• Tidak ada hasil yang ditemukan

Hedge and safe haven properties during COVID-19

N/A
N/A
Protected

Academic year: 2023

Membagikan "Hedge and safe haven properties during COVID-19"

Copied!
16
0
0

Teks penuh

(1)

Hedge and safe haven properties during COVID-19: Evidence from Bitcoin and gold

Item Type Article

Authors BenSaïda, Ahmed; Tayachi, Tahar; Chemkha, Rahma; ghorbel, ahmed

Citation Rahma Chemkha, Ahmed BenSaïda, Ahmed Ghorbel, Tahar Tayachi, Hedge and safe haven properties during COVID-19:

Evidence from Bitcoin and gold, The Quarterly Review of Economics and Finance, Volume 82, 2021, Pages 71-85, ISSN 1062-9769, https://doi.org/10.1016/j.qref.2021.07.006.

DOI 10.1016/j.qref.2021.07.006

Publisher Elsevier B.V.

Download date 21/06/2023 04:51:21

Item License https://creativecommons.org/licenses/by/4.0/

Link to Item http://hdl.handle.net/20.500.14131/248

(2)

TheQuarterlyReviewofEconomicsandFinance82(2021)71–85

ContentslistsavailableatScienceDirect

The Quarterly Review of Economics and Finance

j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / q r e f

Hedge and safe haven properties during COVID-19: Evidence from Bitcoin and gold

Rahma Chemkha

a

, Ahmed BenSaïda

b,∗

, Ahmed Ghorbel

c

, Tahar Tayachi

b,d

aGFCLaboratory,FSEGSfax,UniversityofSfax,Sfax,Tunisia

bCollegeofBusiness,EffatUniversity,Jeddah,SaudiArabia

cCODECIlaboratory,FSEGSfax,UniversityofSfax,Sfax,Tunisia

dFSEGMahdia,UniversityofMonastir,Monastir,Tunisia

a r t i c l e i n f o

Articlehistory:

Received18March2021

Receivedinrevisedform12July2021 Accepted14July2021

Availableonline5August2021

JELclassication:

G11 G15 G23 Keywords:

Bitcoin DCC Hedge Gold Safehaven

a b s t ra c t

TheCOVID-19pandemichascausedanunprecedentedhumanandhealthcrisis.Themeasurestaken tocontainthedamagecausedaglobaleconomicslowdown.Investorsfaceliquiditypressuresresulting fromthegeneraldownturninthenancialmarkets,andmightchangetheirriskappetite.Thispaper reassessesthesafehavenpropertyofgoldasatraditionalasset,andBitcoinwhichisgraduallyimposing itselfasanewclassofassetwithuniquecharacteristics.Theempiricalresults,appliedonmajorworld stockmarketindicesandcurrencies,andbasedonthemultivariateasymmetricdynamicconditional correlationmodel,showtheeffectivenessofBitcoinandgoldashedgingassetsinreducingtheriskof international portfolios. Moreover, the analysis provides evidence that during the COVID-19 pandemic, goldisaweaksafehavenfortheconsideredassets,whileBitcoincannotprovideshelterduetoits increasedvariability.

©2021BoardofTrusteesoftheUniversityofIllinois.PublishedbyElsevierInc.Allrightsreserved.

1. Introduction

TheCOVID-19pandemichassucceededinlootinganddesta- bilizingtheentireworld.In justfewmonths,itendangerednot onlylives,butalsoeconomicborders,globalbusinessesandthe veryessenceoftheworld’snancialequilibrium.Thiscrisiscaused theclosureofborders,asharpslowdownintheglobaleconomy andastockmarketcrashonMarch11,2020.Consequently,many investorsturnedtouncorrelatedassetstohedgetheirportfoliosin ordertocopewiththecrisisandsupporttherecovery.

Throughoutitshistory,goldhasbeenviewedasavaluestore, portfoliostabilizerandsourceofliquidityintimesofnancialtur- bulence.Goldisknownasahedgeagainstinationarypressuresin theU.S.andU.K.(Hoang,Lahiani,&Heller,2016).Itreactscounter- cyclicallytomacroeconomic news (Elder,Miao, &Ramchander, 2012)andworksdifferentlyfromotherassets,especiallystocks.

Correspondingauthor.

E-mailaddresses:[email protected](R.Chemkha), [email protected](A.BenSaïda),[email protected] (A.Ghorbel),[email protected](T.Tayachi).

When prices of stockmarket indices plummet,gold retains its value.Itseffectivenessasahedgeandsafehavenagainstequitiesin differentmarketsiswellconrmedbynumerousstudies(e.g.,Baur

&Lucey,2010;Beckmann,Berger,&Czudaj,2015,amongothers).

However,BaurandGlover(2012)showedthatinvestorbehavior candestroythehedgingpotentialofgoldduetoincreasedinvest- mentinthepreciousmetalforhedgingandspeculationpurposes.

For example,Klein(2017)usedadynamiccorrelationmodelto showthat preciousmetalshad ahedging rolefor stockmarket indicesinAmericanandEuropeancountries;nevertheless,thisrole havedissipatedafter2013.

Overthepastdecade,attentionhasshiftedfromgoldtoanew asset,Bitcoin. Bitcoinwasrstintroducedin 2009in thewake of thebankruptcy of LehmanBrothersinvestment bank,asthe condenceinnancialinstitutionsdeteriorated.Soonafter,this cryptocurrency succeededin catchingtheattentionofinvestors andinstitutionalbodies.Ithasestablisheditselfthroughitsinno- vativecharacter.TheBitcoinprotocolisbasedonthevoluntary participation oftheparties,it is notsubject toany controland allowseveryonetoaccumulateandtransfervalueina currency thatresistspricemanipulationbycentralbanksandglobalnancial institutions(Chemkha,BenSaïda,&Ghorbel,2021).

https://doi.org/10.1016/j.qref.2021.07.006

1062-9769/©2021BoardofTrusteesoftheUniversityofIllinois.PublishedbyElsevierInc.Allrightsreserved.

(3)

Obviously,thishasledBitcoinandgoldtocompeteforthesta- tusofthemosteffectiveprotectiveasset.Comparedtogold,Bitcoin mustovercomeseveralchallenges,particularlyintermsofhistory, acceptance,consumption,intrinsicvalueandlowvolatility.How- ever,goldandBitcoinshareseveralcharacteristics.(i)First,they bothescapepoliticalinuenceandareregulatedlikecommodities, especiallyintheU.S.whereBitcoinisconsideredacommodityby theCFTCinstitution.(ii)Second,nocentralauthorityintervenes toadjustorcontroltheirminingtransactionsandactivities(Baur, Hong,&Lee,2018);therefore,theyarebothindependentfromina- tion.(iii)Third,bothassetshaveanitesupply,anditisthisscarcity thatmakesthemvaluable.SinceBitcoin’snumberofunitsincircu- lationislimitedto21million,makingitananti-inationaryasset, whichbringsitclosertogold.(iv)Fourth,theasymmetricreaction topositiveandnegativenewscharacterizesbothBitcoin(Bouri, Jalkh,Moln’ar,&Roubaud,2017)andgold(Baur&Glover,2012).

Researchesonthelinkbetweenthepricesofgoldandthoseof otherassets,andthepotentialforhedgeandsafehavencontinue togrowremarkably.Indeed,Bitcoin’slowcorrelationwithtradi- tionalassetsmakesitdesirablefordiversication(Corbet,Meegan, Larkin,Lucey,&Yarovaya,2018;Guesmi,Saadi,Abid,&Ftiti,2019;

Ji,Bouri,Gupta,&Roubaud,2018),andavaluablehedgeagainst stockmarkets(Bauretal.,2018;Dyhrberg,2016)andcommodities (Bourietal.,2017).Furthermore,severalstudiesclaimthatBitcoin wasnotaffectedbytheEuropeandebtcrisisnortheCypriotbanking crisis,yetitprospered(Luther&Salter,2017).

TheeconomicimpactoftheCOVID-19crisisonnancialmarkets hasrecentlybecomeatopicofinterest.Thishasreignitedthedebate overwhetherthecryptocurrencyhastheabilitytomimicorbeat goldhedgingandsafehavenpropertyagainststocks.Moreover, tothebestofourknowledge,alimited numberofstudieshave analyzedBitcoinandgold(Bourietal.,2017;Corbetetal.,2018;

Dyhrberg,2016)withoutacomparablestudybetweentheirroles againstnancialassets.Tollthegapintheliterature,ourstudy drawsnewinsightsintothepotentialofBitcoinandgoldtohedge againstuctuationsinnancialmarketsandtheirroleassafehaven duringtheCOVID-19virusoutbreak.

Theremainderofthispaperisorganizedasfollows.Section2isa briefreviewoftheliterature.Section3explainsthemethodological approach.Section4describesthedatasample.Section5analyzes theempiricalresults.Section6concludes.

2. Literaturereview

Sincetheglobalnancialcrisisof2007-2009,therehasbeena resurgenceofinterestamongacademicsandpractitionerstostudy thehedgeandsafehavenpotentialofvariousassetclassesagainst marketdownturns.Indeed,duringtimesofcrisis,investorsseek todisposeoftheirriskyassetsinfavorofothermoresecureassets (ight-to-safety).Thisispreciselythecaseofgold,whosevaluedoes notdependona company’sperformancenora state’sabilityto repayitsdebt.Thus,whenotherassetscollapse,onecanalways relyongold,sinceitcanbeeasilyresoldwhenneeded.

Lawrence(2003)providesanoverviewoftheevolutionofthe relationshipbetweengoldandstockmarkets.Theauthorconcludes thatgoldappearstobeisolatedfromthebusinesscycle–unlike othercommodities–whichmaymakeitmoreattractiveasadiver- sierandevenasasafehaven.Previousstudies(Fleming,Kirby,&

Ostdiek,1998,amongothers)showevidenceinfavorofgovern- mentbondsprovidingequityinvestorswithasafehavenintimes ofcrisis.Chan,Treepongkaruna,Brooks,andGray(2011)showthat U.S.Treasuriesareasafehavenforequityinvestorsduringtimes of market stress.Flavin, Morley, and Panopoulou (2014)show that 1-yearand10-yearU.S.treasurybonds,inadditiontogold,aresafe havenstoprotectportfolios intheeventofa marketdownturn.

However,evenwithsomeoftheadvantages associatedwithinvest- inginTreasuries,therearestilldrawbackstobeawareof,suchas thelowyield.

Other investors, looking for an alternative togloomy nan- cialmarkets,prefertheassetbacked securities(ABS), atype of

xed income assets that offer safereturns against market tur- moil.Bernanke,Bertaut,DeMarco,and Kamin(2011)showthat ABShavebecomeanattractivealternativeforinvestors,offering returnsslightly higherthanthoseofTreasuries.However,these typesofABScollateralhaveproventoberisky(Gennaioli,Martin,

&Rossi,2018),involvingriskofassetdevaluation,andcanhaveseri- ousconsequences,suchasanincreaseindefaultsduringtheU.S.

bornsubprimemortgagecrisisin2007(Bertaut,DeMarco,Kamin,

&Tryon,2012).

Unlikerisk-freeassets,goldhasnaturallybeenconsideredasa safehavengivenitshistoricalroleasanaturalcurrencyandavalue store.Itisnegativelycorrelatedwiththenancialcycle,soittends toprovidepositivereturnsduringcrises(Bouri,Lucey,&Roubaud, 2020).Thereisavastliteraturestudyingthepotentialofgoldas ahedgeandasafehaven,buttheresultsaremixed.Forinstance, basedondatafrommajoremerginganddevelopingcountries,Baur andMcDermott(2010)discusswhethergoldistrulysafe.Their resultsconrmthispropertyofgoldforAmericanandEuropean stockindicesbutnotforothermarkets.HoodandMalik(2013)nd thatgoldisahedgefortheU.S.stockmarket,butitssafehavenprop- ertyislowrelativetothevolatilityindex.Beckmannetal.(2015) showthatgoldservesbothasahedgeandasaneffectivesafehaven.

LuceyandLi(2015)studytheroleofpreciousmetalsassafehavens inatimevaryingframeworkandndthatthestrengthofgoldasa safehavenchangesovertime.Foremergingcountries,Chkili(2016) examinestherelationshipbetweengoldandthestockmarketsof BRICScountriesandsuggeststhatgoldcanserveasasafehaven againstextrememovements.Likewise,Akhtaruzzaman,Boubaker, Lucey,andSensoy(2021)examinetheroleofgoldasasafehaven duringtheCOVID-19crisis.TheyfoundthatduringphaseI(before March16,2020)goldwasastrongsafehaven;however,itsproperty hasweakenedduringphaseIIstartingfromMarch17,2020.

Bitcoinisanotherpopularassetthathassucceededingaining theattentionofinvestors asasafehaven.BouoiyourandSelmi (2017) admit that Bitcoin has both the hedge and safe haven propertiesfor theU.S. stockindex. Theyalso demonstratethat preciousmetals have lost their safehaven property over time.

Bouri,Lucey,etal.(2020)ndthatcryptocurrenciescanbeused asahedgeagainstthedownsideriskofequityinvestments.This propertyappliesduringnormalperiodsandtimesofcrisis.Several researcherssuggestthattheroleofBitcoinasasafehavenandhedg- inginstrumentisquitelimited(Eisl,Gasser,&Weinmayer,2015, amongothers).Forexample,basedonanasymmetricdynamiccon- ditionalcorrelation(A-DCC)model,Bourietal.(2017)statethat Bitcoinoffersdiversicationadvantagesovervariousotherassets, suchasstockindices,bonds,oil,gold,commodityindices,andthe U.S.dollar,butitsuseashedgeorsafehavenonlyappearsincertain caseswhichdifferfromonehorizontoanother.Klein,PhamThu, andWalther(2018)suggestthatBitcoinisnotasafehavenand cannothedgeagainstrisk,evenfordevelopedmarkets.Shahzad, Bouri,Roubaud,Kristoufek,andLucey(2019)ndthatgoldhas an“indisputable”safehavenpropertycomparedtothatofBitcoin.

WhilegoldisaneffectivesafehavenforallG7stockindices,Bitcoin onlyoffersasafehavenrolefortheCanadianstockindex.Likewise, ConlonandMcGee(2020)showthatBitcoindoesnotactasasafe haven.ItisevolvingatthesamerateastheS&P500asthehealth crisisdevelops.

Theaforementionedstudiesonthecharacteristicsofgoldand Bitcoin offer mixed results. Therefore, it becomes essential to reassessthehedgeandsafehavenpropertiesofBitcoinintherecent contextofCOVID-19;andtotestwhethergoldretainsitscharacter-

(4)

isticasastablevaluestorethatcanprotectinvestors,policymakers andregulatorsfromtheadverseeffectsofthepandemic.

3. Methodology

ToanalyzewhetherBitcoinandgoldcanserve asahedgeor safehavenforthemaintraditionalassetsofdevelopedmarkets, our methodology is based on the principles presented byBaur and Lucey(2010). Themethods quicklygainedpopularity andhave been appliedin various studies, for example, oncredit default swaps,bonds,metalsand gold(Ciner,Gurdgiev,&Lucey,2013;Li

&Lucey,2017;Lucey&Li,2015).

BaurandLucey(2010)providecleardenitionsanddistinction ofdiversier,hedge,andsafehaven.Anassetisclassiedasdiver- sierifitispositively,butweaklycorrelated,withanotherasset orportfolioonaverage. Ahedgeisanassetthatisuncorrelated (weakhedge)ornegativelycorrelated(stronghedge)withanother assetorportfolioonaverage.Ahedgemaynotreducelossesdur- ingtimesofmarketstressorturbulence,astheassetmayshow positivecorrelationswithotherassetsduringsomeperiods,and negativecorrelationsduringotherperiods,resultinginanegative correlationonaverage.Asafehavenisanassetthatisuncorrelated (weaksafehaven)ornegativelycorrelated(strongsafehaven)with anotherassetorportfoliointimesofturmoil.Thus,asafehaven investmenthasthepotentialtoprotectinvestorsandoffsetlosses intheeventofmarketcrises,suchastheCOVID-19pandemic.

3.1. TheasymmetricDCCmodel

Severalstudiesinnanceusethemultivariatedynamiccon- ditional correlation(DCC) model of Engle (2002) toinvestigate thecorrelationsbetweenassets,andtoconstructreliablehedging strategies(Bourietal.,2017;Chang,McAleer,&Tansuchat,2011;

Cineretal.,2013,amongothers).TheDCCmodelprovidesasimple frameworkforextractingdynamiccorrelationsformultipleassets inasparseparameterconguration.Inthispaper,weextendthe analysisbyemployingtheasymmetricdynamicconditionalcor- relation(A-DCC)modelofCappiello,Engle,andSheppard(2006), whichidentiestheasymmetricresponsesintheconditionalvari- ancesandcorrelationsduringstressperiods.Theasymmetry,also called“leverageeffect”,detectsanoftenobservedstylizedfactof

nancialassets where anunexpected drop(badnews)in asset pricestendstoincreasethevolatilitymorethananunexpectedrise (goodnews)withthesamemagnitude(BenSaïda,2019,2021).

3.1.1. Themodel

Letrt bea(n×1)vectorofreturnsofnassets,suchthatrt=

r1,t,...,rn,t

.Forthebivariatecase,n=2,thevectorrtcontains thereturnsr1,toftheBitcoin(orgold),andr2,tofastockmarket index(orexchangerate).Thereturnsfollowan-variateStudent’s tdistributionwithdegrees-of-freedomasinEq.(1).

rt= tt

rt|It−1∼ tn,(t,Ht) (1) wheretstandsfortheconditionalmeanvectorthatmayincludea constantand/orpastobservations.ThemeanequationoftheA-DCC modelisspeciedasanautoregressivemovingaverage(ARMA) process,asdebatedbyKyrtsouandLabys(2007),sinceoverlook- ingthis characteristicmayunderminesomeofthedynamicsof the relationships between the studied variables. The termHtis the conditionalcovariancematrixofrt;andεtdenotesa(n×1)vec- torofresidualsconditionalontheinformationsetIt1 denedat

timet−1.ThegeneraldynamiccorrelationmodeloftheA-DCCis denedinEq.(2).

Ht=DtRtDt (2)

where Rt represents the time varying conditional correlation matrix,andDtstandsforthe(n×n)diagonalmatrixcontainingthe conditionalstandarddeviationsofunivariateGARCH-typemodels, suchthat:

Dt= diag

h1/21,t,...,h1/2n,t

Rt= diag(Qt)1/2Qtdiag(Qt)1/2

(3)

ThetermQtisapositivedenitematrixthatrepresentstheevo- lutionoftheconditionalcorrelationofthestandardizedresiduals zt.Where,ztdenotesa(n×1)randomvectorofindependentand identicallydistributed(i.i.d.)errors(Engle,2002),asinEq.(4).Note thatztaretheresidualsstandardizedbytheirconditionalstandard deviation(Engle&Sheppard,2001).

zt =Dt1(rt−t) zt i.i.d.∼tn,(0,Rt)

(4)

It follows from this specication that Et1

ztzt

= D−1t Et1

εtεt

D−1t =D−1t HtD−1t =Rt. A typical element of Rt

willhavetheformij,t=√qqij,t

ii,t qjj,t,suchthatQt=

qij,t

n i,j=1. Eachconditionalvariancehi,tofanasseti,fori=

1,...,n

, is estimatedusingtheunivariateasymmetricThreshold GARCH (TARCH)modelofZakoian(1994).TheTARCHmodeloforders(1,1) isrepresentedinEq.(5).

⎧ ⎪

⎪ ⎨

⎪ ⎪

ri,t= ci+i,1ri,t1i,t εi,t= zi,t

hi,t,withzi,ti.i.d∼t(i)

hi,t= ωii,1

 

εi,t1

 

+ˇi,1

hi,t1+i,11[εi,t1<0]|εi,t1| (5) where ci indicatesadriftterm,i,1 is theautoregressivecoef- cientoforder1inthemeanequation.Alternatively,ri,t=i,ti,t. In thevarianceequation, ωi isa constantterm,˛i,1 detectsthe ARCHeffect,ˇi,1capturesthepersistenceofthevolatilityprocess, andi,1representstheasymmetriccoefcient.Theindicatorfunc- tion1[εi,t<0] equals1ifεi,t<0and0otherwise.Thecoefcients must satisfy the positivity conditions ωi>0, ˛i,1i,1>0 and

˛i,1+i,1>0,andthestationaritycondition˛i,1i,1+12i,1<

1.Theerrortermszi,tarei.i.d.withzeromeanandunitvariance andassumedtofollowastandardStudent’stdistributionwithi degrees-of-freedom.Forthisspecication,apositivevalueofi,1 indicatesthatnegativeconditionalresidualstendtoincreasethe volatilitymorethanpositiveshocksofthesamemagnitude.

ThedynamicsofQtfortheA-DCC(p,q)modelisillustratedin Eq.(6).

Qt=Q+

p i=1

ai

zt−izt−i−Q

+

q j=1

bj

Qtj−Q

+

p i=1

gi

ztizti−N

(6)

Whenthelagordersp=1andq=1,themodelcanbereduced toA-DCC(1,1)ofCappielloetal.(2006)inEq.(7),

Qt=(1−a−b)Q−gN+azt−1zt−1+bQt−1+gzt1zt1 (7) where a and b are non-negative scalars that capture the effects ofpreviousshocksandpreviousconditionalcorrelations,

(5)

respectively,onthecurrentconditionalcorrelation.Anecessary and sufcient condition for Qt to be positive denite is that a+b+maxg<1, where max is the maximum eigenvalue of

Q1/2NQ1/2

.ThetermQistheunconditionalcovariancematrix ofthestandardizedresidualszi,t=

εi,t

hi,t suchthatQ=E

ztzt

. Theparametergdenotestheasymmetriceffectinthemodel.The quantityzt =1[zt<0]zt,whereistheHadamardproduct,and 1[zt<0]isa(n×1)indicatorfunctionthattakesonvalue1when theargumentzi,t<0,i=

1,...,n

and0otherwise. Theterm N=E

ztzt

representstheunconditionalcovariancematrixof zt.

In practice, the expectations of Q and N are infeasible;

hence,theyarereplacedwiththesampleanalogs 1T

T

t=1ztztand

1 T

T

t=1ztzt,respectively.

3.1.2. Estimation

FollowingEngle(2002),theestimationoftheA-DCCmodelis conductedusingatwo-stepmaximumlikelihoodmethod.(1)Ina

rststep,weseparatelyestimatetheconditionalvariancesusinga univariateGARCH-typemodelforeachtimeseriesinEq.(5).(2)In asecondstep,weestimatetheconditionalcorrelationinEq.(7).

Theconditionaljointdistributionofthereturnshasthefollow- ingform,where(·) isthegammafunction:

fn,(rt|It−1)=

Ht

12

+n

2

2

((2))n2

1+(rtt)H−1t (rtt)

2

+n2

(8)

DenotethevectorofparametersinDt,i.e.,theparametersof allunivariateconditionalvolatilitymodelsinEq.(5);and the vectorofadditionalparametersinRt,i.e.,theparametersofthe conditionalcorrelationmodelinEq.(7).Thelog-likelihoodfunction tomaximizeiswrittenas:

L

,

=

T t=1

lnfn,

rt|,,It−1

(9)

=

T t=1

ln

+n

2

−ln

2

−n

2((−2))

−1

2ln

 

Ht

 

+n

2

ln

1+(rt−t)Ht1(rt−t)

−2



=

T t=1

ln

+n

2

−ln

2

−n

2((−2))

−ln

 

Dt

 

1

2ln

 

Rt

 

+n

2

ln

1+ztRt1zt

−2



(9)

ThelikelihoodfunctionisdividedintovolatilitytermLv

and correlationtermLc

,

inEq.(10).

L

,

=

T t=1

nln

+1 2

nln

2

n 2((2))

ln

Dt

+1

2 (2)(rtt)Dt2(rtt)

+

T t=1

ln

+n 2

nln

+1 2

+(n1) ln

2

1 2ln

R

t

+n

2

ln

1+ztR−1t zt

2

+ +1 2 (2)ztzt

= Lv

+Lc

,

(10)

The likelihood function L

,

is maximized by separately maximizingLv

intherststep,then,taketheestimatedcoef-

cients ˆ as input for the second step to maximize Lc

,ˆ 

. FollowingthedevelopmentofXu,Chen,Jiang,andYuan(2018), underthemultivariatet distribution,thevolatilitypartcanbe writtenasthesumofindividuallog-likelihoodsinEq.(11).

Lv

=

T t=1

nln

+1

2

−nln

2

−n

2((−2))

−ln

 

Dt

 

+1

2 (−2)(rt−t)Dt2(rt−t)

=

T t=1

nln

+1

2

−nln

2

−n

2((−2))

−1 2

n i=1

ln

hi,t

−+1 2

n i=1

ri,t−i,t

2

(−2)hi,t

T t=1

n i=1

ln

i+1 2

−ln

i

2

−1

2ln ((i−2))

i+1 2

ln

1+

ri,t−i,t

2

(i−2)hi,t

−1 2ln

hi,t

 

n i=1

Lv,i

i

(11)

ThemaximizationofLv

isperformedbyseparatelymaximiz- ingthelog-likelihoodofeachassetLv,i

i

undertheunivariate Student’s t distribution with i degrees-of-freedom. The com- mondegrees-of-freedomof themultivariatet distributionis anapproximationofeachasset’sdegrees-of-freedomi.Next,the correlationpartiswrittenas:

Lc

ˆ

,

=

T t=1

ln

+n

2

nln

+1

2

+(n1) ln

2

1

2ln

Rt

+n 2

ln

1+ˆztR−1t zˆt

2

+ +1 2 (2)zˆtzˆt

(12)

where ˆzt=Dˆt1

rt−ˆt

areobtainedfromtheestimationinthe

rststep.1

The estimated coefcients from thetwo-step procedure are inefcientbutconsistent,sincetheyarelimitedinformationesti- mators,asarguedbyEngle(2002).

3.2. Optimalportfolioweights

Portfoliooptimizationseemstobeanimportantpartofmod- ernquantitativenance thatsolvesmostoftheproblemsposedby investorsthroughseveralalternatives.Inthissection,wecompare therole ofBitcoinandgoldashedgingtoolsfor majorinterna- tionalassets.Inthiscontext,investorsseektominimizetherisk oftheirportfolioswithoutreducingtheexpectedreturns.Forthis purpose,KronerandSultan(1993)introducedamethodbasedon hedgeratios,whichbecamewidelyappliedinnumerousempirical works(Akhtaruzzaman,Boubaker,Lucey,&Sensoy,2021;Chang, McAleer,&Tansuchat,2011;Chkili,2016).Thismethoddetermines

1NumericalestimationsoftheA-DCCmodelareconductedunderRprogramming languageusingtherugarchpackageforunivariatemodelsintherststep,and rmgarchpackageforthecorrelationmodelinthesecondstep.Bothpackagesare availablefromhttps://cran.r-project.org/.

(6)

theoptimalweightofBitcoin(orgold)inaone-dollarwalletofasset attimet.TheoptimalweightisexpressedinEq.(13).

wi/(BTCorGLD)

t = hit−hi/(BTCorGLD)

t

hit−2hi/(BTCorGLD)

t +h(BTCorGLD)t (13)

providedthat,

wi/(BTCorGLD)

t =

⎧ ⎪

⎪ ⎨

⎪ ⎪

0 ifwi/(BTCorGLD)

t <0

wi/(BTCorGLD)

t if06wi/(BTCorGLD)

t 61

1 ifwi/(BTCorGLD)

t >1

where hit and h(BTCorGLD)t are the conditional volatilities of the selected market i and Bitcoin (or gold), respectively; and hi/(BTCorGLD)

t istheconditionalcovariancebetweenBitcoin(orgold) andthereturnoftheassetiattimet.Allthevariancesandcovari- ancesareextractedfromtheA-DCCmodelestimates.Theweight ofassetiintheone-dollarportfolioofBitcoin(orgold)attimet equals

1−wi/(BTCorGLD) t

.

3.3. Hedgeratio

Inadditiontotheoptimalportfolioallocationintheprevious section,investorsandmarketparticipantsseektominimizetherisk ofthehedgedportfolio.Oneofthemostusedstrategy istocompute theoptimalhedgeratio(HR)basedonmultivariateGARCH-class modelsattimetinEq.(14),asdenedbyKronerandSultan(1993).

ˇi/(BTCorGLD)

t = hi/(BTCorGLD)

t

h(BTCorGLD)t (14)

Tominimizetheriskofaportfoliooftwoassets,alongposi- tionof$1takeninanygivenassetshouldbehedgedbyshorting ˇi/(BTCorGLD)

t dollarsintheBitcoin(orgold)market.

Forabetteranalysisoftheperformanceoftheoptimalportfo- lio,wecalculatetheHedgingEffectivenessindex(HE)inEq.(15), inalignmentwithChangetal.(2011).Thisindexevaluatestheper- formanceoftheportfoliobycomparingthevarianceofthehedged portfoliowiththatoftheunhedgedportfolio.

HE=varunhedged−varhedged

varunhedged (15)

where

varunhedged

representsthevarianceoftheunhedgedport- folioreturns(i.e.,varianceofthestockindexorcurrencyreturns), and

varhedged

denotesthevarianceofthehedgedportfolioreturns giveninEq.(16).AhigherHEindicatesabetterriskreductionand ahigherhedgingeffectiveness,whichimpliesthattheinvestment methodcanbeconsideredasasuperiorhedgingstrategy.

var

rh,t|It−1

=var

rj,t|It−1

−2ˇi,tcov

rj,t,ri,t|It−1

2i,tvar

ri,t|It1

(16) whererh,tisthehedgedportfolioreturn;rj,tistheBitcoin(orgold) return;ri,tisthestockindex(orcurrency)return;andˇi,tisthe optimalhedgeratiocalculatedfromEq.(14).

3.4. Safehaven

TheappliedA-DCCmodelestimatesthedynamicrelationship betweenthedifferentvariablesandthepotentialofBitcoinandgold asahedgingassetoverthetotalperiod.However,itdoesnotspec- ifytheusefulnessofBitcoinandgoldduringcrisisperiods.Thus, this section assesses whether the Bitcoin and gold can serve as safe havensduringtheCOVID-19pandemic.FollowingRatnerandChiu (2013)andAkhtaruzzaman,Boubaker,LuceyandSensoy(2021),

theeconometricmodeltotestthesafehavenpropertyispresented asfollows:

ADCCij,t01ADCCij,t−12Dcovidij,t (17)

where ADCCij,t is thepairwise dynamic conditionalcorrelation betweenBitcoin(orgold)jandeachreturnonachosenasseti, andextractedfromtheestimatedQt=

qij,t

n

i,j=1inEq.(7),such that,

ADCCij,t=ij,t= qij,t

q

ii,t qjj,t

We furthercreateadummyvariableDcovid fortheCOVID-19 period,thatequalsoneifthereturnsareduringthecrisis,andzero otherwise.AccordingtoBaurandMcDermott(2010)andBourietal.

(2017),iftheconstantı0inEq.(17)isweaklypositive,thenBitcoin (orgold)isaweakdiversieragainstmovementsintheotherasset i.Bitcoin(orgold)isahedgeagainstmovementsintheotherasset ifı0isstatisticallynotdifferentfromzero(weakhedge)ornegative (strong hedge).Finally,Bitcoin(orgold)isaweaksafehavenforthe otherassetduringthecrisisperiodifı2isnotsignicantlydifferent fromzero,orastrongsafehavenifı2issignicantlynegative.2 4. Dataanddescriptivestatistics

4.1. Data

Intheempiricalpart,wechosetwomajorclassesofnancial assets,namely,stockindicesandcurrencies.Thedataiscollected from Thomson Reuters Datastream database. The daily closing prices of the mainworld stock marketscorrespondto theU.S.

(Standard&Poor’s500,SP500),Eurozone(EuroSTOXX50,ES50), Japan (Nikkei 225, N225) and the U.K. (Financial Times Stock Exchange100,F100).Forcurrencies,weselecttheEuro(EUR),the Japaneseyen(JPY)andtheBritishpound(GBP).Bitcoin(BTC)prices arecollectedfromwww.coinmarketcap.com;andoneounceOR- LBMAofgoldprices(GLD)areobtainedfromwww.lbma.org.uk.All exchangeratesarequotedagainsttheU.S.dollar(USD).Thesample spanstheperiodfromApril29,2013toJanuary5,2021withatotal of2007observations.

ThesampleperiodencompassesastrongspreadoftheCOVID- 19 pandemic. Consequently, we divide the sample into two sub-periodstocomparethebehaviorofBitcoinandgoldinterms of overallperformance. Therstperiod, fromApril29,2013to March 10, 2020,before thecrisis, and thesecond period from March11,2020toJanuary5,2021duringthecrisis.3Theempirical investigationisconductedonthereturnscomputedastheloga- rithmic differencesbetweenprices pi,t fortheasseti,such that ri,t=lnpi,t−lnpi,t1.

4.2. Preliminaryanalysis

Fig.1exhibitstheevolutionofdailypricesforallassetclasses.

A dramatic pricedropis observedfromthesecond sub-period, especially for stock indices, indicating an increased variability during thepandemic.Indeed, theCOVID-19has ledtoa global recession anda hugeliquidationinthenancialmarkets(Aloui, Goutte, Guesmi,&Hchaichi,2020).Moreover,Bitcoinlostmore

2NotethatRatnerandChiu(2013)improvedthemethodofBaurandMcDermott (2010)toanalyzethesafehavenpropertyofanassetbysubstitutingthetimevarying coefcientbtintheregressionusedbyBaurandMcDermott(2010)withthepairwise conditionalcorrelationADCCij,t.

3OnMarch11,2020,theWorldHealthOrganization(WHO)hasdeclaredthe COVID-19diseaseasaglobalpandemic.Similarstudieshaveusedthisdateas the onsetdateofthecrisis(Corbet,Larkin,&Lucey,2020).

(7)

Fig.1. DailydataforBitcoin,gold,indices,andexchangerates.TheshadedareacorrespondstotheCOVID-19pandemicperiod.

thanhalfofitsvalue,unlikegoldwhichbenetedfromamuch more homogeneous and stabilizing distribution. These qualita- tiveresultsprovidearstindicationthatBitcoininvestmentscan increaseportfoliorisk ratherthanactingas asafehaven.How- ever,this dropwasfollowed bya remarkable sharprisefor all assets.Bitcoinisundoubtedlytheassetthathasgrownthemost, afterits rstall-time high inDecember 2017,the priceof Bit- coinexplodestonewrecordswithmorethan$32,000onJanuary 4,2021.

SummarystatisticsofthereturnsarepresentedinTable1.Going fromtheperiodprecedingthecrisis(PanelA)totheperiodfollow- ingtheannouncementoftheCOVID-19pandemic(PanelB),we noticethat,withtheexceptionofBitcoinandtwoatcurrencies Euroand yen,goldandallotherassetsexperiencedanincrease intheiraveragereturnsaccompaniedwithhighvolatility.More- over,Bitcoinexhibitsthehighestreturnandhighestriskduring bothsub-periods.AsindicatedbyBauretal.(2018),thisspectac- ulargrowthis explainedbyastrongdemandfrominstitutional investors.Forinstance,TeslaannouncedonFebruary8,2021that it has bought $1.5 billion worth of Bitcoin, and it started accepting Bitcoinasapaymentmethodforitsproducts.4Furthermore,the

4Nevertheless,onMay12,2021,TeslastoppedacceptingBitcoinasapayment methodforitsproducts.Asaresult,Bitcoinpriceplungedfromanearly$58,000to below$38,000injust10days.

Jarque–Beratestrejectsnormalityforalldatareturnsduringboth sub-periods.

The Ljung–Box testrejectsthenullhypothesis ofabsenceof autocorrelation in the squared returns. Additionally, the ARCH teststatisticsforconditionalheteroskedasticityaresignicantfor allreturn series, which suggests the presence of ARCH effects.

TheseresultsconrmourchoiceofGARCH-typemodelstoana- lyzethedynamicrelationshipbetweenBitcoin(andgold)onone hand,andstockandforeignexchange(forex)marketsontheother hand.PanelsBpresentstheresultsoftwounitrootandstationar- itytests,namely,theAugmentedDickeyandFuller(1979)(ADF) andKwiatkowski,Phillips,Schmidt,andShin(1992)(KPSS),which showthatallseriesarestationary.

ThePearsoncorrelationsduringbothsub-periodsarepresented inTable2.ThecorrelationsbetweenBitcoin(andgold)withthe returnsofothermarketsarenegativeandclosetozeroduringthe pre-COVID-19period,which suggeststhatBitcoinand goldcan beusedashedgingassetsduringthestableperiod(Baur&Lucey, 2010).Duringthesecondsub-period,withtheexceptionofBTC/JPY pair, the correlations between Bitcoin (and gold) and othernan- cialassetshavebecomepositive,signalingthattheglobalnancial marketsbecamemoreinterconnected.Thus,Bitcoinandgoldmight nothaveanysafehavenproperty,yettheymayoffersomehedging characteristic.Totestthisassertion,weconductmoreadvanced empiricalmodelsinthefollowingsections.

(8)

Table1

Summarystatisticsandunitroottestsfordailyreturns.

BTC GLD SP500 ES50 N225 F100 EUR JPY GBP

PanelA:BeforetheCOVID-19pandemic Descriptivestatistics

Mean 0.0022 0.0001 0.0003 0.0000 0.0002 −0.0000 −0.0001 −0.0000 −0.0001

Std.dev. 0.0910 0.0083 0.0086 0.0109 0.0127 0.0086 0.0049 0.0056 0.0056

Skewness 0.1637 0.0693 −0.8002 −0.8587 −0.4860 −0.7607 0.0771 0.2674 −1.6691

Kurtosis 445.28 5.5613 11.196 9.6055 8.33187 9.3755 5.4598 7.4248 30.382

J-Btest 8900.0 498.02 5203.7 3476.2 2181.5 3206.1 322.47 935.09 58009

Q2(10) 445.60c 196.58c 1050.9*** 206.46*** 202.96*** 349.70*** 169.55*** 139.71*** 85.980***

ARCH(10) 799.19*** 130.92*** 594.24*** 140.97*** 105.92*** 255.12*** 109.51*** 104.12*** 71.732***

Unitrootteststatistics

ADF −10.605*** −12.202*** −11.670*** −12.243*** −12.625*** −11.595*** −12.630*** −11.470*** −12.190***

KPSS 0.0799 0.3516 0.0872 0.1337 0.0929 0.1513 0.1279 0.1666 0.0737

Panel B: During the COVID-19 pandemic Descriptivestatistics

Mean 0.0068 0.0007 0.0012 0.0009 0.0015 0.0005 0.0004 0.0001 0.0002

Std.dev. 0.0498 0.0124 0.0216 0.0203 0.0161 0.0185 0.0047 0.0051 0.0071

Skewness −3.6822 −0.0001 −0.9150 −1.0657 0.3498 −0.8713 −0.5058 −1.4630 −0.6630

Kurtosis 40.045 8.7132 13.009 12.792 7.6616 11.435 4.7595 13.256 7.2672

J-Btest 12606 287.22 1021.9 885.68 206.21 665.97 39.226 1065.6 199.85

Q2(10) 55.889** 28.251*** 169.10*** 44.717*** 148.68*** 52.724*** 70.006*** 63.381*** 79.549***

ARCH(10) 5.0270* 2.3238* 91.517*** 31.791*** 86.170*** 62.614*** 28.269*** 31.825*** 48.156***

Unitrootteststatistics

ADF −5.9548*** −9.0835*** −9.0401*** −8.1735*** −8.4121*** −8.1858*** −9.2608*** −9.8608*** −7.8933***

KPSS 0.3888 0.0541 0.0342 0.0342 0.035 0.0533 0.1117 0.1296 0.0531

Note:Thistablereportsthesummarystatisticsofdailyreturnsfordifferentassets.J-BistheJarque–Berratestfornormality,Q2(10)istheLjung–Boxstatisticforserial correlationinthesquaredreturns.ARCH(10)isthetestforconditionalheteroskedasticity.ADFandKPSSstandfortheempiricalstatisticsofAugmentedDickey–Fullerand Kwiakowski–Phillips–Shmidt–Shintestsforunitrootandstationarity,respectively.PanelAsummarizestheresultsduringthepre-COVID-19period,i.e.,fromApril29,2013 toMarch10,2020.PanelBsummarizestheresultsduringtheCOVID-19pandemic,i.e.,fromMarch11,2020toJanuary5,2021.

Normalityisrejectedat5%signicancelevel.

***Nullhypothesisisrejectedat1%condencelevel.

**Nullhypothesisisrejectedat5%condencelevel.

*Nullhypothesisisrejectedat10%condencelevel.

Table2

Pearsoncorrelationmatrix.

BTC GLD SP500 ES50 N225 F100 EUR JPY GBP

PanelA:BeforetheCOVID-19pandemic

BTC 1 0.0069 0.0280 0.0075 −0.0112 0.0091 0.0047 −0.0007 0.0114

GLD 1 −0.0406 −0.0923 −0.1767 −0.0923 0.1915 0.0001 0.0661

SP500 1 0.1983 0.5560 0.5359 −0.0887 0.0050 0.0625

ES50 1 0.3004 0.8246 −0.2226 0.0038 0.1067

N225 1 0.2974 −0.1163 −0.0494 0.0305

F100 1 0.0019 0.0019 −0.0584

EUR 1 0.4522 0.5161

JPY 1 0.1611

GBP 1

PanelB:DuringtheCOVID-19pandemic

BTC 1 0.1099 0.4604 0.4283 0.0787 0.4111 0.0845 −0.0724 0.1832

GLD 1 0.2209 0.1626 0.3026 0.1881 0.1735 0.0942 0.1854

SP500 1 0.6833 0.2435 0.6741 0.1389 −0.2857 −0.2208

ES50 1 0.4513 0.9124 0.1389 −0.2208 0.3187

N225 1 0.4167 0.2355 0.0489 0.3036

F100 1 0.1369 −0.1815 0.2250

EUR 1 0.5159 0.6089

JPY 1 0.4547

GBP 1

Note:ThistablereportsthePearsoncorrelationmatrix.

5. Empiricalresults

5.1. TheA-DCCmodelestimationresults

Tables A.1–A.3 in Appendix A document thefull estimation results of the A-DCC model of Bitcoin and gold with all the returns of the selected assets before and during the COVID- 19 pandemic. The average conditional correlations are weakly positive indicating the ability of Bitcoin and gold to act as

a hedge in times of market stability and also in times of crisis.

Diagnostic testsontheresidualsareperformedtoverifythe qualityoftheempiricalresults.According toTable3,Ljung–Box’s test shows noserial correlationin thesquared residuals. Like- wise, the ARCH test cannot reject the null hypothesis of the absenceofARCHeffects.Therefore,thereisnoevidenceoferro- neousstatisticalspecication.TheA-DCCapproachwithaTARCH specicationiscorrectlyspeciedtodescribethedynamicrelation-

(9)

Table3 Diagnostictests.

BTC GLD SP500 ES50 N225 F100 EUR JPY GBP

PanelA:BeforetheCOVID-19pandemic

Q2(10) 0.013[1.000] 10.72[0.380] 11.23[0.340] 9.081[0.524] 6.329[0.787] 10.18[0.425] 6.613[0.761] 10.36[0.409] 6.606[0.762]

Q2(20) 0.028[1.000] 16.25[0.700] 15.99[0.719] 14.08[0.826] 16.88[0.663] 24.93[0.204] 14.31[0.814] 17.88[0.595] 10.87[0.949]

ARCH(10) 0.013[1.000] 10.46[0.401] 11.08[0.351] 9.302[0.504] 6.246[0.794] 9.963[0.444] 6.922[0.733] 10.80[0.373] 6.711[0.752]

PanelB:DuringtheCOVID-19pandemic

Q2(10) 0.013[1.000] 3.790[0.956] 2.458[0.992] 2.839[0.985] 8.833[0.548] 5.164[0.880] 9.228[0.511] 3.658[0.962] 3.192[0.977]

Q2(20) 0.028[1.000] 6.318[0.998] 4.958[1.000] 3.839[1.000] 13.61[0.850] 6.001[0.999] 16.10[0.710] 4.342[1.000] 7.540[0.995]

ARCH(10) 0.013[1.000] 5.117[0.883] 4.233[0.936] 2.640[0.989] 11.88[0.293] 6.692[0.754] 11.14[0.346] 6.522[0.770] 6.172[0.801]

Note:Thistablereportsthediagnostictestsformodelmisspecication:Ljung–BoxQ2(10)andQ2(20),andtheARCHtestontheresidualsoftheestimatedA-DCCmodel.

p-valuesassociatedwiththestatisticaltestsarereportedinbrackets.Lowerp-valuescastdoubtonthecorrectspecicationofthemodel.

shipbetweenBitcoinandgoldmarketswiththestockandforex markets.

Figs.2and3illustrateindetailthedynamicsoftheconditional correlationsbetweenBitcoinandgoldreturns,respectively,and thevariousnancialmarkets.Correlationlevelsareveryvolatile throughouttheperiodsandmarkets.Forstockindices,theresults showthattheA-DCCmodelalternatesbetweenlowpositiveand negativevalues inalignmentwithJoy(2011),Klein(2017),Bouri, Shahzad,Roubaud,Kristoufek,andLucey(2020)andCharfeddine, Benlagha,andMaouchi(2020),whichindicatetheroleofBitcoin andgoldinhedgingagainststockmarkets.However,sincethestart ofthepandemic outbreak,thesecorrelationshaveincreasedon average.Thiscanbeattributedtotwoeffects.(i)First,thecollapse ofstockmarkets,whichweresimultaneouslyaffectedbyCOVID- 19.Indeed,thehealthcrisishas turnedintoa seriouseconomic crisisthathashitthemarketsmoredeeplythananyother shock (Bakeretal.,2020).Someshocksweredue tothedirecteffects linkedtothespreadofthevirus,i.e.,infectionrate,mortalityrate,as wellastheeconomicandpsychologicalconsequencesduetosocial distancingandlockdownmeasuresatvariouspartsoftheworld, whichhasledtoamassivesell-offinthenancialmarkets.Some other shocks (whether positive or negative) were due to the direct implicationofcentralbankmonetarypolicyinterventions(FOMC meetings,ECB,BOE,CBJdecisions)atvariouspartsofthenan- cialworldandwithdifferenttiming.(ii)Second,thesharprisein thepricesofBitcoinandgoldduetothecrisisepisodesprompted internationalinvestorstochooseanoptimalallocationstrategyby investingintheseassetstoprotecttheirwealth(Bongeretal., 2020).

Goodell and Goutte (2021) suggest that Bitcoin may act as a safe haven during the pandemic due to its co-movement with COVID-19 cases. This explains that when the feeling of fearincreases intheU.S. market,investorsturntootherassets such as cryptocurrencies. However, the decrease in correlation appearstobeonlytemporaryandofshortduration.Indeed,fol- lowinggovernmentinterventionswithmonetaryandbudgetary reliefplanstomitigatetheimpactofthecrisis, thecorrelations have shown episodes of positive values in Fig.2,in alignment withBatten,Kinateder,Szilagyi,and Wagner(2021).For exam- ple,onMarch17,2020,theU.S. Housepassedthe Coronavirus Aid,Relief, andEconomicSecurity(CARES) actforaneconomic stimulus package exceeding $2 trillion to protect the Ameri- cancitizensfromtheunwantedhealthandeconomicimpactsof COVID-19.

Theseresultsareofparticularinteresttoinvestorswhowish tohedgetheirportfolios.Thefollowingsectionsprovideprecise informationonthehedgeandsafehavenproperties.

5.2. Optimalportfoliodesign

Table4summarizestheoptimaldesignofportfoliosconsisting of Bitcoin (or gold) and other nancial assets before and dur-

ingthe COVID-19 crisis. The results indicate that, to minimize riskgiventheexpectedreturn,theoptimalweightsaregenerally above92%forBitcoinand60%forgoldduringbothsub-periods,on average.Mokni,Ajmi,Bouri,andVo(2020)foundsimilarresults whereinvestors holdmore than80% of theirwealth in Bitcoin tominimizetheriskofaU.S.equityportfolio.Likewise,thiscon- clusionissimilartotheworksofHoodandMalik(2013),Arouri, Lahiani,andNguyen(2015)andChkili(2016)thatrevealtheuse- fulnessofgoldinprovidingdownsideriskhedgingininternational portfolios.

It isworthnotingthatduringthecrisis,theoptimalweights of Bitcoin and gold in conventional currency wallets increased signicantly,suggestingthatforexinvestorsareconsideringcryp- tocurrency and gold like a hedge (Longstaff, 2004). Moreover, duringtheCOVID-19pandemic, the optimal weightsof Bitcoin and gold decreased for all stock market indices. The decrease ismore pronounced withgold.For instance,theweight ofthe gold–S&P500portfoliodecreasedfrom74.52%duringtherst phase to 19.31% during the second phase. Overall, the results concludethatinvestorsshouldallocatelargerproportionsofBit- coin than gold in order to minimize the risk of international wallets.

5.3. Hedgingeffectiveness

Optimalhedgeweightsandratiosprovideageneralunderstand- ingofhowhedgeisconstructedtominimizerisk.However,theydo nothelpidentifytheeffectivenessofthehedgeovertime.There- fore,wecalculatethehedgeeffectiveness(HE)indexusingEq.(15) inTable5.

ThecomparisonbetweenportfoliosincludingBitcoinandthose includinggoldvariesconsiderablydependingontheperiodand markettype. Moving from Panel A (beforeCOVID-19) toPanel B(duringCOVID-19)inTable5,withtheexceptionofthegold- currencypairsandtheBitcoin-Nikkei225 pairthatshowagood hedgingstrategy, theoptimal hedgeratiosfor Bitcoin andgold increasedsignicantly during thecrisis. In fact, for BTC-SP500 market,theratiogoesfromanegativevalueof−0.0117during thepre-COVID-19period toapositivevalueof0.2006duringthe COVID-19period.ThenegativevalueofHRimpliesthatinvestors musttakethesamepositionfortwoassetsinthesameportfolio (shortorlong),whilethepositivevalueindicatesreversepositions arerequiredtohedgeagainsttheriskofeachasset.Forexample, inordertominimizetherisk,alongpositionof$1inS&P500can behedgedwith20.06centsshortpositioninBitcoin.Asnotedby LópezCabreraandSchulz(2016),thelowerthehedgeratio,theless expensivethehedge.Thus,assetcoveragewascheaperbeforethe pandemicthanduringthepandemic(Akhtaruzzaman,Boubaker, Lucey,&Sensoy,2021).Thisndingisconsistentwiththeliterature which reveals higher hedge ratios in times of crisis (Batten et al., 2021),duetothesharpincreaseinuncertaintyovertheeconomic andnancialoutlook.Thevarietyofrisksassociatedwiththisglobal

(10)

Fig.2. DynamiccorrelationsbetweenBitcoin,stockindicesandforeignexchanges.

Referensi

Dokumen terkait

OVERVIEW, PRESENTATION, EXERCISE ,SUMMARY) UNTUK MENINGKATKAN HASIL BELAJAR MATEMATIKA PADA. SISWA MTs HIFZHIL QUR’AN MEDAN

Original Research Article Artikel Penelitian Orisinal The Relationship Between Peer Social Support and Academic Stress Among University Students During the COVID-19 Pandemic