• Tidak ada hasil yang ditemukan

lim

N/A
N/A
Protected

Academic year: 2025

Membagikan "lim"

Copied!
2
0
0

Teks penuh

(1)

King Abdulaziz University

Department of Mathematics Math304 Sequence and Series

For the sequences there is only one test which is the limit.

Let {a

n

}

n=1

be a sequence, then {a

n

}

n=1

converges if

n→∞

lim a

n

∈ R i.e. the limit exist and diverges if lim

n→∞

a

n

does not exist.

Here are some of the famous limits and theorems:

1.

n→∞

lim sin n, lim

n→∞

cos n does not exist 2.

n→∞

lim tan

1

n = π 2 , lim

n→∞

ln n = ∞

3.

n→∞

lim r

n

=

 

0, if |r| < 1;

1, if r = 1;

DNE, if r = −1 or |r| > 1.

4.

n→∞

lim

³ 1 + a

n

´

n

= e

a

, lim

n→∞

n

n = lim

n→∞

n

1n

= 1 5.

If lim

x→∞

f(x) = L, and f (n) = a

n

∀ n ∈ N, then lim

n→∞

a

n

= L 6.

If lim

n→∞

|a

n

| = 0, then lim

n→∞

a

n

= 0 7.

If b

n

≤ a

n

≤ c

n

, and lim

n→∞

b

n

= L = lim

n→∞

c

n

, then lim

n→∞

a

n

= L

8. Every bounded monotonic sequence is convergent.

(2)

King Abdulaziz University

Department of Mathematics Math304 Sequence and Series

Name of The Test Series Convergence or Divergence Comments

DIVERGENCE If limn→∞an= 0,

TEST P

n=1an Diverges

if lim

n→∞

a

n

6= 0.

then P

n=1anmay

or may not be convergent.

Geometric (i)Converges if|r|<1

Series

P

n=0

ar

n with P

n=0arn=1−ra . (ii) Diverges if|r| ≥1.

p-series (i) Converges ifp >1.

P n=1

1 np

(ii) Diverges ifp≤1.

Comparison (i) Converges if P

n=1

bn The comparison series

Test P

n=1an converges and P

n=1bnis 0< an≤bn for alln.

an>0 (ii) Diverges if P

n=1

bn often geometric or

diverges and p−series.

0< bn≤an for alln.

Limit Comparison (i) Converges if P

n=0bn The comparison series

Test P

n=1

an converges and P

n=1

bnis 0 lim

n→∞

an bn <∞.

an>0 (ii) Diverges if P

n=1bn often geometric or

diverges and p−series.

0<n→∞lim abn

n ≤ ∞.

Integral (i) Converges if fis positive, decreasing,

Test P

n=1

an

R

1

f(x)dxconverges. continuous forx≥1, f(n) =an>0 (ii) Diverges if and the improper integral

R

1

f(x)dxdiverges. is easy to evaluate.

Ratio (i) Converges(absolutely) if Inconclusive if

Test P

n=1an n→∞lim

¯¯

¯an+1a

n

¯¯

¯<1 n→∞lim

¯¯

¯an+1a

n

¯¯

¯= 1.

(ii) Diverges if Use this test ifaninvolves

n→∞lim

¯¯

¯an+1an

¯¯

¯>1 or() factorials or a number to thenthpower.

Root (i) Converges(absolutely) if Inconclusive if

Test P

n=1an n→∞lim np

|an|<1 n→∞lim np

|an|= 1.

(ii) Diverges if Use this test ifaninvolves

n→∞lim

np

|an|>1 or() onlynthpower.

Alternating (i) Converges ifan≥an+1 Use this test for

Series P

n=1(1)nan and lim

n→∞an= 0 alternating series Test an>0 (ii) Diverges if

n→∞lim an6= 0

Absolute (i) Converges(absolutely)if Use this test for

Convergence P

n=1an

P

n=1|an|converges. series contains positive and

Test negative terms

(including alternating series)

Referensi

Dokumen terkait

Keywords Sequence space of non-absolute type • Paranormed sequence space • Almost convergence • ^-Duals and matrix transformations Mathematics Subject Classification 2000 46A45 40C05

King Abdulaziz University Academic year 1439-1440 Department of Mathematics 2018-2019 Math 202 “Students Syllabus” Book: Calculus Early Transcendentals by James Stewart 7th edition

Hassan AbdulaJabbar NAME Hassan Salah Omar AbdulJabbar POSITION TITLE Professor & Consultant in Obstetrics and Gynecology Faculty of Obstetrics and Gynecology & King Abdulaziz

1 KAAU KING ABDULAZIZ UNIVERSITY ACADEMIC ASSESSMENT UNIT COURSE PORTFOLIO FACULTY OF ENVIRONMENTAL DESIGN DEPARTMENT of ARCHITECTURE COURSE NAME: Comparative in

King Abdulaziz University Faculty of Computing & Information Technology Information Systems Department Thesis Research Proposal Form بلاطلا مــسا Student name يعماجلا مقرلا Student

Anwar Gilani NAME Anwar-ul Hassan Gilani POSITION TITLE Professor of Pharmacology, Faculty of Medicine, and King Abdulaziz University, Jeddah, Saudi Arabia EDUCATION TRAINING

Mathematics Department, Faculty of Sciences for Girles King Abdulaziz University Jeddah-Saudi Arabia * E-mail of the corresponding author: [email protected] Abstract In this

KING ABDULAZIZ UNIVERSITY FACULTY OF MEDICINE CLINCAL SKILLS & SIMULATION CENTER Name of the Program: Principles of Teaching & Learning Workshop Personal Information: Prof..