• Tidak ada hasil yang ditemukan

Analogy on higher voltage at downstream node

Dalam dokumen New Trends in High Voltage Engineering (Halaman 53-58)

Components of Capacitor Current, and Impact of Harmonic Resonance

2. Analogy on higher voltage at downstream node

For a DC system, current flows from high voltage to low voltage, but that does not apply to an ACsystemshowninFigure1,becauseinthestudy,itwasseenthateventhoughcurrentflows from upstream node to downstream node, voltage at downstream node is higher than the voltageatupstreamnode.ThereasonofhavinghighervoltageatdownstreamnodeinanAC system is that voltage drop in a single phase depends on mutual impedance and current in other phases besides self-impedance and current of its own phase as shown in Eq. (1).

2 3 2 3 2 32 3

Vagm Vagn Zaa Zab Zac Ia

6 7 6 7 6 76 7

4Vbgm 5¼4Vbgn 5�4Zba Zbb Zbc 54Ib 5 (1)

Vcgm Vcgn Zca Zcb Zcc Ic

Vigm ¼Vign �ΔVi (2)

Now,

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� � � � ��2 � � ��2

�Vign�¼ ℜe Vign þ Img Vign (3)

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� � � � � �2 � � � �2

�Vigm�¼ ℜe Vign �ℜe½ΔVi� þ Img Vign �Img½ΔVi� (4)

whereVign andVigm are the voltagesof phase i ið ¼a; b; cÞ atthe upstreamnode anddown- streamnode,respectively; ΔVi is voltage drop in phase i; ℜe Vign and Im g Vign are, respec- tively,realandimaginarycomponentsofVign; ℜe½ΔVi�andImg½ΔVi�are,respectively,realand imaginary components of ΔVi.

Phasevoltageatthedownstreamwillbehigherthanthephasevoltageattheupstreamnodeif

�Vigm �> �Vign

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� � � �2 � � � �2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� � ��2 � � ��2

) ℜe Vign �ℜe½ΔVi� þ Im g Vign �Im g½ΔVi� > ℜe Vign þ Im g Vign

2 2

) ðℜe½ΔVi�Þ þ ðIm gΔViÞ �2ℜe Vign ∗ℜe½ΔVi� �2Im g Vign ∗Im g½ΔVi�> 0

(5)

Figure 1. Three-phase line.

� � � �

� � � �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Similarly,phasevoltageatdownstreamwillbelowerthanthevoltageatupstreamnodeif

�Vigm �< �Vign

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ℜe V� ign ��ℜe½ΔVi� þ�2 �Im g V� ign ��Im g½ΔVi��2 < qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ℜe V� ign ��2 þ�Im g V� ign ��2

2 2

) ðℜe½ΔVi�Þ þ ðIm gΔViÞ �2ℜe Vign ∗ℜe½ΔVi� �2Im g Vign ∗Im g½ΔVi�< 0

(6) Now, in Eq. (4), if real components of upstream node voltage (Vign) and voltage drop ðΔViÞhave the samesignandimaginarycomponentsof upstreamnodevoltage(Vign)andvoltagedrop (ΔVi) also have the same sign, then upstream node voltage must be higher than downstream node voltage. Similarly, in Eq. (4), if real components of upstream node voltage Vign and voltage drop ðΔViÞ have opposite sign and imaginary components of upstream node voltage Vign andvoltagedropðΔViÞ also have oppositesign, thenupstreamnodevoltagemust be lowerthandownstreamnodevoltage.Again,inEq.(4),ifrealcomponentsofupstreamnode voltage Vign and voltage drop ðΔViÞ have the same sign, but imaginary components of upstreamnodevoltage Vign andvoltagedropðΔViÞhavetheoppositesignorifrealcompo- nents of upstream node voltage Vign and voltage drop ðΔViÞ have the opposite sign, but imaginary components of upstream node voltage Vig n and voltage drop ðΔViÞ have the same sign,thentheupstreamnodevoltagecanbehigherorlowerthanthedownstreambusvoltage.

Figure 2 shows how (+ and �) signs of real and imaginary components of upstream node voltage Vign andvoltagedropðΔViÞchangefortheirlocationsinfourquadrants.

If upstream node’s voltage phasor Vign and voltage drop phasor ðΔViÞ lie in the same quadrant, then real components of upstream node voltage Vign and voltage drop ðΔViÞwill havethesamesign,andimaginarycomponentsofVign and ΔVi willalsohavethesamesign;in thiscase,upstreamnodevoltagemustbehigherthandownstreamnodevoltage.

If upstream node’s voltage phasor Vign and voltage drop phasor ðΔViÞ lie in two different quadrantswhichareexactlyopposite(firstandthirdquadrantsorsecondandfourthquadrants), thenreal componentsofvoltage Vign andvoltagedropðΔViÞ willhave oppositesign,and imaginary components of Vign and ΔVi will also have opposite sign; in this case, voltage at the

Figure 2. (+ and �) signs in four quadrants.

Analysis for Higher Voltage at Downstream Node, Negative Line Loss and Active and Reactive Components of… 45 http://dx.doi.org/10.5772/intechopen.80879

upstream nodemustbe lowerthanthevoltage atthedownstream node.Again,ifupstream node’s voltage phasor Vign and voltage drop phasor ðΔViÞ lie in two different quadrants which are adjacent (first and second quadrants or second and third quadrants or third and fourth quadrantsorfourth andfirstquadrants),then realcomponentsof Vign andΔVi can havethe same sign or opposite sign; if they have the same sign, then imaginary components of Vign and ΔVi will have the opposite sign; if they have opposite sign, then imaginary components of Vign

and ΔVi willhavethesamesign;inthesebothcases,upstreamnodevoltagecanbehigheror lower than the downstream node voltage. Table 1 summarizes the conditions that cause the upstreamnodevoltagetobehigherorlowerthanthedownstreamnodevoltage.

How the downstream node voltageand voltage drop vary withloads in an AC system is tested on a two-bus system in Figure 3, and results are shown in Table 2.

In Table 2, the phasor diagrams show how voltage drop and downstream node voltage change theirlocationsintothequadrantsasloadvaries.Forexample,whenathree-phaseloadatnode2 changes from 1000 kW+ j500 kVAr, 500 kW+ j200 kVAr, and 300 kW+ j100 kVAr to 200 kW+ j100 kVAr,500kW+j200kVAr,and300kW+j100kVAr,respectively,inphasea,phaseb,andphasec, it is seen that voltage drop phasor ΔVa changes its location from first quadrant to fourth quadrant and voltage drop phasor ΔVc changes its location from first quadrant to third quadrant.

When a three-phase load, 600 kW + j300kVAr, 500 kW + j200kVAr, and 300 kW + j100kVAr, is

°

connectedatthedownstreamnode2inphasea,phaseb,andphasec,respectively,itisseen that phase c voltage (2394.8 V) at the downstream node 2 is lower than the phase c voltage

˜

(2400V)attheupstreamnode1,wherevoltagephasorVcgn attheupstreamnode1andvoltage dropphasor ΔVc lieinthesamequadrant(second).Again,whenthethree-phaseloadchanges

˛˛

˛˛

Location of upstream node voltage (Vign) and voltage drop (ΔVi) Upstream node voltage level with respect to

phasorsintothequadrants downstreamnodevoltagelevel

Vigm

Vigm

˛˛ ˛˛ ˛˛

Same quadrant Vign >

˛˛ ˛˛ ˛˛

Different quadrants Exactly opposite quadrants Vign <

˛˛

˛˛

˛˛

Vigm

or

Vigm

Table 1. Conditions for the upstream node voltage to be higher or lower than downstream node voltage.

˛˛ ˛˛ ˛˛

Adjacent quadrants Vign >

˛˛ ˛˛

Vign <

Figure 3. Two-bussystem.

BusvoltageVoltagedropPhasordiagramofbusvoltagesandvoltagedropLoad (V)(V)(kW,kVAr) Bus124000(2400+j0) 2400-120(˜1200˜j2078.5) 2400120(˜1200+j2078.5) Bus22261.0˜2.4(2259˜j95.4)140.98+j95.44(170.234.09)1000+j500 2426.4˜121.8(˜1280.2˜j2061.2)80.22j17.26(82.1˜12.14)500+j200 2386.9120.7(˜1218.8+j2052.2)18.75+j26.22(32.2354.4)300+j100 2292.4˜1.7148(2291.4˜j68.6)108.59+j68.61(128.432.3)800+j400 2406.7˜121.7(˜1265.1˜j2047.3)65.12˜j31.13(72.2-25.55)500+j200 2389.1120.28(˜1205+j2063)4.97+j15.5(16.2772.22)300+j100 2351.7˜1.03(2322.1˜j41.6)77.89+j41.56(88.328.08)600+j300 2368.1˜121.6(˜1250.9˜j2033.4)50.86˜j45.1(67.97˜41.56)500+j200 2394.8119.9(˜1191.9+j2073.8)˜8.103+j4.64(9.3150.17)300+j100 2351.7˜0.358(2351.6˜j14.7)48.37+j14.7(50.516.89)400+j200 2368.1˜121.48(˜1236.9˜j2019.5)36.88˜j58.9(69.5˜57.98)500+j200 2394.8119.5(˜1179.3+j2084.3)˜20.67˜j5.84(21.5˜164.2)300+j100

BusvoltageVoltagedropPhasordiagramofbusvoltagesandvoltagedropLoad (V)(V)(kW,kVAr) 2365.90˜0.029(2365.9˜j1.2)34.13+j1.15(34.151.94)300+j150 2358.7˜121.4(˜1230.3˜j2012.5)30.284˜j65.99(˜65.35)500+j200 2396.7119.3(˜1173.2+j2089.9)˜26.78˜j11.4(72.6˜156.8)300+j100 2379.90.29(2379.9+j12.1)20.14˜j12.1(23.5˜30.9)200+j100 2349.6˜121.4(˜1223.8˜j2005.7)23.84˜j72.78(76.5˜71.8)500+j200 2398.3119.1(˜1167.3+j2095.0)˜32.7˜j16.58(36.6˜153.1)300+j100 2394.00.62(2393.8+j25.9)6.15˜j25.86(26.58˜76.6)100+j50 2339.6˜121.33(˜1216.7˜j1998.3)16.7˜j80.12(81.8˜78.2)500+j200 2400.4118.9(˜1161.2+j2100.9)˜38.8˜j22.4(44.8-150.02)300+j100 2400.10.776(2399.9+j0.032.5)0.1˜j32.52(32.52˜89.8)50+j25 2335.8˜121.3(˜1214.6˜j1995.2)14.6˜j83.26(84.5˜80.04)500+j200 2401.3118.8(˜1158.8+j2103.2)˜41.2˜j24.76(48.06˜149)300+j100 Bus1phaseavoltage:Bus2phaseavoltage:Voltagedropinphasea: Bus1phasebvoltage:Bus2phasebvoltage:Voltagedropinphaseb: Bus1phasecvoltage:Bus2phasecvoltage:Voltagedropinphasec: Table2.Variationinthelocationofnodevoltagephasorsandvoltagedropphasorswithloads.

Analysis for Higher Voltage at Downstream Node, Negative Line Loss and Active and Reactive Components of… 47 http://dx.doi.org/10.5772/intechopen.80879

to100kW+j50kVAr,500 kW+j200kVAr,and300kW+j100kVArinrespectivephases,itis seen that phase c voltage (2400.4 V) at the downstream node 2 is higher than phase c voltage (2400 V) at the upstream node 1, where voltage phasor Vcgn atthe upstreamnode 1liesin second quadrant but voltage drop phasor ΔVc lies in third quadrant.

Dalam dokumen New Trends in High Voltage Engineering (Halaman 53-58)

Dokumen terkait