• Tidak ada hasil yang ditemukan

A Stackelberg game under heterogeneous technology

Dalam dokumen Carbon Capture (Halaman 74-78)

3. A Stackelberg game under heterogeneous technology

Theory of strong Stackelberg reasoning is an improved version of an earlier theory [35], which provides an explanation of coordination in all dyadic (two- player) common interest games. It provides an explanation of why players tend to choose strategies associated with a payoff-dominant Nash equilibrium. Its distinc- tive assumption is that players behave as though their co-players will anticipate any strategy choice and invariably choose a best reply to it. Stackelberg strategies resulting from this form of reasoning do not form Nash equilibria. The theory makes no predictions, because a non-equilibrium outcome is inherently unstable, leaving at least one player with a reason to choose differently and thereby achieve a better payoff. Strong Stackelberg reasoning is a simple theory, according to which players in dyadic games choose strategies that would maximize their own payoffs if their co-players could invariably anticipate their strategy choices and play counter- strategies that yield the maximum payoffs for themselves. The key assumption is relatively innocuous, first because game theory imposes no constraints on players’

beliefs, apart from consistency requirements, and second because the theory does not assume that players necessarily believe that their strategies will be anticipated, merely that they behave as though that is the case, as a heuristic aid to choosing the best strategy. Strong Stackelberg reasoning is, in fact, merely a generalization of the minorant and majorant models introduced by [36] and used to rationalize their solution of strictly competitive games.

To promote the sharing of hybrid-enabling technology, the Player II (the leader) determine an optimal sharing effort sharing level and an optimal subsidy scheme.

Then the Player I (the follower) choose his/her optimal sharing level according to the optimal sharing effort level and subsidy. This leads to a Stackelberg equilibrium.

Proposition 5. If above conditions are satisfied, the feedback Stackelberg leader (Player II)-follower (Player I) and equilibria is given as:

LRS ¼α1ð2�θÞðρ2þξÞðρ1þξÞ þϑR1ðΓþδÞðð2�2θÞðρ1þξÞ þθ ρð 2þξÞÞ

2βRðρ2þξÞðρ1þξÞ , (29) LFS ¼α2ð2�θÞðρ2þξÞðρ1þξÞ þϑF1ðΓþδÞðð2�2θÞðρ1þξÞ þθ ρð 2þξÞÞ

2βFðρ2þξÞðρ1þξÞ , (30)

~LRS ¼ð1�θÞðβ1ðρ2þξÞ þðΓþδÞÞϑR2

~βRðρ2þξÞ , (31)

L~FS ¼ð1�θÞðβ2ðρ2þξÞ þðΓþδÞÞϑF2

~βFðρ2þξÞ : (32)

where LRS, LFS are the optimal effort level of hybrid-enabling technological improvements shared on renewable sources and fossil fuel at time t by Player I, respectively.~LRS,~LFSare the optimal effort level of technological improvements shared on renewable sources and fossil fuel at time t by Player II, respectively.

The optimal level of subsidy for sharing hybrid-enabling on renewable sources is given by

ω1¼

α1ð2�3θÞ þϑR1½2a2a1

α1ð2�θÞ þϑR1½2a2þa1� , 0≤ θ ≤2 3

0: otherwise

8>

<

>: (33)

Similarly, the optimal level of subsidy for sharing hybrid-enabling technology on fossil fuel is given by:

ω2¼

α2ð2�3θÞ þϑF1½2a2a1

α2ð2�θÞ þϑF1½2a2þa1� , 0≤ θ ≤2 3

0: otherwise

8>

><

>>

:

(34)

The optimal sharing payoff functions under hybrid-enabling technology on renewable sources and on fossil fuel for Player I and Player II are given below

Vð ÞSIð Þ ¼K θ�ΓþδÞρ1þξ

ð Þ Kþb1, Vð ÞSIIð Þ ¼K ð1�θÞðΓþδÞ ρ2þξ

ð Þ Kþb2, (35) where a1, a2, b1and b2are given in the proof.

Proof. We define the optimal revenue functions for Player I and Player II under hybrid-enabling technology as Vð ÞSIð ÞK and Vð ÞSIIð Þ, respectively, which areK continuously differentiable. Applying HJB equation to Vð ÞSIð Þ, for Player I, weK obtain

ρ1Vð ÞSIð Þ ¼K max

LRS, LFS

f g0nhθ α1LRSð Þ þt α2LFS þβ1~LRSþβ2~LFSþðΓþδÞKÞi

�1

2βRð1�ω1Þ� �LRS 2

�1

2βFð1�ω2Þ� �LFS 2

þ∂Vð ÞSIð ÞK

∂K ϑ1LRS, LFS

þϑ2L~RS,L~FS

ξK

h i

þ1 2

2Vð ÞSIð ÞK

∂K2 φ2ð ÞK )

: (36)

Via the first order conditions, we obtain the optimal values LRS, LFS� for Player I as:

LRS ¼θα1þV0ð ÞSIð ÞK ϑR1

βRð1�ω1Þ , (37)

LFS ¼θα2þV0ð ÞSIð ÞK ϑF1

βFð1�ω2Þ , (38)

whereVð ÞSIKð ÞKV0ð ÞSIð ÞK :The optimal sharing revenue function, V0ð ÞSIIð Þ, forK Player II and the associated HJB equation is

ρ2Vð ÞSIIð Þ ¼K max

L~RS,~LFS

� �

0

1�θ

ð Þ�α1LRSþα2LFSþβ1L~RS þβ2L~FSþðΓþδÞK

h i

n

�1

2~βRLRSð Þt2

�1

2~βF� �~LFS 2

�1

2ω1βR� �LRS 2

�1

2ω2βF� �LFS 2

þ∂Vð ÞSIIð ÞK

∂K ϑ1LRS, LFS

þϑ2L~RS,L~FS

ξK

h i

þ1 2

2Vð ÞSIIð ÞK

∂K2 φ2ð ÞK )

: (39)

Substituting the results of Eqs. (37) and (38) into Eq. (39), obtain

ρ2Vð ÞSIIð Þ ¼K max

~LRS,L~FS

� �

≥0

1�θ

ð Þ

α1θα1þV0ð ÞSIð ÞK ϑR1βRð1�ω1Þ þ

α2θα2þV0ð ÞSIð ÞF1βFð1�ω2Þ 0

@ 2

4 8<

:

þβ1L~RSþβ2L~FSþðΓþδÞK

�1

2~βR�~LRSð Þt2

�1

2~βF� �L~FS 2

�1

2ω1βR θα1þV0ð ÞSIð ÞK ϑR1 βRð1�ω1Þ

!2

�1

2ω2βF θα2þV0ð ÞSIð ÞK ϑF1 βFð1�ω2Þ

!23 5

þ∂Vð ÞSIIð ÞK

∂K

ϑR1hθα1þV0ð ÞSIð ÞK ϑR1i

βRð1�ω1Þ þϑF1hθα2þV0ð ÞSIð ÞK ϑF1i

βFð1�ω2Þ þϑ2�~LRS,L~FS

ξK 2

4

3 5

þ1 2

2Vð ÞSIIð ÞK

∂K2 φ2ð ÞK )

:

(40) Via the first order conditions of (Eq. (40)), we obtain the optimal values

~LR,~LF

� �

for Player II as:

L~RS ¼ð1�θÞβ1þV0ð ÞSIIð ÞK ϑR2

β~R , (41)

L~FS ¼ð1�θÞβ2þV0ð ÞSIIð ÞK ϑF2

~βF : (42)

And the optimal value forðω1,ω2Þ

ω1¼

α1ð2�3θÞ þϑR1h2V0Sð ÞIIð Þ �K VS0ð ÞIð ÞK i

α1ð2�θÞ þϑR1�2V0Sð ÞIIð Þ þK VS0ð ÞIð ÞK � , (43) and

ω2¼

α2ð2�3θÞ þϑF1h2V0Sð ÞIIð Þ �K VS0ð ÞIð ÞK i

α2ð2�θÞ þϑF1�2V0Sð ÞIIð Þ þK VS0ð ÞIð ÞK: (44) Hence, the solution of the HJB equation is an unary function with K (K as the independent variable), we define Vð ÞSI ¼a1Kþb1and Vð ÞSII ¼a2Kþb2,

where a1, b1, a2, and b2are constants that need to be solved. Simplifying (Eq. (39)), obtain:

ρ1Vð ÞSIð Þ ¼K θ α1 θα1þa1ϑR1 βRð1�ω1Þ

� �

þα2 θα2þa1ϑF1 βFð1�ω2Þ

� �

þβ1 ð1�θÞβ1þa2ϑR2

~βR

! (45)

þβ2 ð1�θÞβ2þa2ϑF2

~βF

!

þðΓþδÞKÞ

!

�1

2βRð1�ω1Þ θα1þa1ϑR1 βRð1�ω1Þ

� �2

�1

2βFð1�ω2Þ θα2þa1ϑF1 βFð1�ω2Þ

� �2

ξKa1

þ ϑR1θα1þa1ϑR1

βRð1�ω1Þ þϑF1θα2þa1ϑF1βFð1�ω2Þ

" #

a1

þ ϑR2�ð1�θÞβ1þa2ϑR2

~βR þϑF2�ð1�θÞβ2þa2ϑF2

~βF

" #

a1,

(46)

and simplifying (Eq. (40)), obtain:

ρ2Vð ÞSIIð Þ ¼K ð1�θÞ α1θα1þa1ϑR1

βRð1�ω1Þ þα2θα2þa1ϑF1

βFð1�ω2Þ þβ1 ð1�θÞβ1þa2ϑR2

~βR

!

þβ2 ð1�θÞβ2þa2ϑF2 β~F

!

þðΓþδÞK

!

�1

2~βR ð1�θÞβ1þa2ϑR2

~βR

!2

�1

2~βF ð1�θÞβ2þa2ϑF2

~βF

!2

�1

2ω1βR θα1þa1ϑR1 βRð1�ω1Þ

� �2

�1

2ω2βF θα2þa1ϑF1 βFð1�ω2Þ

� �2

þ ϑR1θα1þa1ϑR1

βRð1�ω1Þ þϑF1θα2þa1ϑF1βFð1�ω2Þ

" #

a2ξKa2

þ ϑR2�ð1�θÞβ1þa2ϑR2

~βR þϑF2�ð1�θÞβ2þa2ϑF2

~βF

" #

a2:

(47) This implies that,

a1¼θðΓþδÞ ρ1þξ

ð Þ, b1¼Φ1

ρ1, a2¼ð1�θÞðΓþδÞ ρ2þξ

ð Þ , b2¼Φ2

ρ2 , (48) where

Φ1¼ α1θ��θα1þa1ϑR1� 2 þϑR1a1

! θα1þa1ϑR1 βRð1�ω1Þ

� �

þ α2θ��θα2þa1ϑF1� 2 þϑF1a1

! θα2þa1ϑF1 βFð1�ω2Þ

� �

þ�β1θþϑR2a1� ð1�θÞβ1þa2ϑR2

~βR

!

þ�β2θþϑF2a2� ð1�θÞβ2þa2ϑF2

~βF

!

>0,

(49)

Substituting the results of Eqs. (37) and (38) into Eq. (39), obtain

ρ2Vð ÞSIIð Þ ¼K max

~LRS,~LFS

� �

0

1�θ

ð Þ

α1θα1þV0ð ÞSIð ÞK ϑR1βRð1�ω1Þ þ

α2θα2þV0ð ÞSIð ÞK ϑF1βFð1�ω2Þ 0

@ 2

4 8<

:

þβ1L~RSþβ2L~FSþðΓþδÞK

�1

2~βRL~RSð Þt2

�1

2β~F� �~LFS 2

�1

2ω1βR θα1þV0ð ÞSIð ÞK ϑR1 βRð1�ω1Þ

!2

�1

2ω2βF θα2þV0ð ÞSIð ÞF1 βFð1�ω2Þ

!23 5

þ∂Vð ÞSIIð ÞK

∂K

ϑR1hθα1þV0ð ÞSIð ÞK ϑR1i

βRð1�ω1Þ þϑF1hθα2þV0ð ÞSIð ÞK ϑF1i

βFð1�ω2Þ þϑ2L~RS,L~FS

ξK 2

4

3 5

þ1 2

2Vð ÞSIIð ÞK

∂K2 φ2ð ÞK )

:

(40) Via the first order conditions of (Eq. (40)), we obtain the optimal values L~R,L~F

� �

for Player II as:

L~RS ¼ð1�θÞβ1þV0ð ÞSIIð ÞK ϑR2

~βR , (41)

L~FS ¼ð1�θÞβ2þV0ð ÞSIIð ÞK ϑF2

~βF : (42)

And the optimal value forðω1,ω2Þ

ω1¼

α1ð2�3θÞ þϑR1h2V0Sð ÞIIð Þ �K VS0ð ÞIð ÞK i

α1ð2�θÞ þϑR1�2V0Sð ÞIIð Þ þK VS0ð ÞIð ÞK � , (43) and

ω2¼

α2ð2�3θÞ þϑF1h2V0Sð ÞIIð Þ �K VS0ð ÞIð ÞK i

α2ð2�θÞ þϑF1�2V0Sð ÞIIð Þ þK VS0ð ÞIð ÞK: (44) Hence, the solution of the HJB equation is an unary function with K (K as the independent variable), we define Vð ÞSI ¼a1Kþb1and Vð ÞSII ¼a2Kþb2,

where a1, b1, a2, and b2are constants that need to be solved. Simplifying (Eq. (39)), obtain:

ρ1Vð ÞSIð Þ ¼K θ α1 θα1þa1ϑR1 βRð1�ω1Þ

� �

þα2 θα2þa1ϑF1 βFð1�ω2Þ

� �

þβ1 ð1�θÞβ1þa2ϑR2

~βR

! (45)

þβ2 ð1�θÞβ2þa2ϑF2

~βF

!

þðΓþδÞKÞ

!

�1

2βRð1�ω1Þ θα1þa1ϑR1 βRð1�ω1Þ

� �2

�1

2βFð1�ω2Þ θα2þa1ϑF1 βFð1�ω2Þ

� �2

ξKa1

þ ϑR1θα1þa1ϑR1

βRð1�ω1Þ þϑF1θα2þa1ϑF1βFð1�ω2Þ

" #

a1

þ ϑR2�ð1�θÞβ1þa2ϑR2

~βR þϑF2�ð1�θÞβ2þa2ϑF2

~βF

" #

a1,

(46)

and simplifying (Eq. (40)), obtain:

ρ2Vð ÞSIIð Þ ¼K ð1�θÞ α1θα1þa1ϑR1

βRð1�ω1Þ þα2θα2þa1ϑF1

βFð1�ω2Þ þβ1 ð1�θÞβ1þa2ϑR2

~βR

!

þβ2 ð1�θÞβ2þa2ϑF2

~βF

!

þðΓþδÞK

!

�1

2~βR ð1�θÞβ1þa2ϑR2

~βR

!2

�1

2~βF ð1�θÞβ2þa2ϑF2

~βF

!2

�1

2ω1βR θα1þa1ϑR1 βRð1�ω1Þ

� �2

�1

2ω2βF θα2þa1ϑF1 βFð1�ω2Þ

� �2

þ ϑR1θα1þa1ϑR1

βRð1�ω1Þ þϑF1θα2þa1ϑF1βFð1�ω2Þ

" #

a2ξKa2

þ ϑR2�ð1�θÞβ1þa2ϑR2

~βR þϑF2�ð1�θÞβ2þa2ϑF2β~F

" #

a2:

(47) This implies that,

a1¼θðΓþδÞ ρ1þξ

ð Þ, b1¼Φ1

ρ1, a2¼ð1�θÞðΓþδÞ ρ2þξ

ð Þ , b2¼Φ2

ρ2, (48) where

Φ1¼ α1θ��θα1þa1ϑR1� 2 þϑR1a1

! θα1þa1ϑR1 βRð1�ω1Þ

� �

þ α2θ��θα2þa1ϑF1� 2 þϑF1a1

! θα2þa1ϑF1 βFð1�ω2Þ

� �

þ�β1θþϑR2a1� ð1�θÞβ1þa2ϑR2 β~R

!

þ�β2θþϑF2a2� ð1�θÞβ2þa2ϑF2

~βF

!

>0,

(49)

and

Φ2¼ ð1�θÞα1ω1θα1þa1ϑR1� 2 1ð �ω1Þ þϑR1a2

!�θα1þa1ϑR1βRð1�ω1Þ

þ ð1�θÞα2ω2θα2þa1ϑF1� 2 1ð �ω2Þ þϑF1a2

!�θα2þa1ϑF1βFð1�ω2Þ

þ ð1�θÞβ1��ð1�θÞβ1þa2ϑR2� 2 þϑR2a2

! ð1�θÞβ1þa2ϑR2

~βR

!

þ ð1�θÞβ2��ð1�θÞβ2þa2ϑF2� 2 þϑF2a2

! ð1�θÞβ2þa2ϑF2

~βF

!

>0:

(50)

Substituting the results of a1and a2into Eqs. (37), (38), (41) and (42), and simplifying, we obtain the optimal effort level of hybrid-enabling technological improvements. By substituting optimal values given in Eqs. (48)–(50) into Eqs. (46) and (47) obtain the optimal sharing payoff functions under hybrid- enabling technology on renewable sources and fossil fuel for Player I and Player II.

3.1 The limit of expectation and variance

The payoff of Player I and Player II, under the Stackelberg game paradigm is related to the improvement degree of hybrid-enabling technology via Proposition 4.

To analyze the limit of expectations and variance under Stackelberg game equilib- rium rewrite (Eq. (19)) as follows.

dK tð Þ ¼½μ1þμ2ξK tð Þ�dtþφ ffiffiffiffi pK

dW tð Þ K 0ð Þ ¼K0>0,

(

(51) where

μ1¼ϑ1 α1ð2�θÞðρ2þξÞðρ1þξÞ þϑR1ðΓþδÞðð2�2θÞðρ1þξÞ þθ ρð 2þξÞÞ 2βRðρ2þξÞðρ1þξÞ

þα2ð2�θÞðρ2þξÞðρ1þξÞ þϑF1ðΓþδÞðð2�2θÞðρ1þξÞ þθ ρð 2þξÞÞ 2βFðρ2þξÞðρ1þξÞ

, (52) and

μ2¼ϑ2 ð1�θÞðβ1ðρ2þξÞ þðΓþδÞÞϑR2

~βRðρ2þξÞ þð1�θÞðβ2ðρ2þξÞ þðΓþδÞÞϑF2

~βFðρ2þξÞ

# :

"

(53) Proposition 6. The limit of expectation E K tð ð ÞÞ, and variance D K tð ð ÞÞin the Stackelberg game feedback equilibrium must satisfy

E K tð ð ÞÞ ¼μ1þμ2

ξ þeξt K~0μ1þμ2 ξ

� �

, limt!∞E K tð ð ÞÞ ¼μ1þμ2

ξ : (54)

D K tð ð ÞÞ ¼φ2 ðμ1þμ2Þ �2�μ1þμ2ξK~0

eξtþ�μ1þμ2�2ξK~0e�2ξt

� �

2ξ2 (55)

t!∞limD E K tð ð ð ÞÞÞ ¼φ2ðμ1þμ2Þ

2ξ2 , (56)

Proof. Applying Itô’s lemma to (Eq. (51)), obtain:

d K tð ð ÞÞ2¼�2ðμ1þμ2þφ2ÞK�2ξK2

dtþ2φK ffiffiffiffi pK

dW tð Þ K 0ð Þ

ð Þ2¼K~20>0: (

(57)

Then E K tð ð ÞÞand E K tð ð ÞÞ2can be defined as:

dE K tð ð ÞÞ ¼½μ1þμ2ξK tð Þ�dt K 0ð Þ ¼K0>0:

(58)

dE K tð ð ÞÞ2¼�½2ðμ1þμ2þφ2ÞKE Kð Þ �2ξE K� �2dt K 0ð Þ

ð Þ2¼K20>0, (

(59) Solving the above non-homogeneous linear differential equation, will obtain the results.

Dalam dokumen Carbon Capture (Halaman 74-78)