Study on Micro-Crack Induced Precision Severing of Quartz Glass Chips
4. Conclusions
In this study, the absolute copy numbers of single-cellβ-actin proteins of A549 cells were compared to the population approaches based on the conventional enzyme-linked immunosorbent assay (ELISA), producing the results at the same order, which were 1.0±0.5×106vs. 3.6±0.2×106 per cells, respectively [11]. Actually, intracellular staining in flow cytometry has been functioning as a well-established semi-quantitative approach in deep phenotyping [16,17] and signaling state characterization [18–21], which has been demonstrated to be capable of producing trustworthy results.
Figure 3. (a) Scatter plot of the absolute copy numbers of single-cellβ-actin proteins of A549 (ncell= 14,754), Hep G2 (ncell= 36,949) and HeLa (ncell= 24,383) cells with means and standard deviations included (* represents the statistical difference withp< 0.01); (b) Distributions of absolute copy numbers ofβ-actin proteins at the single-cell level for A549, Hep G2 and HeLa cells with three quartiles and the quartile coefficients of dispersion included; (c) Neural network was used to evaluate the distribution differences ofβ-actin proteins among A549, Hep G2 and HeLa cells, producing successful classification rates of 73.8% for A549 vs. Hep G2 cells, 63.9% for A549 vs. HeLa cells and 73.1% for Hep G2 vs. HeLa cells.
Micromachines2018,9, 254
Acknowledgments:The authors would like to acknowledge financial supports from the National Basic Research Program of China (973 Program, Grant No. 2014CB744600), National Natural Science Foundation of China (Grant No. 61431019, 61671430, 61774157), Chinese Academy of Sciences Key Project Targeting Cutting-Edge Scientific Problems (QYZDB-SSW-JSC011), Instrument Development Program, Youth Innovation Promotion Association and Interdisciplinary Innovation Team of Chinese Academy of Sciences.
Conflicts of Interest:The authors declare no conflicts of interest.
References
1. Gunning, P.W.; Ghoshdastider, U.; Whitaker, S.; Popp, D. The evolution of compositionally and functionally distinct actin filaments.J. Cell Sci.2015,128, 2009–2019. [CrossRef] [PubMed]
2. Li, R.; Shen, Y. An old method facing a new challenge: Re-visiting housekeeping proteins as internal reference control for neuroscience research.Life Sci.2013,92, 747–751. [CrossRef] [PubMed]
3. Ruan, W.; Lai, M. Actin, a reliable marker of internal control?Clin. Chim. Acta2007,385, 1–5. [CrossRef]
[PubMed]
4. Ferguson, R.E.; Carroll, H.P.; Harris, A.; Maher, E.R.; Selby, P.J.; Banks, R.E. Housekeeping proteins:
A preliminary study illustrating some limitations as useful references in protein expression studies.Proteomics 2005,5, 566–571. [CrossRef] [PubMed]
5. Liu, N.K.; Xu, X.M.β-tubulin is a more suitable internal control thanβ-actin in western blot analysis of spinal cord tissues after traumatic injury.J. Neurotrauma2006,23, 1794–1801. [CrossRef] [PubMed]
6. Calvo, A.C.; Moreno-Igoa, M.; Manzano, R.; Ordovás, L.; Yagüe, G.; Oliván, S.; Muñoz, M.J.; Zaragoza, P.;
Osta, R. Determination of protein and RNA expression levels of common housekeeping genes in a mouse model of neurodegeneration.Proteomics2008,8, 4338–4343. [CrossRef] [PubMed]
7. Khan, S.A.; Tyagi, M.; Sharma, A.K.; Barreto, S.G.; Sirohi, B.; Ramadwar, M.; Shrikhande, S.V.; Gupta, S.
Cell-type specificity ofβ-actin expression and its clinicopathological correlation in gastric adenocarcinoma.
World J. Gastroenterol.2014,20, 12202–12211. [CrossRef] [PubMed]
8. Vigelsø, A.; Dybboe, R.; Hansen, C.N.; Dela, F.; Helge, J.W.; Guadalupe Grau, A. GAPDH andβ-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle.J. Appl. Physiol.2015,118, 386–394. [CrossRef] [PubMed]
9. Yu, S.; Hwang, H.E.; Yun, N.; Goldenring, J.R.; Nam, K.T. The mRNA and protein levels of tubulin and β-actin are greatly reduced in the proximal duodenum of mice relative to the rest of the small intestines.
Digest. Dis. Sci.2015,60, 2670–2676. [CrossRef] [PubMed]
10. Chen, G.; Zou, Y.; Zhang, X.; Xu, L.; Hu, Q.; Li, T.; Yao, C.; Yu, S.; Wang, X.; Wang, C.β-Actin protein expression differs in the submandibular glands of male and female mice.Cell Biol. Int.2016,40, 779–786.
[CrossRef] [PubMed]
11. Li, X.; Fan, B.; Cao, S.; Chen, D.; Zhao, X.; Men, D.; Yue, W.; Wang, J.; Chen, J. A microfluidic flow cytometer enabling absolute quantification of single-cell intracellular proteins.Lab Chip2017,17, 3129–3137. [CrossRef]
[PubMed]
12. Krutzik, P.O.; Nolan, G.P. Intracellular phospho-protein staining techniques for flow cytometry: Monitoring single cell signaling events.Cytometry A2003,55, 61–70. [CrossRef] [PubMed]
13. Lamoreaux, L.; Roederer, M.; Koup, R. Intracellular cytokine optimization and standard operating procedure.
Nat. Protoc.2006,1, 1507–1516. [CrossRef] [PubMed]
14. Xu, H.; Lai, J.G.; Liu, J.Y.; Cao, N.; Zhao, J. Neural Network Pattern Recognition and its Application.
Adv. Mater. Res.2013,756–759, 2438–2442. [CrossRef]
15. Sanchez, D.V. Neural Network based Pattern Recognition. In Pattern Recognition from Classical to Modern Approaches; Pal, S.K., Pal, A., Eds.; World Scientific Publishing: Singapore, 2001; pp. 281–300.
[CrossRef]
16. Bendall, S.C.; Simonds, E.F.; Qiu, P.; El-ad, D.A.; Krutzik, P.O.; Finck, R.; Bruggner, R.V.; Melamed, R.;
Trejo, A.; Ornatsky, O.I.; Balderas, R.S. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum.Science2011,332, 687–696. [CrossRef] [PubMed]
17. Levine, J.H.; Simonds, E.F.; Bendall, S.C.; Davis, K.L.; El-ad, D.A.; Tadmor, M.D.; Litvin, O.; Fienberg, H.G.;
Jager, A.; Zunder, E.R.; et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis.Cell2015,162, 184–197. [CrossRef] [PubMed]
25
18. Bodenmiller, B.; Zunder, E.R.; Finck, R.; Chen, T.J.; Savig, E.S.; Bruggner, R.V.; Simonds, E.F.; Bendall, S.C.;
Sachs, K.; Krutzik, P.O.; et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators.Nat. Biotechnol.2012,30, 858–867. [CrossRef] [PubMed]
19. Mingueneau, M.; Krishnaswamy, S.; Spitzer, M.H.; Bendall, S.C.; Stone, E.L.; Hedrick, S.M.; Pe’er, D.;
Mathis, D.; Nolan, G.P.; Benoist, C. Single-cell mass cytometry of TCR signaling: Amplification of small initial differences results in low ERK activation in NOD mice. Proc. Natl. Acad. Sci. USA2014,111, 16466–16471. [CrossRef] [PubMed]
20. Spitzer, M.H.; Gherardini, P.F.; Fragiadakis, G.K.; Bhattacharya, N.; Yuan, R.T.; Hotson, A.N.; Finck, R.;
Carmi, Y.; Zunder, E.R.; Fantl, W.J.; et al. Immunology. An interactive reference framework for modeling a dynamic immune system.Science2015,349, 1259425. [CrossRef] [PubMed]
21. Zunder, E.R.; Lujan, E.; Goltsev, Y.; Wernig, M.; Nolan, G.P. A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry.Cell Stem Cell2015,16, 323–337.
[CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
micromachines
Article