectivenessofthehedgeovertime.There- fore,wecalculatethehedgeeffectiveness(HE)indexusingEq.(15) inTable5.
ThecomparisonbetweenportfoliosincludingBitcoinandthose includinggoldvariesconsiderablydependingontheperiodand markettype. Moving from Panel A (beforeCOVID-19) toPanel B(duringCOVID-19)inTable5,withtheexceptionofthegold- currencypairsandtheBitcoin-Nikkei225 pairthatshowagood hedgingstrategy, theoptimal hedgeratiosfor Bitcoin andgold increasedsignicantly during thecrisis. In fact, for BTC-SP500 market,theratiogoesfromanegativevalueof−0.0117during thepre-COVID-19period toapositivevalueof0.2006duringthe COVID-19period.ThenegativevalueofHRimpliesthatinvestors musttakethesamepositionfortwoassetsinthesameportfolio (shortorlong),whilethepositivevalueindicatesreversepositions arerequiredtohedgeagainsttheriskofeachasset.Forexample, inordertominimizetherisk,alongpositionof$1inS&P500can behedgedwith20.06centsshortpositioninBitcoin.Asnotedby LópezCabreraandSchulz(2016),thelowerthehedgeratio,theless expensivethehedge.Thus,assetcoveragewascheaperbeforethe pandemicthanduringthepandemic(Akhtaruzzaman,Boubaker, Lucey,&Sensoy,2021).Thisndingisconsistentwiththeliterature which reveals higher hedge ratios in times of crisis (Batten et al., 2021),duetothesharpincreaseinuncertaintyovertheeconomic andnancialoutlook.Thevarietyofrisksassociatedwiththisglobal
Fig.2. DynamiccorrelationsbetweenBitcoin,stockindicesandforeignexchanges.