• Tidak ada hasil yang ditemukan

King Abdulaziz University Final Exam – Math 110

N/A
N/A
Protected

Academic year: 2024

Membagikan "King Abdulaziz University Final Exam – Math 110"

Copied!
4
0
0

Teks penuh

(1)

of 4 1 (A)- Page

King Abdulaziz University Final Exam – Math 110 Rabigh College of Science and Arts Date: 12/8/1440

Department of Mathematics Time: 120 minutes

Choose the correct answer of the following questions:

(1) The critical numbers of the function f x( ) x3 3x224x30 are:

(A) x2,x 4 (B) x 1,x 3 (C) x 0,x  3 (D) x 2,x4

(2) The function f x( ) x3 3x224x30 is increasing on:

(A)

 , 2 , 4,

 

(B)

2, 4

(C)

2, 4

(D)

, 2 ,

 

 4,

(3) The function f x( ) x3 3x224x30 is decreasing on:

(A)

 , 2 , 4,

 

(B)

2, 4

(C)

2, 4

(D)

, 2 ,

 

 4,

(4) The function f x( ) x3 3x224x30 has a local maximum value at (A) x  2 (B) x 4 (C) x2 (D) x  4

(5) The function f x( ) x3 3x224x30 has a local minimum value at (A) x  2 (B) x 4 (C) x2 (D) x  4

(6) The graph of the function f x( ) x3 3x224x30 is concave upward on:

(A) ( , 1) (B) (,1) (C) ( 1, )  (D) (1,)

(7) The graph of the function f x( ) x3 3x224x30 is concave downward on:

(A) ( , 1) (B) (,1) (C) ( 1, )  (D) (1,)

(8) The graph of the function f x( ) x3 3x224x30 has an inflection point at:

(A) (1, 4) (B) ( 1, 58)  (C) (1,8) (D) (2, 2) (9) If y  3x2secx , then

y

(A) 2

1

2 3x secx

(B)

2

6 sec tan

3 sec

x x x

x x

 (C)

2

6

2 3 sec

x

xx (D)

2

6 sec tan

2 3 sec

x x x

x x

 (10) If yx e2 x , then

y 

(A) 2xex (B) 2xex (C) xex(2x) (D) xex(x 2) (11) If x3y2xy , then

y 

(A) 3 2

2 x

yx (B)

3 2

2

y x

y x

 (C)

3 2

2

y x

y x

 (D)

3 2

2 y x

y x

Name……… ID:………... A

(2)

of 4 2 (A)- Page

(12) If y ln(csc )x , then

y 

(A) cotx (B) cotx

(C) cot csc x

x (D) cot

csc x

x

(13) If f x( )(5)tanx, then f(x)

(A)(ln 5)(5)tanxsec2x (B) (5)tanxsec2x (C) (ln 5)(5)tanxsec2x (D) (ln 5)(5)tanx

(14) If y log (5 x33), then y

(A) 3 2

ln 5

x

(B)

2

3 3

x

x  (C)

2 3

3 ( 3) ln 5

x

x  (D)

2 3

3 ( 3) ln 5

x x

(15) If yx2x , then

y

(A) 2x

(B) x2x(1 ln ) x (C) 2x2x(1 ln ) x (D) 1 ln x

(16)

An equation for tangent line to ( ) 1 3 f x x

x

 

 at the point

1,1

is:

(A) y  x (B) y  2x 1 (C) y2x1 (D) yx

(17) If

f

 

x tan1(2 )x then

f 

 

x

(A) 16 2 1 4

x x

 (B)

1 416xx2

2 (C)

1 4xx2

2 (D)

1 4x162

2

(18) If y cot (4 )3 x , then

y 

(A) 12 cot (4 ) csc (4 )2 x 2 x (B) 3cot (4 ) csc (4 )2 x 2 x (C) 3cot (4 )2 x (D) 4 cot (4 ) csc (4 )2 x 2 x

(19) If f has a local maximum or minimum at c, then c is a critical number of f .

(A) True (B) False

(20) The vertical asymptote of the graph of the function

2 y x

x

is

(A) x 1 (B) x 2 (C) y 2 (D) y 1

(21) The horizontal asymptote of the graph of the function

2 y x

x

is

(A) x 1 (B) x 2 (C) y 2 (D) y 1

(22)

0

sin 4 lim 2

(A) 1 (B) 2 (C) 4 (D)Does not exist

(3)

of 4 3 (A)- Page

(23)

2 3

4 3

limx 3

x x

x

  

(A) 0 (B) 4 (C) 2 (D) Does not exist

(24)

0

limtan 1

x

x

x

(A) True (B) False

(25)

0

4 2

lim

x

x

x

  

(A)  (B) 14 (C) 16 (D) Does not exist

(26) If e2x7 5 , then x (A) xln 7 5

(B) ln 7 5

x 2 (C) ln 5 7

x 2 (D) ln 5 7

x 2 (27) If ln(x 3) 1 , then x

(A) x e 3 (B) x e 3 (C) x e2 3 (D) x 3 e (28) Let f x( )lnx and g x( )e2x, then (g f )( )x

(A) sin 52 x3 (B) sin 5(x23) (C) x2 (D) sin (5 )2 x 3

(29) If the graph of ytanx is stretched horizontally by a factor of 3, the equation for the new graph is

(A)

tan

3

yx (B) y3tanx (C) ytan 3

 

x (D) tan

3 y    x

(30) The function

tan

1

( ) 2

f x x

x

 is continuous on

(A) (2,) (B) ( , ) (C) (1, ) (D) (0, 2)(2,)

(31) If the graph of ylnx is shifted downward 2 units and to the right 9 units, the equation for the new graph is

(A)yln(x 9) 2 (B) yln(x 9) 2 (C) yln(x 9) 2

(D) yln(x 2) 9 (32) The function ycotx is classified as

(A) Polynomial (B) Exponential (C) Algebraic (D) Trigonometric (33) The function f x( )x32x4 is

(A) Even (B) Odd (C) Neither even nor odd (D) Even and odd (34) The solution of the inequality x2  x 6 0 is

(A)

( 3, 2)

(B)

(

  

, 3] [2, )

(C)

(

  

, 3) (2, )

(D)

[ 3, 2]

(4)

of 4 4 (A)- Page

(35) The solution of the inequality 2x 4 6 is (A)

( 1,5)

(B)

(

  

, 1) (5, )

(C)

(

   

, 1] [5, )

(D)

[ 1,5]

(36) The equation for the line passes through ( 1, 6) and parallel to the line 5x y 1 is (A)

5

x y

1

(B) x

5

y

1

(C)

x

5

y

6

(D)

x y

6

(37) If a circle has radius 5 cm, the length of the arc subtended by a central angle of 6

5

rad is

(A) 5 cm (B) 5 rad (C) 6 rad (D) 6 cm

(38) log 32 log 16 log 4222

(A) 1 (B) 2 (C) 3 (D) 4

(39) The inverse function of

f x

 

 (x 2)34 is

(A) f1

 

x 3 x 2 4 (B) f1

 

x 3 x 4 2

(C) f1

 

x x 4 2

(D) f1

 

x x 4 2

(40) The domain of the function y5 x is

(A)

[0, )

(B)

(

 

, )

(C)

(0, )

(D)

[3, )

Referensi

Dokumen terkait

Universitas Qassim adalah sebuah perguruan nggi negeri yang terletak di Provinsi Qassim Arab Saudi di bawah kementerian Pendidikan Tinggi Arab Saudi yang didirikan pada tahun

ﺰﻳﺰﻌﻟﺍﺪﺒﻋ ﻚﻠﻤﻟﺍ ﺔﻌﻣﺎﺟ King Abdulaziz University ﺓﺭﺍﺩﻹﺍﻭ ﺩﺎﺼﺘﻗﻹﺍ ﺔﻴﻠﻛ Faculty of Economics and Administration ﺔﺤﻔﺼﻟﺍ ﻩﺬﻫ ﺕﺍﺭﺎﻳﺯ ﺩﺪﻋ : 54 ﺚﺤﺒﻟﺍ ﻞﻴﺻﺎﻔﺗ : ﺚﺤﺒﻟﺍ ﻥﺍﻮﻨﻋ ﺔﻴﺤﺼﻟﺍ

Associate Professor Full Time Non Academic Industrial Experience including Consultations From To Company/Entity Title Position Description Brief Full or Part Time 1998

Full-Time 1996 2005 King Abdulaziz University Assistant Professor Full-Time Non Academic Industrial Experience including Consultations From To Company/Entity Title Position

32 1 January 2019/1440 A.H Muhamed Zulkhibri Sustainable Level Debt, Expansionary Austerity, and Fiscal Consolidation Theories: A Critical Analysis 32 1 January 2019/1440 A.H Omar

Predictors of inpatient TB mortality were older age, congestive heart failure, renal failure, diabetes mellitus, chronic lung disease, hepatitis B virus infection, bilateral pulmonary

Final Exam: EE 5150 Math Methods 26 Nov Notations: • ·T denotes transpose, ·∗ denotes conjugate transpose, | · |denotes absolute value • In and 0n denote identity matrix and zero

ةيلودلا ةعماجلا راعش Service contract between King Abdulaziz University Kingdom of Saudi Arabia and University / international body [...], Country [...] Introduction: This