King Abdulaziz University
Department of Mathematics Math304 Sequence and Series
For the sequences there is only one test which is the limit.
Let {a
n}
∞n=1be a sequence, then {a
n}
∞n=1converges if
n→∞
lim a
n∈ R i.e. the limit exist and diverges if lim
n→∞
a
ndoes not exist.
Here are some of the famous limits and theorems:
1.
n→∞
lim sin n, lim
n→∞
cos n does not exist 2.
n→∞
lim tan
−1n = π 2 , lim
n→∞
ln n = ∞
3.
n→∞
lim r
n=
0, if |r| < 1;
1, if r = 1;
DNE, if r = −1 or |r| > 1.
4.
n→∞
lim
³ 1 + a
n
´
n= e
a, lim
n→∞
√
nn = lim
n→∞
n
1n= 1 5.
If lim
x→∞
f(x) = L, and f (n) = a
n∀ n ∈ N, then lim
n→∞
a
n= L 6.
If lim
n→∞
|a
n| = 0, then lim
n→∞
a
n= 0 7.
If b
n≤ a
n≤ c
n, and lim
n→∞
b
n= L = lim
n→∞
c
n, then lim
n→∞
a
n= L
8. Every bounded monotonic sequence is convergent.
King Abdulaziz University
Department of Mathematics Math304 Sequence and Series
Name of The Test Series Convergence or Divergence Comments
DIVERGENCE If limn→∞an= 0,
TEST P∞
n=1an Diverges
if lim
n→∞
a
n6= 0.
then P∞n=1anmay
or may not be convergent.
Geometric (i)Converges if|r|<1
Series
P
∞ n=0ar
n with P∞n=0arn=1−ra . (ii) Diverges if|r| ≥1.
p-series (i) Converges ifp >1.
P∞ n=1
1 np
(ii) Diverges ifp≤1.
Comparison (i) Converges if P∞
n=1
bn The comparison series
Test P∞
n=1an converges and P∞
n=1bnis 0< an≤bn for alln.
an>0 (ii) Diverges if P∞
n=1
bn often geometric or
diverges and p−series.
0< bn≤an for alln.
Limit Comparison (i) Converges if P∞
n=0bn The comparison series
Test P∞
n=1
an converges and P∞
n=1
bnis 0≤ lim
n→∞
an bn <∞.
an>0 (ii) Diverges if P∞
n=1bn often geometric or
diverges and p−series.
0<n→∞lim abn
n ≤ ∞.
Integral (i) Converges if fis positive, decreasing,
Test P∞
n=1
an
∞R
1
f(x)dxconverges. continuous forx≥1, f(n) =an>0 (ii) Diverges if and the improper integral
∞R
1
f(x)dxdiverges. is easy to evaluate.
Ratio (i) Converges(absolutely) if Inconclusive if
Test P∞
n=1an n→∞lim
¯¯
¯an+1a
n
¯¯
¯<1 n→∞lim
¯¯
¯an+1a
n
¯¯
¯= 1.
(ii) Diverges if Use this test ifaninvolves
n→∞lim
¯¯
¯an+1an
¯¯
¯>1 or(∞) factorials or a number to thenthpower.
Root (i) Converges(absolutely) if Inconclusive if
Test P∞
n=1an n→∞lim np
|an|<1 n→∞lim np
|an|= 1.
(ii) Diverges if Use this test ifaninvolves
n→∞lim
np
|an|>1 or(∞) onlynthpower.
Alternating (i) Converges ifan≥an+1 Use this test for
Series P∞
n=1(−1)nan and lim
n→∞an= 0 alternating series Test an>0 (ii) Diverges if
n→∞lim an6= 0
Absolute (i) Converges(absolutely)if Use this test for
Convergence P∞
n=1an
P∞
n=1|an|converges. series contains positive and
Test negative terms
(including alternating series)