Excitation states of metabolic networks predict dose- response fingerprinting and ligand pulse phase signalling.
Item Type Article
Authors Coggan, Jay S;Keller, Daniel;Markram, Henry;Schürmann, Felix;Magistretti, Pierre J.
Citation Coggan, J. S., Keller, D., Markram, H., Schürmann, F., &
Magistretti, P. J. (2020). Excitation states of metabolic networks predict dose-response fingerprinting and ligand pulse phase signalling. Journal of Theoretical Biology, 487, 110123.
doi:10.1016/j.jtbi.2019.110123 Eprint version Publisher's Version/PDF
DOI 10.1016/j.jtbi.2019.110123
Publisher Elsevier BV
Journal Journal of theoretical biology
Rights © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://
creativecommons.org/licenses/by-nc-nd/4.0/) Download date 2023-11-29 20:55:45
Item License http://creativecommons.org/licenses/by-nc-nd/4.0/
Link to Item http://hdl.handle.net/10754/660907
ContentslistsavailableatScienceDirect
Journal of Theoretical Biology
journalhomepage:www.elsevier.com/locate/jtb
Excitation states of metabolic networks predict dose-response fingerprinting and ligand pulse phase signalling
Jay S Coggan
a,∗, Daniel Keller
a, Henry Markram
a, Felix Schürmann
a, Pierre J Magistretti
baBlue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva CH-1202, Switzerland
bBiological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
a rt i c l e i n f o
Article history:
Received 6 September 2019 Revised 8 November 2019 Accepted 16 December 2019 Available online 19 December 2019 Keywords:
Enzyme cascade Phase signalling Ligand pulse
Dose-response fingerprinting Synthetic biology
a b s t r a c t
Withacomputationalmodelofenergymetabolisminanastrocyte,weshowhowasystemofenzymesin acascadecanactasafunctionalunitofinterdependentreactions,ratherthanmerelyaseriesofindepen- dentreactions.Thesesystemsmayexistinmultiplestates,dependingonthelevelofstimulation,andthe effectsofsubstratesatanypointwilldependonthosestates.Responsetrajectoriesofmetabolitesdown- streamfromcAMP-stimulatedglycogenolysisexhibitahostofnon-lineardynamicalresponsecharacter- isticsincludinghysteresisandresponseenvelopes.Dose-dependentphasetransitionspredictanovelin- tracellularsignallingmechanismandsuggestatheoreticalframeworkthatcouldberelevanttosinglecell informationprocessing,drugdiscoveryorsyntheticbiology.Ligandsmayproduceuniquedose-response fingerprintsdependingonthestateofthesystem,allowingselectiveoutputtuning.Weconcludewith theobservation that state-and dose-dependentphase transitions,what wedub“ligand pulses” (LPs), maycarryinformationandresembleactionpotentials(APs)generatedfromexcitatorypostsynapticpo- tentials.Inourmodel,therelevantinformationfromacAMP-dependentglycolyticcascadeinastrocytes couldreflectthelevelofneuromodulatoryinputthatsignalsanenergydemandthreshold.Wepropose thatbothAPsandLPsrepresentspecializedcasesofmolecularphasesignallingwithacommonevolu- tionaryroot.
© 2019TheAuthors.PublishedbyElsevierLtd.
ThisisanopenaccessarticleundertheCCBY-NC-NDlicense.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction
The long-standing inadequacy of our understanding of cells, from biochemistry to behaviour, from bacteria to neurons, has vexed the development of more effective treatments for many medicaldisorders, mostnotablythose thatlead toneurodegener- ation. Variouslevels of biological complexityare usually fingered as the culprits, with expansive systems of interlocked biochem- ical cascades and cellular networks at the root of their nature.
For example, ubiquitous intracellular signalling pathways in sin- glecellsworkinparallelatmultiplescalesofspaceandtime.The challenge ofunderstanding phenomenasuch asagingin orderto delay orcircumvent senescence orany numberof neuropatholo- gieswilllikelyrequirealeapforwardinsystemsbiologyconcepts (Kirkwood, 2011,Kowald andKirkwood, 1996, Kriete etal., 2011, McAuleyetal.,2017).
∗ Corresponding author.
E-mail addresses: jay.coggan@epfl.ch (J.S. Coggan), daniel.keller@epfl.ch (D.
Keller), henry.markram@epfl.ch (H. Markram), felix.schuermann@epfl.ch (F. Schür- mann), [email protected] (P.J. Magistretti).
Second-messenger signalling can involve any number of cas- cading, enzyme-catalyzed steps whereby stimuli such as neuro- modulators are transduced from one metabolite to another, each inturn capable offeeding another cascade. Elusivedisease cures requireanunderstanding that currentlyeludestraditionalexperi- mentaldesignsandcapabilities.Computationalmethodsthatcom- plementlaboratorytechniquesmayprovidethisunderstanding.
Computational modelling of intracellular enzymatic cascades is a valuable tool for understanding single cell functions (Schoeberl et al., 2002). As a case in point, here we describe a novel analysis of a previously described model of energy metabolism and neuromodulation in glia (Coggan et al., 2018, Jolivetetal.,2015).Weshowhowthisapproachcanrevealinsights notonlyaboutthisparticularpathway,butalsomake predictions about the behavior and previously unsuspected roles of second- messengersystemsingeneral,sincemetaboliccascadesarecentral toalmostallcellularfunctionsanddysfunctions(DeBerardinisand Thompson,2012).
With the simple concept of excitability states of an enzy- maticcascadestimulated,forexample,by aneuromodulatorsuch as norepinephrine, we are able to make predictions about their https://doi.org/10.1016/j.jtbi.2019.110123
0022-5193/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
Fig. 1. Model summary and response trajectories of selected metabolites in 5 excitation levels of a metabolic enzyme cascade stimulated by 5 doses of cAMP. A) The metabolic cascade system, from cAMP to the pyruvate (PYR) bifurcation to lactate and ATP, is stimulated to 5 excitability states by 5 concentrations of cAMP. Trajectories of primary metabolites of interest B) cAMP, C) pyruvate (PYR), D) lactate (LAC), E) ATP. The phase transitions occur in the concentration step between states 3 and 4. F, G) Derivative phase plots show phase transition between lower (cyan, blue) and higher (green, red, black) excitability states, corresponding to concentrations of cAMP. Examples made of LAC and ATP.
propertiesandbehavior.Weobservedthat,dependingonthestate ofmetabolic excitation, each metabolite concentration may cycle throughasetofstereotypedresponsestotheriseandfallofcAMP concentrations.Theseresponsesmayincludepatternsofhysteresis, responseenvelopesandphasetransitions.
Phasetransitions(definedhereasathermodynamicshiftinthe state or properties of a system of reactions) among intracellular reactions play a role in normal and pathological cell physiology (Nedelsky and Taylor, 2019, Tsuruyama, 2014), including energy productionpathwayssuchasglycolysis(Mulukutlaetal.,2015).We findthat excitation state-dependent, hysteretic, phase plots yield richinformationaboutthebehaviorofanenzymaticcascade.Fur- thermore,wemakethetheoreticalpropositionthatunderstanding theeffectofadrugona biologicalsystemrequiresknowledge of thestateoftheentiresystem.
We further hypothesize that both ligand pulses (LPs) and ac- tionpotentials(APs)representspecializedcasesofmolecularphase signalling (MPS), and suggest that APs might be late evolution- aryadaptationsofmoreancientandestablishedintracellularMPS mechanismsforthepurposeoflong-rangecommunicationandin- formationprocessingin nervoussystems (Boyer and Wisniewski- Dyé,2009).
Our results exemplify how a large-scale biomolecularsimula- tionsuch astheone beingbuiltatthe BlueBrain Project canbe
employed as a platform for theoretical advancements in under- standing complexmolecular systems. Beyondunderstanding nor- mal physiology, simulation science will also play an increasingly fundamentalroleintheburgeoningdisciplineofsyntheticbiology, afieldthat seekstounderstandandmanipulatecatabolicandan- abolicpathwaysthatmightimprovetheyieldofusefulmetabolites (Mulukutlaetal.,2016,Erbetal.,2017),orengineerdenovopath- ways forthe production ofhigh-value compounds (Martinet al., 2009).
2. Methods
Themodelusedinthispaperisbasedonthat previouslypub- lished(Cogganetal., 2018,Jolivetetal., 2015).Here, wefocuson asegmentofthedeterministiccascadebetweencAMPproduction (as stimulated by 5 levels ofnoradrenergic activation ofthe
β
2-adrenergicreceptorasin(Coggan etal.,2018))witheach colored plotcomingfromanindependentsimulationwithadifferentcon- centrationofcAMPandoutputs ofthepyruvate(PYR) bifurcation, lactate(LAC)andATP(cAMP→… PYR→LAC,ATP).Thefiverela- tivelyequallyspacedstimulationlevelsofcAMPwerechosenasa dose-responseregimen withwhich tostimulate the enzyme sys- tem to a range of levels of excitation roughly corresponding to thedose-responserangeforcAMPinthissystem.Theselevelsare
Table 1
Governing equations
Variable Value at rest Equation
Intracellular sodium 8/15 mM dtdNa +x= J xleak,Na−3 J xpump+ J xstim(t) ∗(1)
Neuronal glucose 1.2 mM dtdGL C n = J enGLC−J nHKPFK (2)
Astrocytic glucose 1.19 mM dtdGL C g= J cgGLC+ J egGLC−J gHKPFK (3)
Glyceraldehyde-3-phosphate 0.0046 mM dtdGA P x= 2 J xHKPFK−J xPGK+ vL 3 − v _ 3 (4)
Phosphoenolpyruvate 0.015 mM dtdPE P x= J xPGK−J xPK (5)
Pyruvate 0.17 mM dtdPY R x= J xPK−J xLDH−J xmito,in (6)
Neuronal lactate 0.6 mM dtdLA C n= J nLDH−J neLAC (7)
Astrocytic lactate 0.6 mM dtdLA C g= J gLDH−J geLAC−J gcLAC (8)
Cytosolic NADH † 0.006/0.1 mM dtdNADH cytox = (1 −ξ)−1(J xPGK−J xLDH−J xshuttle) (9) Mitochondrial NADH † 0.12 mM dtdNADH mitox = ξ−1(4 J xmito,in−J xmito,out+ J xshuttle) (10) Neuronal ATP ‡ 2.2 mM dtdATP n= (−2 J nHKPFK+ J nPGK+ J nPK− J nATPases− J npump+ 3 . 6 J nmito,out+ J nCK)(1 −ddAMATPPnn)−1 (11) Astrocytic ATP ‡ 2.2 mM dtdATP g=
(−2 J gHKPFK+ J gPGK+ J gPK− J gATPases− 74J gpump+ 34J gpump,0+ 3 . 6 J gmito,out+ J gCK)(1 −ddAMATPPgg)−1 (12)
Phosphocreatine 4.9 mM dtdPCr x= −J xCK (13)
Neuronal oxygen 0.028 mM dtdO 2n= J cnO2m−0 . 6 J nmito,out (14)
Astrocytic oxygen 0.028 mM dtdO 2g = J cgO2m−0 . 6 J gmito,out (15)
Capillary oxygen 7 mM dtdO 2c= J cO2−1 / r cnJ cnO2m−1 / r cgJ cgO2m (16) Capillary glucose 4.5 mM dtdGL C c= J cGLC−1 / r ceJ ceGLC−1 / r cgJ cgGLC (17) Capillary lactate 0.55 mM dtdLA C c= J cLAC+ 1 / r ceJ ecLAC+ 1 / r cgJ gcLAC (18)
Venous volume 0.02 dtdV v= F in(t)−F out ∗(19)
Deoxyhemoglobin 0.058 mM dtddH b = F in(t)(O 2a−O 2c¯)−F out dHb Vv
∗(20) Extracellular glucose 2.48 mM dtdGL C e= J ceGLC−1 / r egJ egGLC−1 / r enJ enGLC (21) Extracellular lactate 0.6 mM dtdLA C e= 1 / r enJ neLAC+ 1 / r egJ geLAC− J ecLAC (22) Neuronal membrane voltage −73 mV dtdψn= C m−1(−I L−I Na−I K−I Ca−I mAHP−I pump+ I syn(t)) ∗(23)
h gating variable 0.99 dtdh = φτhh(h ∞−h ) (24)
n gating variable 0.02 dtdn = φτnn(n ∞−n ) (25)
Neuronal calcium 5 10 −5mM dtdC a 2+= −SmFVnI Ca−1 / τCa(C a 2+−Ca 2+0 ) (26) Glycogen Module
Glycogen-G6P equilibria vL 1 = (kkm−−L1L1+)(glucgluc) (27)
v−L 1 = (kkm−−L1L1+)(GG66PP) (28)
vL 2 = (kL2kmL)(GSa2+)(G6GP6P) (29)
v−L 2 = (kkm−−L2L2+)(glycglyc) (30)
Glycogenolytic glucose dtdgluc = vtL 1 − vL 1 + v−L 1 (31)
Glycogen dtdglyc = vL 2 − v−L 2 (32)
Glucose 6-phosphate dtdG 6 P = vL 1 − v_ L 1 −vL 2 + v−L 2 (33)
Blood glucose influx rate vtL 1 = ktL 1(B gluc−gluc )= 0 (34)
Blood glucose derivative dtdB gluc= 0 (35)
cAMP —— dtdcAMP = (x (kDnene+ne)+ y ((τcAMP1 )( hb−ha
1+(hchk)hd)+ (τcAMPha ))−2 ×kcg1 ×R 2 C2 ×(cAMP )2 + 2 ×k −cg1 ×R 2 CcAMP ×C − 2 ×kgc2 ×R 2 CcAM P2 × (cAM P )2 + 2 ×k −cg2 × R 2 cAMP4 ×C)−cAMP/ τcAMP{x = ≥0 ;y = ≥0 }
(36)
Glycogen Phosphorylase dtdGPa =
(kmg5((kg5(1+)((sPKa1)(G6)(P)pt−GPa))
kg2 )+(pt−GPa))− (((kg6)(Pkmg6P1+PP1GPa)(GPa)) (1+(s2)(gluc)
kgi )+(GPa) )−(k a)(P P 1 )(GPa )+ (k −a)(P P 1 GPa)
(37)
Glycogen Synthase dtdGSa = (((kg8kmg8)(PP1)(st−GPa)) (1+(s1)(G6P)
kg2 )+st−(GSa))−(kmg7((kg7(1+)(PKa(s1)(+G6CP)()GSa))
kg2 )+(GSa)) (38)
Protein Phosphatase 1 dtdP P 1 = (−k a)(P P 1 )(GPa )+ (k −a)(P P 1 GPa) (39) PP1-GPa dtdP P 1 GPa= (k a)(P P 1 )(GPa )+ (k −a)(P P 1 GPa) (40) Protein Kinase A dtdPKa = ((kg3kmg3+)(C)(kt−PKakt−PKa))−(((kg4)(Pkmg4+P1+PP1PKaGPa)(PKa))) (41) cAMP-dependent kinase
cassette
d
dtR 2 C2 = (−k gc1)(R 2 C2 )(cAM P 2)+ (k −gc1)(R 2 CcAMP2 )(C) (42)
“” dtdC = (k gc1)(R 2 C2 )(cAM P 2)−(k −gc1)(R 2 CcAMP2 )(C)+ (k gc2)(R 2 CcAMP2 )(cAM P 2)−
(k −gc2)(R 2 CcAMP4 )(C) (43)
“” dtdR 2 CcAMP2 = (k gc1)(R 2 C2 )(cAM P 2)−(k −gc1)(R 2 CcAMP2 )(C)−
(k gc2)(R 2 CcAMP2 )(cAM P 2)+ (k −gc2)(R 2 CcAMP4 )(C) (44)
“” dtdR 2 CcAMP4 = (k gc2)(R 2 CcAMP2 )(cAM P 2)−(k −gc2)(R 2 CcAMP4 )(C) (45) Dynamic equilibrium constant
for glycogen degradation
kd = (kma xd −kmind )(1+1glyc kdmg
n)+ kmind (46)
Forward reaction rate for glycogen degradation
k a = kkd−a (47)
Cell energy charge CE = (AT P(AT P++ADPADP+2AMP) ) (48)
Cell oxidative status CO = [[NANADHD+]] (49)
Neuromodulation Module
Rise time constants for NE τne1= 10 ms (50)
Decay time constant for NE τne2= 50 0 0 0 0 (51)
Norepinephrine waveform NE = e −(t−tstim)/τne2−e −(t−tstim)/τne1 (52)
∗ When two values are indicated, the first one corresponds to the neuronal compartment and the second one to the astrocytic compartment.
Table 2
Rates, transports and currents
Reaction, transport or current Equation
Sodium leak J xleak,Na= SmFVxg xNa[ RTF log (Na +e/ Na +x)−ψx] (53) Na,K-ATPase J xpump= S mV xk xpumpAT P xNa +x(1 + KmAT,pumpPx)−1 (54) Glucose transport J xyGLC= T maxxy,GLC(GLCxGL+CKxxy
t,GLC−GLCGLy+CKyxy
t,GLC) (55)
Hexokinase-phosphofructokinase J xHKPFK= k xHKPFKAT P x GLCx
GLCx+Kg[ 1 + (KATI,ATPPx)nH] −1, GLCx = GLCg + g6p (astrocyte) (56) Phosphoglycerate kinase J xPGK= k xPGK GA P x AD P x(N −NADH cytox )/ NADH cytox (57)
Pyruvate kinase J xPK= k xPKPE P xAD P x (58)
Lactate dehydrogenase J xLDH= k x+LDHPY R xNADH cytox −k xLDH− PY R x(N −NADH cytox ) (59) Lactate transport J xyLAC= T maxxy,LAC(LACxLA+CKxxy
t,LAC−LACLACy
y+Kxyt,LAC) (60)
TCA cycle J xmito,in= V maxx ,in PYRPYRx
x+Kmmito
N−NADHmitox
N−NADHmitox +Kmx,NAD (61)
Electron transport chain J xmito,out= V maxx ,out O2x O2x+KOmito2
ADPx ADPx+Kxm,ADP
NADHmitox
NADHmitox +Kmx,NADH (62) NADH shuttles J xshuttle= T NADHx R−R−x
x+Mcytox R+x
R+x+Mmitox (63) †
Creatine kinase J xCK= k x+CKADP xPC r x−k xCK−AT P x(C −PCr x) (64) Oxygen exchange J cxO2m= PSVcapx (K O2(Hb.OPO2c −1 )−1/nh−O 2n) (65)
Capillary oxygen flow J cO2= 2FVincap(t)(O 2a−O 2c) (66)
Capillary glucose flow J cGLC= 2FVincap(t)(GL C a−GL C c) (67)
Capillary lactate flow J cLAC= 2FVincap(t)(LA C a−LA C c) (68)
Oxygen concentration at the end of the capillary O 2¯c= 2 O 2c−O 2a (69)
Leak current I L= g L(ψn−E L) (70)
Sodium current I Na= g Nam 3∞h (ψn−RTF log (Na +e/ Na +n)) (71) ‡
Potassium current I K= g Kn 4(ψn−E K) (72) ‡
Calcium current I Ca= g Cam 2Ca(ψn−E Ca) (73) ‡
Calcium-dependent potassium current I mAHP= g mAHP Ca2+
Ca2++KD(ψn−E K) (74)
Na,K-ATPase current I pump= F k npumpAT P n(Na +n−Na +0)(1 + KATm,pumpPx )−1 (75) Flow out of the venous balloon F out= F0[ (VVv0v)1/αv+ Vτv0V(VVv0v)−1/2ddtVv] , F 0 = 0 (76)
† With R −x= NADH cytox / (N −NADH cytox )and R +x= (N −NADH mitox )/ NADH mitox .
‡ Further equations in the Hodgkin-Huxley model are: αm= −0 . 1 (ψn+ 33 )/ (exp [ −0 . 1 {ψn+ 33 }] −1 ), βm= 4 exp [ −{ψn+ 58 }/ 12 ] , αh= 0 . 07 exp [ −{ψn+ 50 }/ 10 ] , βh= 1 / (exp [ −0 . 1 {ψn+ 20 }] + 1 ), αn= −0 . 01 (ψn+ 34 )/ (exp [ −0 . 1 {ψn+ 34 }] −1 ), βn= 0 . 125 exp [ −{ψn+ 44 }/ 25 ] , m ∞= αm(αm+ βm)−1 , n ∞= αn(αn+ βn)−1, h ∞= αh(αh+ βh)−1, τn= 10 −3(αn+ βn)−1, τh= 10 −3(αh+ βh)−1, m Ca= 1 / (1 + exp [ −{ψn+ 20 }/ 9 ] ) and E L= (g pasK + g nNa)−1[ g pasK E K+ g nNaRTF log (Na +e/ Na +n)] .
termed“states” andrangefrom1-5indescendingamplitude(with 1beingthehighestand5thelowest,Fig1A).
All enzyme cascadesimulations were carried-out in NEURON, usinga fixed time step of 3
μ
s with Euler integration,and was runeitheronanUbuntu14.04LTSworkstationwitha3.6GHzIn- tel Core i7-4790 CPU and 15.6 GB RAM, or on the Blue Gene/Q in Lugano, Switzerland. Matlab was used for data analysis. AP andEPSPsimulations were performedon the EPFLBlue Brain IV BlueGene/Q hosted at the Swiss National Supercomputing Cen- ter (CSCS) in Lugano.Parameters andequations for the NEURON simulation environment model are listed in Tables 1 (Governing equations),2(Rates,transportsandcurrents),and3(parameters).The 5concentrations ofcAMP corresponding to cascadestimula- tionstates 1–5were obtainedby setting x= 0.000009,0.00002, 0.00005,0.00008,or0.00011inEq.(36)inTable1.
3. Results
In this study, we made use of glycogenolysis and the subse- quentglycolyticcascadefromapreviouslypublishedmodelofen- ergymetabolism in glia(Coggan etal., 2018) to demonstrate the usefulnessofanoveltheoreticalanalysisofthecharacteristicsand behavioralpropertiesofasetofenzymaticreactions.
This segment of the metabolic energy cascade in our astro- cyte model was stimulated into five excitability states by simu- latingthe production of5 concentrations of the second messen- gercAMP(representing 5levels ofnoradrenergic activationofthe
β
2-adrenergic receptor as in (Coggan et al., 2018)). Diagramat- ically (Fig. 1A1), the arrows between cAMP and PYR represent theenzyme sequenceproteinkinaseA(PKa),proteinphosphatase 1 (PP1), glycogen phosphorylase (GPa), glycogen synthase (GSa), phosphoglucokinase(PGK),pyruvatekinase(PK),andlactatedehy-drogenase(LDH);aswellastheintermediatemetabolitesglucose- 6-phosphate(G6P),glyceraldehydephosphate(GAP),andphospho- enolpyruvate (PEP).Thetrajectoriesofselected metabolitescAMP, PYR,LACandATPareshowninFig.1,B–E,respectively.Derivative phase plotsare another wayto demonstratethe phasetransition betweenlower(cyan,blue)andhigher(green,red,black)excitabil- itystates,corresponding toconcentrationsofcAMPandexamples madeofLAC(Fig.1F)andATP(Fig.1G).
3.1. Excitation-statephaseplots
We examined the relationship between cAMP (the upstream trigger for the enzyme cascade we are analyzing) and a sample of several downstream intermediate metabolites (the “X” in the panel title).Plotting the relationshipbetween cAMPandselected downstream metabolites(cAMP→X) yields a typeof phaseplot (Fig.2A).Eachcoloredplotisgeneratedfromanindependentsim- ulation withadifferent concentration ofcAMP. Theseplots show differentkindsofrelationshipsvaryingfromessentiallynohystere- sis(forcAMPvs.G6P,meaning[G6P]closelyfollows[cAMP])anda varietyofdifferenthysteresisshapesforothermetabolites.Charac- teristics oftheseplotsincludetheclosefollowingby theconcen- trationofadownstreammetabolitetotheconcentrationexcursion ofcAMP,asinthecaseof[cAMP]vs.[G6P](theG6Pconcentration mirrors thecAMPconcentration withoutsignificant deviation),or a varietyof hysteresis types(all other responses inFig. 2A) with apparentresponse envelopesofvarious shapesintowhichthere- sponses “grow” and are contained with higher excitation states.
Theseresponseenvelopestherebyallowpredictionoffuturestates.
Itisobservedthattheshapesofthecurvesqualitativelychange between the two lowest states (cyan and blue) and the higher states(green,redandblack),justasthetransitionbetweenstates