• Tidak ada hasil yang ditemukan

Journal of Theoretical Biology

N/A
N/A
Protected

Academic year: 2024

Membagikan "Journal of Theoretical Biology"

Copied!
13
0
0

Teks penuh

(1)

Excitation states of metabolic networks predict dose- response fingerprinting and ligand pulse phase signalling.

Item Type Article

Authors Coggan, Jay S;Keller, Daniel;Markram, Henry;Schürmann, Felix;Magistretti, Pierre J.

Citation Coggan, J. S., Keller, D., Markram, H., Schürmann, F., &

Magistretti, P. J. (2020). Excitation states of metabolic networks predict dose-response fingerprinting and ligand pulse phase signalling. Journal of Theoretical Biology, 487, 110123.

doi:10.1016/j.jtbi.2019.110123 Eprint version Publisher's Version/PDF

DOI 10.1016/j.jtbi.2019.110123

Publisher Elsevier BV

Journal Journal of theoretical biology

Rights © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://

creativecommons.org/licenses/by-nc-nd/4.0/) Download date 2023-11-29 20:55:45

Item License http://creativecommons.org/licenses/by-nc-nd/4.0/

Link to Item http://hdl.handle.net/10754/660907

(2)

ContentslistsavailableatScienceDirect

Journal of Theoretical Biology

journalhomepage:www.elsevier.com/locate/jtb

Excitation states of metabolic networks predict dose-response fingerprinting and ligand pulse phase signalling

Jay S Coggan

a,

, Daniel Keller

a

, Henry Markram

a

, Felix Schürmann

a

, Pierre J Magistretti

b

aBlue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva CH-1202, Switzerland

bBiological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia

a rt i c l e i n f o

Article history:

Received 6 September 2019 Revised 8 November 2019 Accepted 16 December 2019 Available online 19 December 2019 Keywords:

Enzyme cascade Phase signalling Ligand pulse

Dose-response fingerprinting Synthetic biology

a b s t r a c t

Withacomputationalmodelofenergymetabolisminanastrocyte,weshowhowasystemofenzymesin acascadecanactasafunctionalunitofinterdependentreactions,ratherthanmerelyaseriesofindepen- dentreactions.Thesesystemsmayexistinmultiplestates,dependingonthelevelofstimulation,andthe effectsofsubstratesatanypointwilldependonthosestates.Responsetrajectoriesofmetabolitesdown- streamfromcAMP-stimulatedglycogenolysisexhibitahostofnon-lineardynamicalresponsecharacter- isticsincludinghysteresisandresponseenvelopes.Dose-dependentphasetransitionspredictanovelin- tracellularsignallingmechanismandsuggestatheoreticalframeworkthatcouldberelevanttosinglecell informationprocessing,drugdiscoveryorsyntheticbiology.Ligandsmayproduceuniquedose-response fingerprintsdependingonthestateofthesystem,allowingselectiveoutputtuning.Weconcludewith theobservation that state-and dose-dependentphase transitions,what wedub“ligand pulses” (LPs), maycarryinformationandresembleactionpotentials(APs)generatedfromexcitatorypostsynapticpo- tentials.Inourmodel,therelevantinformationfromacAMP-dependentglycolyticcascadeinastrocytes couldreflectthelevelofneuromodulatoryinputthatsignalsanenergydemandthreshold.Wepropose thatbothAPsandLPsrepresentspecializedcasesofmolecularphasesignallingwithacommonevolu- tionaryroot.

© 2019TheAuthors.PublishedbyElsevierLtd.

ThisisanopenaccessarticleundertheCCBY-NC-NDlicense.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The long-standing inadequacy of our understanding of cells, from biochemistry to behaviour, from bacteria to neurons, has vexed the development of more effective treatments for many medicaldisorders, mostnotablythose thatlead toneurodegener- ation. Variouslevels of biological complexityare usually fingered as the culprits, with expansive systems of interlocked biochem- ical cascades and cellular networks at the root of their nature.

For example, ubiquitous intracellular signalling pathways in sin- glecellsworkinparallelatmultiplescalesofspaceandtime.The challenge ofunderstanding phenomenasuch asagingin orderto delay orcircumvent senescence orany numberof neuropatholo- gieswilllikelyrequirealeapforwardinsystemsbiologyconcepts (Kirkwood, 2011,Kowald andKirkwood, 1996, Kriete etal., 2011, McAuleyetal.,2017).

Corresponding author.

E-mail addresses: jay.coggan@epfl.ch (J.S. Coggan), daniel.keller@epfl.ch (D.

Keller), henry.markram@epfl.ch (H. Markram), felix.schuermann@epfl.ch (F. Schür- mann), [email protected] (P.J. Magistretti).

Second-messenger signalling can involve any number of cas- cading, enzyme-catalyzed steps whereby stimuli such as neuro- modulators are transduced from one metabolite to another, each inturn capable offeeding another cascade. Elusivedisease cures requireanunderstanding that currentlyeludestraditionalexperi- mentaldesignsandcapabilities.Computationalmethodsthatcom- plementlaboratorytechniquesmayprovidethisunderstanding.

Computational modelling of intracellular enzymatic cascades is a valuable tool for understanding single cell functions (Schoeberl et al., 2002). As a case in point, here we describe a novel analysis of a previously described model of energy metabolism and neuromodulation in glia (Coggan et al., 2018, Jolivetetal.,2015).Weshowhowthisapproachcanrevealinsights notonlyaboutthisparticularpathway,butalsomake predictions about the behavior and previously unsuspected roles of second- messengersystemsingeneral,sincemetaboliccascadesarecentral toalmostallcellularfunctionsanddysfunctions(DeBerardinisand Thompson,2012).

With the simple concept of excitability states of an enzy- maticcascadestimulated,forexample,by aneuromodulatorsuch as norepinephrine, we are able to make predictions about their https://doi.org/10.1016/j.jtbi.2019.110123

0022-5193/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

(3)

Fig. 1. Model summary and response trajectories of selected metabolites in 5 excitation levels of a metabolic enzyme cascade stimulated by 5 doses of cAMP. A) The metabolic cascade system, from cAMP to the pyruvate (PYR) bifurcation to lactate and ATP, is stimulated to 5 excitability states by 5 concentrations of cAMP. Trajectories of primary metabolites of interest B) cAMP, C) pyruvate (PYR), D) lactate (LAC), E) ATP. The phase transitions occur in the concentration step between states 3 and 4. F, G) Derivative phase plots show phase transition between lower (cyan, blue) and higher (green, red, black) excitability states, corresponding to concentrations of cAMP. Examples made of LAC and ATP.

propertiesandbehavior.Weobservedthat,dependingonthestate ofmetabolic excitation, each metabolite concentration may cycle throughasetofstereotypedresponsestotheriseandfallofcAMP concentrations.Theseresponsesmayincludepatternsofhysteresis, responseenvelopesandphasetransitions.

Phasetransitions(definedhereasathermodynamicshiftinthe state or properties of a system of reactions) among intracellular reactions play a role in normal and pathological cell physiology (Nedelsky and Taylor, 2019, Tsuruyama, 2014), including energy productionpathwayssuchasglycolysis(Mulukutlaetal.,2015).We findthat excitation state-dependent, hysteretic, phase plots yield richinformationaboutthebehaviorofanenzymaticcascade.Fur- thermore,wemakethetheoreticalpropositionthatunderstanding theeffectofadrugona biologicalsystemrequiresknowledge of thestateoftheentiresystem.

We further hypothesize that both ligand pulses (LPs) and ac- tionpotentials(APs)representspecializedcasesofmolecularphase signalling (MPS), and suggest that APs might be late evolution- aryadaptationsofmoreancientandestablishedintracellularMPS mechanismsforthepurposeoflong-rangecommunicationandin- formationprocessingin nervoussystems (Boyer and Wisniewski- Dyé,2009).

Our results exemplify how a large-scale biomolecularsimula- tionsuch astheone beingbuiltatthe BlueBrain Project canbe

employed as a platform for theoretical advancements in under- standing complexmolecular systems. Beyondunderstanding nor- mal physiology, simulation science will also play an increasingly fundamentalroleintheburgeoningdisciplineofsyntheticbiology, afieldthat seekstounderstandandmanipulatecatabolicandan- abolicpathwaysthatmightimprovetheyieldofusefulmetabolites (Mulukutlaetal.,2016,Erbetal.,2017),orengineerdenovopath- ways forthe production ofhigh-value compounds (Martinet al., 2009).

2. Methods

Themodelusedinthispaperisbasedonthat previouslypub- lished(Cogganetal., 2018,Jolivetetal., 2015).Here, wefocuson asegmentofthedeterministiccascadebetweencAMPproduction (as stimulated by 5 levels ofnoradrenergic activation ofthe

β

2-

adrenergicreceptorasin(Coggan etal.,2018))witheach colored plotcomingfromanindependentsimulationwithadifferentcon- centrationofcAMPandoutputs ofthepyruvate(PYR) bifurcation, lactate(LAC)andATP(cAMP→… PYR→LAC,ATP).Thefiverela- tivelyequallyspacedstimulationlevelsofcAMPwerechosenasa dose-responseregimen withwhich tostimulate the enzyme sys- tem to a range of levels of excitation roughly corresponding to thedose-responserangeforcAMPinthissystem.Theselevelsare

(4)

Table 1

Governing equations

Variable Value at rest Equation

Intracellular sodium 8/15 mM dtdNa +x= J xleak,Na3 J xpump+ J xstim(t) (1)

Neuronal glucose 1.2 mM dtdGL C n = J enGLCJ nHKPFK (2)

Astrocytic glucose 1.19 mM dtdGL C g= J cgGLC+ J egGLCJ gHKPFK (3)

Glyceraldehyde-3-phosphate 0.0046 mM dtdGA P x= 2 J xHKPFKJ xPGK+ vL 3 − v _ 3 (4)

Phosphoenolpyruvate 0.015 mM dtdPE P x= J xPGKJ xPK (5)

Pyruvate 0.17 mM dtdPY R x= J xPKJ xLDHJ xmito,in (6)

Neuronal lactate 0.6 mM dtdLA C n= J nLDHJ neLAC (7)

Astrocytic lactate 0.6 mM dtdLA C g= J gLDHJ geLACJ gcLAC (8)

Cytosolic NADH 0.006/0.1 mM dtdNADH cytox = (1 ξ)−1(J xPGKJ xLDHJ xshuttle) (9) Mitochondrial NADH † 0.12 mM dtdNADH mitox = ξ−1(4 J xmito,inJ xmito,out+ J xshuttle) (10) Neuronal ATP ‡ 2.2 mM dtdATP n= (−2 J nHKPFK+ J nPGK+ J nPK J nATPases J npump+ 3 . 6 J nmito,out+ J nCK)(1 ddAMATPPnn)−1 (11) Astrocytic ATP 2.2 mM dtdATP g=

(−2 J gHKPFK+ J gPGK+ J gPK J gATPases 74J gpump+ 34J gpump,0+ 3 . 6 J gmito,out+ J gCK)(1 ddAMATPPgg)−1 (12)

Phosphocreatine 4.9 mM dtdPCr x= −J xCK (13)

Neuronal oxygen 0.028 mM dtdO 2n= J cnO2m0 . 6 J nmito,out (14)

Astrocytic oxygen 0.028 mM dtdO 2g = J cgO2m0 . 6 J gmito,out (15)

Capillary oxygen 7 mM dtdO 2c= J cO21 / r cnJ cnO2m1 / r cgJ cgO2m (16) Capillary glucose 4.5 mM dtdGL C c= J cGLC1 / r ceJ ceGLC1 / r cgJ cgGLC (17) Capillary lactate 0.55 mM dtdLA C c= J cLAC+ 1 / r ceJ ecLAC+ 1 / r cgJ gcLAC (18)

Venous volume 0.02 dtdV v= F in(t)F out (19)

Deoxyhemoglobin 0.058 mM dtddH b = F in(t)(O 2aO 2c¯)F out dHb Vv

(20) Extracellular glucose 2.48 mM dtdGL C e= J ceGLC1 / r egJ egGLC1 / r enJ enGLC (21) Extracellular lactate 0.6 mM dtdLA C e= 1 / r enJ neLAC+ 1 / r egJ geLAC J ecLAC (22) Neuronal membrane voltage −73 mV dtdψn= C m−1(I LI NaI KI CaI mAHPI pump+ I syn(t)) (23)

h gating variable 0.99 dtdh = φτhh(h h ) (24)

n gating variable 0.02 dtdn = φτnn(n n ) (25)

Neuronal calcium 5 10 −5mM dtdC a 2+= SmFVnI Ca1 / τCa(C a 2+Ca 2+0 ) (26) Glycogen Module

Glycogen-G6P equilibria vL 1 = (kkmL1L1+)(glucgluc) (27)

vL 1 = (kkmL1L1+)(GG66PP) (28)

vL 2 = (kL2kmL)(GSa2+)(G6GP6P) (29)

vL 2 = (kkmL2L2+)(glycglyc) (30)

Glycogenolytic glucose dtdgluc = vtL 1 vL 1 + vL 1 (31)

Glycogen dtdglyc = vL 2 vL 2 (32)

Glucose 6-phosphate dtdG 6 P = vL 1 v_ L 1 vL 2 + vL 2 (33)

Blood glucose influx rate vtL 1 = ktL 1(B glucgluc )= 0 (34)

Blood glucose derivative dtdB gluc= 0 (35)

cAMP —— dtdcAMP = (x (kDnene+ne)+ y ((τcAMP1 )( hbha

1+(hchk)hd)+ (τcAMPha ))2 ×kcg1 ×R 2 C2 ×(cAMP )2 + 2 ×k cg1 ×R 2 CcAMP ×C 2 ×kgc2 ×R 2 CcAM P2 × (cAM P )2 + 2 ×k cg2 × R 2 cAMP4 ×C)cAMP/ τcAMP{x = 0 ;y = 0 }

(36)

Glycogen Phosphorylase dtdGPa =

(kmg5((kg5(1+)((sPKa1)(G6)(P)ptGPa))

kg2 )+(ptGPa)) (((kg6)(Pkmg6P1+PP1GPa)(GPa)) (1+(s2)(gluc)

kgi )+(GPa) )(k a)(P P 1 )(GPa )+ (k a)(P P 1 GPa)

(37)

Glycogen Synthase dtdGSa = (((kg8kmg8)(PP1)(stGPa)) (1+(s1)(G6P)

kg2 )+st(GSa))(kmg7((kg7(1+)(PKa(s1)(+G6CP)()GSa))

kg2 )+(GSa)) (38)

Protein Phosphatase 1 dtdP P 1 = (k a)(P P 1 )(GPa )+ (k a)(P P 1 GPa) (39) PP1-GPa dtdP P 1 GPa= (k a)(P P 1 )(GPa )+ (k a)(P P 1 GPa) (40) Protein Kinase A dtdPKa = ((kg3kmg3+)(C)(ktPKaktPKa))(((kg4)(Pkmg4+P1+PP1PKaGPa)(PKa))) (41) cAMP-dependent kinase

cassette

d

dtR 2 C2 = (k gc1)(R 2 C2 )(cAM P 2)+ (k gc1)(R 2 CcAMP2 )(C) (42)

“” dtdC = (k gc1)(R 2 C2 )(cAM P 2)(k gc1)(R 2 CcAMP2 )(C)+ (k gc2)(R 2 CcAMP2 )(cAM P 2)

(k gc2)(R 2 CcAMP4 )(C) (43)

“” dtdR 2 CcAMP2 = (k gc1)(R 2 C2 )(cAM P 2)(k gc1)(R 2 CcAMP2 )(C)

(k gc2)(R 2 CcAMP2 )(cAM P 2)+ (k gc2)(R 2 CcAMP4 )(C) (44)

“” dtdR 2 CcAMP4 = (k gc2)(R 2 CcAMP2 )(cAM P 2)(k gc2)(R 2 CcAMP4 )(C) (45) Dynamic equilibrium constant

for glycogen degradation

kd = (kma xd kmind )(1+1glyc kdmg

n)+ kmind (46)

Forward reaction rate for glycogen degradation

k a = kkda (47)

Cell energy charge CE = (AT P(AT P++ADPADP+2AMP) ) (48)

Cell oxidative status CO = [[NANADHD+]] (49)

Neuromodulation Module

Rise time constants for NE τne1= 10 ms (50)

Decay time constant for NE τne2= 50 0 0 0 0 (51)

Norepinephrine waveform NE = e (ttstim)/τne2e (ttstim)/τne1 (52)

When two values are indicated, the first one corresponds to the neuronal compartment and the second one to the astrocytic compartment.

(5)

Table 2

Rates, transports and currents

Reaction, transport or current Equation

Sodium leak J xleak,Na= SmFVxg xNa[ RTF log (Na +e/ Na +x)ψx] (53) Na,K-ATPase J xpump= S mV xk xpumpAT P xNa +x(1 + KmAT,pumpPx)−1 (54) Glucose transport J xyGLC= T maxxy,GLC(GLCxGL+CKxxy

t,GLCGLCGLy+CKyxy

t,GLC) (55)

Hexokinase-phosphofructokinase J xHKPFK= k xHKPFKAT P x GLCx

GLCx+Kg[ 1 + (KATI,ATPPx)nH] −1, GLCx = GLCg + g6p (astrocyte) (56) Phosphoglycerate kinase J xPGK= k xPGK GA P x AD P x(N NADH cytox )/ NADH cytox (57)

Pyruvate kinase J xPK= k xPKPE P xAD P x (58)

Lactate dehydrogenase J xLDH= k x+LDHPY R xNADH cytox k xLDH PY R x(N NADH cytox ) (59) Lactate transport J xyLAC= T maxxy,LAC(LACxLA+CKxxy

t,LACLACLACy

y+Kxyt,LAC) (60)

TCA cycle J xmito,in= V maxx ,in PYRPYRx

x+Kmmito

N−NADHmitox

N−NADHmitox +Kmx,NAD (61)

Electron transport chain J xmito,out= V maxx ,out O2x O2x+KOmito2

ADPx ADPx+Kxm,ADP

NADHmitox

NADHmitox +Kmx,NADH (62) NADH shuttles J xshuttle= T NADHx RRx

x+Mcytox R+x

R+x+Mmitox (63)

Creatine kinase J xCK= k x+CKADP xPC r xk xCKAT P x(C PCr x) (64) Oxygen exchange J cxO2m= PSVcapx (K O2(Hb.OPO2c 1 )1/nhO 2n) (65)

Capillary oxygen flow J cO2= 2FVincap(t)(O 2aO 2c) (66)

Capillary glucose flow J cGLC= 2FVincap(t)(GL C aGL C c) (67)

Capillary lactate flow J cLAC= 2FVincap(t)(LA C aLA C c) (68)

Oxygen concentration at the end of the capillary O 2¯c= 2 O 2cO 2a (69)

Leak current I L= g LnE L) (70)

Sodium current I Na= g Nam 3h nRTF log (Na +e/ Na +n)) (71)

Potassium current I K= g Kn 4nE K) (72)

Calcium current I Ca= g Cam 2CanE Ca) (73)

Calcium-dependent potassium current I mAHP= g mAHP Ca2+

Ca2++KDnE K) (74)

Na,K-ATPase current I pump= F k npumpAT P n(Na +nNa +0)(1 + KATm,pumpPx )−1 (75) Flow out of the venous balloon F out= F0[ (VVv0v)1/αv+ Vτv0V(VVv0v)−1/2ddtVv] , F 0 = 0 (76)

With R x= NADH cytox / (N NADH cytox )and R +x= (N NADH mitox )/ NADH mitox .

Further equations in the Hodgkin-Huxley model are: αm= −0 . 1 n+ 33 )/ (exp [ −0 . 1 {ψn+ 33 }] 1 ), βm= 4 exp [ {ψn+ 58 }/ 12 ] , αh= 0 . 07 exp [ {ψn+ 50 }/ 10 ] , βh= 1 / (exp [ −0 . 1 {ψn+ 20 }] + 1 ), αn= −0 . 01 n+ 34 )/ (exp [ −0 . 1 {ψn+ 34 }] 1 ), βn= 0 . 125 exp [ {ψn+ 44 }/ 25 ] , m = αmm+ βm)−1 , n = αnn+ βn)−1, h = αhh+ βh)−1, τn= 10 −3n+ βn)−1, τh= 10 −3h+ βh)−1, m Ca= 1 / (1 + exp [ {ψn+ 20 }/ 9 ] ) and E L= (g pasK + g nNa)−1[ g pasK E K+ g nNaRTF log (Na +e/ Na +n)] .

termed“states” andrangefrom1-5indescendingamplitude(with 1beingthehighestand5thelowest,Fig1A).

All enzyme cascadesimulations were carried-out in NEURON, usinga fixed time step of 3

μ

s with Euler integration,and was runeitheronanUbuntu14.04LTSworkstationwitha3.6GHzIn- tel Core i7-4790 CPU and 15.6 GB RAM, or on the Blue Gene/Q in Lugano, Switzerland. Matlab was used for data analysis. AP andEPSPsimulations were performedon the EPFLBlue Brain IV BlueGene/Q hosted at the Swiss National Supercomputing Cen- ter (CSCS) in Lugano.Parameters andequations for the NEURON simulation environment model are listed in Tables 1 (Governing equations),2(Rates,transportsandcurrents),and3(parameters).

The 5concentrations ofcAMP corresponding to cascadestimula- tionstates 1–5were obtainedby setting x= 0.000009,0.00002, 0.00005,0.00008,or0.00011inEq.(36)inTable1.

3. Results

In this study, we made use of glycogenolysis and the subse- quentglycolyticcascadefromapreviouslypublishedmodelofen- ergymetabolism in glia(Coggan etal., 2018) to demonstrate the usefulnessofanoveltheoreticalanalysisofthecharacteristicsand behavioralpropertiesofasetofenzymaticreactions.

This segment of the metabolic energy cascade in our astro- cyte model was stimulated into five excitability states by simu- latingthe production of5 concentrations of the second messen- gercAMP(representing 5levels ofnoradrenergic activationofthe

β

2-adrenergic receptor as in (Coggan et al., 2018)). Diagramat- ically (Fig. 1A1), the arrows between cAMP and PYR represent theenzyme sequenceproteinkinaseA(PKa),proteinphosphatase 1 (PP1), glycogen phosphorylase (GPa), glycogen synthase (GSa), phosphoglucokinase(PGK),pyruvatekinase(PK),andlactatedehy-

drogenase(LDH);aswellastheintermediatemetabolitesglucose- 6-phosphate(G6P),glyceraldehydephosphate(GAP),andphospho- enolpyruvate (PEP).Thetrajectoriesofselected metabolitescAMP, PYR,LACandATPareshowninFig.1,B–E,respectively.Derivative phase plotsare another wayto demonstratethe phasetransition betweenlower(cyan,blue)andhigher(green,red,black)excitabil- itystates,corresponding toconcentrationsofcAMPandexamples madeofLAC(Fig.1F)andATP(Fig.1G).

3.1. Excitation-statephaseplots

We examined the relationship between cAMP (the upstream trigger for the enzyme cascade we are analyzing) and a sample of several downstream intermediate metabolites (the “X” in the panel title).Plotting the relationshipbetween cAMPandselected downstream metabolites(cAMP→X) yields a typeof phaseplot (Fig.2A).Eachcoloredplotisgeneratedfromanindependentsim- ulation withadifferent concentration ofcAMP. Theseplots show differentkindsofrelationshipsvaryingfromessentiallynohystere- sis(forcAMPvs.G6P,meaning[G6P]closelyfollows[cAMP])anda varietyofdifferenthysteresisshapesforothermetabolites.Charac- teristics oftheseplotsincludetheclosefollowingby theconcen- trationofadownstreammetabolitetotheconcentrationexcursion ofcAMP,asinthecaseof[cAMP]vs.[G6P](theG6Pconcentration mirrors thecAMPconcentration withoutsignificant deviation),or a varietyof hysteresis types(all other responses inFig. 2A) with apparentresponse envelopesofvarious shapesintowhichthere- sponses “grow” and are contained with higher excitation states.

Theseresponseenvelopestherebyallowpredictionoffuturestates.

Itisobservedthattheshapesofthecurvesqualitativelychange between the two lowest states (cyan and blue) and the higher states(green,redandblack),justasthetransitionbetweenstates

Referensi

Dokumen terkait

Recently, complex properties of autonomous evolving networks, i.e metabolic networks, food webs, Internet web links, academic co authorship relations, actor

Journal of Experimental Biology and Agricultural Sciences http://www.jebas.org Serotypes, Toxins and Antibiotic Resistance of E.Coli Strains Isolated From Diarrheic Rabbits in Phu

Radiation Dose Measurement and Accuracy of Linear Accelerator Utilizing Thermoluminescent Dosimeter TLD and Ionization Chamber Page 63 of 85 Wendyani Caroline REFERENCES Emami,

Application of spatial data mining  Find cancer clusters to locate hazardous environments  Prepare land-use maps from satellite imagery  Predict habitat suitable for endangered

The procedure which is arranged in this research included 1 The initial by interview with biology teacher for the 8th grade in Mataram Junior High School Semarang; 2 Planning the

ORTIZ3 1Department of Biology, CSET Centro Studi Erbario Tropicale, University of Firenze, Firenze, Italy;2Smithsonian Tropical Research Institute Fellowship, Balboa, Panama City,

One of the buildings at UGM and the first building at UGM to be certified as a green building by the Green Building Council Indonesia GBCI, namely Building B, Faculty of Biology UGM