• Tidak ada hasil yang ditemukan

Summary, Conclusion and Future Directions

Antidiabetic Effects of Hydroxytyrosol: In Vitro and In Vivo Evidence

5. Summary, Conclusion and Future Directions

Existing studies indicate that hydroxytyrosol (HT) has insulin-like effects on insulin target cells including adipocytes, hepatocytes and muscle cells, and exerted significant anti-diabetic effects in animal models of T2DM. Moreover, HT exhibited protective effects against oxidative stress, inflammation, hyperglycemia and hyperlipidemia in chemically-, genetically- and dietary-induced animal models of T2DM.

Although the current literature regarding HT toxicity is scarce, the evidence suggests that HT is well-tolerated. A study showed that oral administration of pure HT at 5, 50 and 500 mg/kg/day for 13 weeks in Wistar rats resulted in no adverse effects, including micro or macro organ alterations, morbidity, or mortality [77]. More importantly, in 2011, the European Food Safety Authority (EFSA) approved the use of HT (5 mg/day) or its derivatives to provide protection against oxidative damage and inflammation and reduce the risk of cardiovascular disease and insulin resistance/diabetes [78].

However, more systematic long-term human studies are required to assess the optimal dose required for the health benefits while avoiding any potential toxicity/side effects. In addition, more clinical studies are required to examine the bioavailability and mechanism of action of HT and to fully understand its antioxidant, anti-inflammatory and antidiabetic effects.

Overall, the existing in vitro and in vivo studies of HT showed potent antioxidant, anti-inflammatory, insulin-like, and insulin sensitizing effects. This suggests a potential application for HT in the prevention and treatment of insulin resistance and T2DM.

Author Contributions:E.T. formulated the review topic. F.V. and E.T. wrote the majority of the manuscript. M.Y.

contributed to the writing of the manuscript, table and figure preparation. All authors read and approved the final manuscript.

Acknowledgments:This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) to E.T.

Conflicts of Interest:The authors declare no conflict of interest.

References

1. Anderson, J.T.; Keys, A. Dietary protein and the serum cholesterol level in man.Am. J. Clin. Nutr.1957,5, 29–34. [PubMed]

2. Keys, A.; Anderson, J.T.; Grande, F. Serum cholesterol response to changes in the diet: II. The effect of cholesterol in the diet.Metab. Clin. Exp.1965,14, 759–765. [CrossRef]

3. Keys, A.; Anderson, J.T.; Grande, F. Serum cholesterol response to changes in the diet: III. Differences among individuals.Metab. Clin. Exp.1965,14, 766–775. [CrossRef]

4. Keys, A.; Anderson, J.T.; Grande, F. Serum cholesterol response to changes in the diet: IV. Particular saturated fatty acids in the diet.Metab. Clin. Exp.1965,14, 776–787. [CrossRef]

5. Altomare, R.; Cacciabaudo, F.; Damiano, G.; Palumbo, V.D.; Gioviale, M.C.; Bellavia, M.; Tomasello, G.; Lo Monte, A.I. The Mediterranean Diet: A History of Health.Iran. J. Public Health2013,42, 449–457. [PubMed]

6. Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.;

Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet.N. Engl.

J. Med.2013,368, 1279–1290. [CrossRef]

7. Barak, Y.; Fridman, D. Impact of Mediterranean Diet on Cancer: Focused Literature Review.Cancer Genom.

Proteom.2017,14, 403–408.

8. Lăcătus,u, C.-M.; Grigorescu, E.-D.; Floria, M.; Onofriescu, A.; Mihai, B.-M. The Mediterranean Diet: From an Environment-Driven Food Culture to an Emerging Medical Prescription.Int. J. Environ. Res. Public Health 2019,16, 942. [CrossRef]

9. Finicelli, M.; Squillaro, T.; Di Cristo, F.; Di Salle, A.; Melone, M.A.B.; Galderisi, U.; Peluso, G. Metabolic syndrome, Mediterranean diet, and polyphenols: Evidence and perspectives.J. Cell. Physiol.2019,234, 5807–5826. [CrossRef]

10. Berry, E.M.; Arnoni, Y.; Aviram, M. The Middle Eastern and biblical origins of the Mediterranean diet.

Public Health Nutr.2011,14, 2288–2295. [CrossRef]

11. Tuck, K.L.; Hayball, P.J. Major phenolic compounds in olive oil: Metabolism and health effects.J. Nutr. Biochem.

2002,13, 636–644. [CrossRef]

12. Vissers, M.N.; Zock, P.L.; Roodenburg, A.J.C.; Leenen, R.; Katan, M.B. Olive Oil Phenols Are Absorbed in Humans.J. Nutr.2002,132, 409–417. [CrossRef] [PubMed]

13. Montedoro, G.; Servili, M.; Baldioli, M.; Miniati, E. Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC.J. Agric.

Food Chem.1992,40, 1571–1576. [CrossRef]

14. Shamshoum, H.; Vlavcheski, F.; Tsiani, E. Anticancer effects of oleuropein. Biofactors2017,43, 517–528.

[CrossRef] [PubMed]

15. Tejada, S.; Pinya, S.; Del Mar Bibiloni, M.; Tur, J.A.; Pons, A.; Sureda, A. Cardioprotective Effects of the Polyphenol Hydroxytyrosol from Olive Oil.Curr. Drug Targets2017,18, 1477–1486. [CrossRef] [PubMed]

16. Imran, M.; Nadeem, M.; Gilani, S.A.; Khan, S.; Sajid, M.W.; Amir, R.M. Antitumor Perspectives of Oleuropein and Its Metabolite Hydroxytyrosol: Recent Updates.J. Food Sci.2018,83, 1781–1791. [CrossRef] [PubMed]

17. Alkhatib, A.; Tsang, C.; Tuomilehto, J. Olive Oil Nutraceuticals in the Prevention and Management of Diabetes: From Molecules to Lifestyle.Int. J. Mol. Sci.2018,19, 2024. [CrossRef]

18. Granados-Principal, S.; Quiles, J.L.; Ramirez-Tortosa, C.L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C.

Hydroxytyrosol: From laboratory investigations to future clinical trials. Nutr. Rev. 2010,68, 191–206.

[CrossRef]

19. Umeno, A.; Horie, M.; Murotomi, K.; Nakajima, Y.; Yoshida, Y. Antioxidative and Antidiabetic Effects of Natural Polyphenols and Isoflavones.Molecules2016,21, 708. [CrossRef]

20. Peyrol, J.; Riva, C.; Amiot, M.J. Hydroxytyrosol in the Prevention of the Metabolic Syndrome and Related Disorders.Nutrients2017,9, 306. [CrossRef]

21. Wani, T.A.; Masoodi, F.A.; Gani, A.; Baba, W.N.; Rahmanian, N.; Akhter, R.; Wani, I.A.; Ahmad, M. Olive oil and its principal bioactive compound: Hydroxytyrosol—A review of the recent literature.Trends Food Sci. Technol.2018,77, 77–90. [CrossRef]

22. Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A.; Balsano, C. Effects of the Olive-Derived Polyphenol Oleuropein on Human Health.Int. J. Mol. Sci.2014,15, 18508–18524. [CrossRef] [PubMed]

23. Okayasu, S.; Kitaichi, K.; Hori, A.; Suwa, T.; Horikawa, Y.; Yamamoto, M.; Takeda, J.; Itoh, Y. The evaluation of risk factors associated with adverse drug reactions by metformin in type 2 diabetes mellitus.Biol. Pharm. Bull.

2012,35, 933–937. [CrossRef]

24. DeFronzo, R.; Fleming, G.A.; Chen, K.; Bicsak, T.A. Metformin-associated lactic acidosis: Current perspectives on causes and risk.Metab. Clin. Exp.2016,65, 20–29. [CrossRef] [PubMed]

25. Wu, S.; Hopper, I.; Skiba, M.; Krum, H. Dipeptidyl peptidase-4 inhibitors and cardiovascular outcomes:

meta-analysis of randomized clinical trials with 55,141 participants.Cardiovasc. Ther.2014,32, 147–158.

[CrossRef] [PubMed]

26. Forsmark, C.E. Incretins, Diabetes, Pancreatitis and Pancreatic Cancer: What the GI specialist needs to know.

Pancreatology2016,16, 10–13. [CrossRef]

27. Blau, J.E.; Tella, S.H.; Taylor, S.I.; Rother, K.I. Ketoacidosis associated with SGLT2 inhibitor treatment:

Analysis of FAERS data.Diabetes Metab. Res. Rev.2017,33, 10–1002. [CrossRef]

28. Liu, J.; Li, L.; Li, S.; Jia, P.; Deng, K.; Chen, W.; Sun, X. Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: a systematic review and meta-analysis. Sci. Rep. 2017,7, 2824.

[CrossRef]

29. Friedel, A.; Raederstorff, D.; Roos, F.; Toepfer, C.; Wertz, K. Hydroxytyrosol Benefits Muscle Differentiation and Muscle Contraction and Relaxation. U.S. Patent Application No. 13/550,972, 7 March 2013.

30. Burattini, S.; Salucci, S.; Baldassarri, V.; Accorsi, A.; Piatti, E.; Madrona, A.; Espartero, J.L.; Candiracci, M.;

Zappia, G.; Falcieri, E. Anti-apoptotic activity of hydroxytyrosol and hydroxytyrosyl laurate.Food Chem. Toxicol.

2013,55, 248–256. [CrossRef]

31. Drira, R.; Sakamoto, K. Modulation of adipogenesis, lipolysis and glucose consumption in 3T3-L1 adipocytes and C2C12 myotubes by hydroxytyrosol acetate: A comparative study.Biochem. Biophys. Res. Commun.

2013,440, 576–581. [CrossRef]

32. Wang, X.; Li, H.; Zheng, A.; Yang, L.; Liu, J.; Chen, C.; Tang, Y.; Zou, X.; Li, Y.; Long, J.; et al. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: Preventative effect of hydroxytyrosol acetate.Cell. Death Dis.2014,5, e1521. [CrossRef] [PubMed]

33. Hao, J.; Shen, W.; Yu, G.; Jia, H.; Li, X.; Feng, Z.; Wang, Y.; Weber, P.; Wertz, K.; Sharman, E.; et al.

Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes.

J. Nutr. Biochem.2010,21, 634–644. [CrossRef] [PubMed]

34. Warnke, I.; Goralczyk, R.; Fuhrer, E.; Schwager, J. Dietary constituents reduce lipid accumulation in murine C3H10 T1/2 adipocytes: A novel fluorescent method to quantify fat droplets. Nutr. Metab. 2011,8, 30.

[CrossRef] [PubMed]

35. Drira, R.; Chen, S.; Sakamoto, K. Oleuropein and hydroxytyrosol inhibit adipocyte differentiation in 3 T3-L1 cells.Life Sci.2011,89, 708–716. [CrossRef] [PubMed]

36. Drira, R.; Sakamoto, K. Hydroxytyrosol stimulates lipolysis via A-kinase and extracellular signal-regulated kinase activation in 3T3-L1 adipocytes.Eur. J. Nutr.2014,53, 743–750. [CrossRef] [PubMed]

37. Scoditti, E.; Massaro, M.; Carluccio, M.A.; Pellegrino, M.; Wabitsch, M.; Calabriso, N.; Storelli, C.;

De Caterina, R. Additive regulation of adiponectin expression by the mediterranean diet olive oil components oleic Acid and hydroxytyrosol in human adipocytes.PLoS ONE2015,10, e0128218. [CrossRef] [PubMed]

38. Tutino, V.; Orlando, A.; Russo, F.; Notarnicola, M. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.J. Cell. Physiol.2016,231, 483–489. [CrossRef]

39. Engeli, S.; Böhnke, J.; Feldpausch, M.; Gorzelniak, K.; Janke, J.; Bátkai, S.; Pacher, P.; Harvey-White, J.;

Luft, F.C.; Sharma, A.M.; et al. Activation of the peripheral endocannabinoid system in human obesity.

Diabetes2005,54, 2838–2843. [CrossRef]

40. Stefanon, B.; Colitti, M. Original Research: Hydroxytyrosol, an ingredient of olive oil, reduces triglyceride accumulation and promotes lipolysis in human primary visceral adipocytes during differentiation.

Exp. Biol. Med.2016,241, 1796–1802. [CrossRef]

41. Anter, J.; Quesada-Gómez, J.M.; Dorado, G.; Casado-Díaz, A. Effect of Hydroxytyrosol on Human Mesenchymal Stromal/Stem Cell Differentiation into Adipocytes and Osteoblasts.Arch. Med. Res.2016,47, 162–171. [CrossRef]

42. Pan, S.; Liu, L.; Pan, H.; Ma, Y.; Wang, D.; Kang, K.; Wang, J.; Sun, B.; Sun, X.; Jiang, H. Protective effects of hydroxytyrosol on liver ischemia/reperfusion injury in mice.Mol. Nutr. Food Res.2013,57, 1218–1227.

[CrossRef] [PubMed]

43. Priore, P.; Siculella, L.; Gnoni, G.V. Extra virgin olive oil phenols down-regulate lipid synthesis in primary-cultured rat-hepatocytes.J. Nutr. Biochem.2014,25, 683–691. [CrossRef] [PubMed]

44. Rubio-Senent, F.; de Roos, B.; Duthie, G.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Inhibitory and synergistic effects of natural olive phenols on human platelet aggregation and lipid peroxidation of microsomes from vitamin E-deficient rats.Eur. J. Nutr.2015,54, 1287–1295. [CrossRef] [PubMed]

45. Jardine, D.; Antolovich, M.; Prenzler, P.D.; Robards, K. Liquid chromatography-mass spectrometry (LC-MS) investigation of the thiobarbituric acid reactive substances (TBARS) reaction.J. Agric. Food Chem.2002,50, 1720–1724. [CrossRef] [PubMed]

46. Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Gómez-Carretero, A.; Maya, I.; Fernández-Bolaños, J.; Duthie, G.G.;

de Roos, B. Selenium and sulphur derivatives of hydroxytyrosol: Inhibition of lipid peroxidation in liver microsomes of vitamin E-deficient rats.Eur. J. Nutr.2018. [CrossRef] [PubMed]

47. Hamden, K.; Allouche, N.; Damak, M.; Elfeki, A. Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem. Biol. Interact. 2009,180, 421–432. [CrossRef] [PubMed]

48. Wu, L.; Velander, P.; Liu, D.; Xu, B. Olive Component Oleuropein Promotesβ-Cell Insulin Secretion and Protectsβ-Cells from Amylin Amyloid-Induced Cytotoxicity.Biochemistry2017,56, 5035–5039. [CrossRef]

[PubMed]

49. Huang, C.; Lin, C.; Haataja, L.; Gurlo, T.; Butler, A.E.; Rizza, R.A.; Butler, P.C. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes.Diabetes2007,56, 2016–2027. [CrossRef] [PubMed]

50. Gurlo, T.; Ryazantsev, S.; Huang, C.; Yeh, M.W.; Reber, H.A.; Hines, O.J.; O’Brien, T.D.; Glabe, C.G.; Butler, P.C.

Evidence for proteotoxicity in beta cells in type 2 diabetes: Toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway.Am. J. Pathol.2010,176, 861–869. [CrossRef] [PubMed]

51. Mulder, H. Transcribingβ-cell mitochondria in health and disease.Mol. Metab.2017,6, 1040–1051. [CrossRef]

[PubMed]

52. Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes.Diabetes2003,52, 102–110. [CrossRef] [PubMed]

53. Gutierrez, V.R.; de la Puerta, R.; Catalá, A. The effect of tyrosol, hydroxytyrosol and oleuropein on the non-enzymatic lipid peroxidation of rat liver microsomes.Mol. Cell. Biochem.2001,217, 35–41. [CrossRef]

[PubMed]

54. Stupans, I.; Kirlich, A.; Tuck, K.L.; Hayball, P.J. Comparison of Radical Scavenging Effect, Inhibition of Microsomal Oxygen Free Radical Generation, and Serum Lipoprotein Oxidation of Several Natural Antioxidants.J. Agric. Food Chem.2002,50, 2464–2469. [CrossRef] [PubMed]

55. Jemai, H.; El Feki, A.; Sayadi, S. Antidiabetic and Antioxidant Effects of Hydroxytyrosol and Oleuropein from Olive Leaves in Alloxan-Diabetic Rats.J. Agric. Food Chem.2009,57, 8798–8804. [CrossRef] [PubMed]

56. Hamden, K.; Allouche, N.; Jouadi, B.; El-Fazaa, S.; Gharbi, N.; Carreau, S.; Damak, M.; Elfeki, A. Inhibitory action of purified hydroxytyrosol from stored olive mill waste on intestinal disaccharidases and lipase activities and pancreatic toxicity in diabetic rats.Food Sci. Biotechnol.2010,19, 439. [CrossRef]

57. Feher, J. 8.5-Digestion and Absorption of the Macronutrients. InQuantitative Human Physiology, 2nd ed.;

Feher, J., Ed.; Academic Press: Boston, MA, USA, 2017; pp. 821–833.

58. Ristagno, G.; Fumagalli, F.; Porretta-Serapiglia, C.; Orrù, A.; Cassina, C.; Pesaresi, M.; Masson, S.;

Villanova, L.; Merendino, A.; Villanova, A.; et al. Hydroxytyrosol attenuates peripheral neuropathy in streptozotocin-induced diabetes in rats.J. Agric. Food Chem.2012,60, 5859–5865. [CrossRef]

59. López-Villodres, J.A.; Abdel-Karim, M.; De La Cruz, J.P.; Rodríguez-Pérez, M.D.; Reyes, J.J.; Guzmán-Moscoso, R.;

Rodriguez-Gutierrez, G.; Fernández-Bolaños, J.; González-Correa, J.A. Effects of hydroxytyrosol on cardiovascular biomarkers in experimental diabetes mellitus.J. Nutr. Biochem.2016,37, 94–100. [CrossRef]

60. Reyes, J.J.; Villanueva, B.; López-Villodres, J.A.; De La Cruz, J.P.; Romero, L.; Rodríguez-Pérez, M.D.;

Rodriguez-Gutierrez, G.; Fernández-Bolaños, J.; González-Correa, J.A. Neuroprotective Effect of Hydroxytyrosol in Experimental Diabetes Mellitus.J. Agric. Food Chem.2017,65, 4378. [CrossRef]

61. González-Correa, J.A.; Rodríguez-Pérez, M.D.; Márquez-Estrada, L.; López-Villodres, J.A.; Reyes, J.J.;

Rodriguez-Gutierrez, G.; Fernández-Bolaños, J.; De La Cruz, J.P. Neuroprotective Effect of Hydroxytyrosol in Experimental Diabetic Retinopathy: Relationship with Cardiovascular Biomarkers.J. Agric. Food Chem.

2018,66, 637–644. [CrossRef]

62. Wang, W.; Shang, C.; Zhang, W.; Jin, Z.; Yao, F.; He, Y.; Wang, B.; Li, Y.; Zhang, J.; Lin, R. Hydroxytyrosol NO regulates oxidative stress and NO production through SIRT1 in diabetic mice and vascular endothelial cells.

Phytomedicine2019,52, 206–215. [CrossRef]

63. Cao, K.; Xu, J.; Zou, X.; Li, Y.; Chen, C.; Zheng, A.; Li, H.; Li, H.; Szeto, I.M.-Y.; Shi, Y.; et al. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice.

Free Radic. Biol. Med.2014,67, 396–407. [CrossRef] [PubMed]

64. Zheng, A.; Li, H.; Xu, J.; Cao, K.; Li, H.; Pu, W.; Yang, Z.; Peng, Y.; Long, J.; Liu, J.; et al. Hydroxytyrosol improves mitochondrial function and reduces oxidative stress in the brain of db/db mice: Role of AMP-activated protein kinase activation.Br. J. Nutr.2015,113, 1667–1676. [CrossRef] [PubMed]

65. Jemai, H.; Bouaziz, M.; Fki, I.; El Feki, A.; Sayadi, S. Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves.Chem. Biol. Interact.2008,176, 88–98.

[CrossRef] [PubMed]

66. Tabernero, M.; Sarriá, B.; Largo, C.; Martínez-López, S.; Madrona, A.; Espartero, J.L.; Bravo, L.;

Mateos, R. Comparative evaluation of the metabolic effects of hydroxytyrosol and its lipophilic derivatives (hydroxytyrosyl acetate and ethyl hydroxytyrosyl ether) in hypercholesterolemic rats.Food Funct.2014,5, 1556–1563. [CrossRef] [PubMed]

67. Voigt, A.; Ribot, J.; Sabater, A.G.; Palou, A.; Bonet, M.L.; Klaus, S. Identification of Mest/Peg1 gene expression as a predictive biomarker of adipose tissue expansion sensitive to dietary anti-obesity interventions.

Genes Nutr.2015,10, 27. [CrossRef]

68. Pirozzi, C.; Lama, A.; Simeoli, R.; Paciello, O.; Pagano, T.B.; Mollica, M.P.; Di Guida, F.; Russo, R.; Magliocca, S.;

Canani, R.B.; et al. Hydroxytyrosol prevents metabolic impairment reducing hepatic inflammation and restoring duodenal integrity in a rat model of NAFLD.J. Nutr. Biochem. 2016,30, 108–115. [CrossRef]

[PubMed]

69. Poudyal, H.; Lemonakis, N.; Efentakis, P.; Gikas, E.; Halabalaki, M.; Andreadou, I.; Skaltsounis, L.; Brown, L.

Hydroxytyrosol ameliorates metabolic, cardiovascular and liver changes in a rat model of diet-induced metabolic syndrome: Pharmacological and metabolism-based investigation.Pharmacol. Res.2017,117, 32–45.

[CrossRef]

70. Wang, N.; Liu, Y.; Ma, Y.; Wen, D. Hydroxytyrosol ameliorates insulin resistance by modulating endoplasmic reticulum stress and prevents hepatic steatosis in diet-induced obesity mice.J. Nutr. Biochem. 2018,57, 180–188. [CrossRef]

71. Echeverría, F.; Valenzuela, R.; Espinosa, A.; Bustamante, A.;Álvarez, D.; Gonzalez-Mañan, D.; Ortiz, M.;

Soto-Alarcon, S.A.; Videla, L.A. Reduction of high-fat diet-induced liver proinflammatory state by eicosapentaenoic acid plus hydroxytyrosol supplementation: Involvement of resolvins RvE1/2 and RvD1/2.

J. Nutr. Biochem.2018,63, 35–43. [CrossRef]

72. Xie, Y.; Xu, Y.; Chen, Z.; Lu, W.; Li, N.; Wang, Q.; Shao, L.; Li, Y.; Yang, G.; Bian, X. A new multifunctional hydroxytyrosol-fenofibrate with antidiabetic, antihyperlipidemic, antioxidant and antiinflammatory action.

Biomed. Pharmacother.2017,95, 1749–1758. [CrossRef]

73. Xie, Y.-D.; Chen, Z.-Z.; Li, N.; Lu, W.-F.; Xu, Y.-H.; Lin, Y.-Y.; Shao, L.-H.; Wang, Q.-T.; Guo, L.-Y.;

Gao, Y.-Q.; et al. Hydroxytyrosol nicotinate, a new multifunctional hypolipidemic and hypoglycemic agent.

Biomed. Pharmacother.2018,99, 715–724. [CrossRef] [PubMed]

74. Xie, Y.-D.; Chen, Z.-Z.; Shao, L.-H.; Wang, Q.-T.; Li, N.; Lu, W.-F.; Xu, Y.-H.; Gao, Y.-Q.; Guo, L.-Y.;

Liu, H.-L.; et al. A new multifunctional hydroxytyrosol-clofibrate with hypolipidemic, antioxidant, and hepatoprotective effects.Bioorg. Med. Chem. Lett.2018,28, 3119–3122. [CrossRef] [PubMed]

75. King, A.J. The use of animal models in diabetes research.Br. J. Pharmacol.2012,166, 877–894. [CrossRef]

[PubMed]

76. Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance.Physiol. Rev.2018,98, 2133–2223. [CrossRef] [PubMed]

77. Auñon-Calles, D.; Canut, L.; Visioli, F. Toxicological evaluation of pure hydroxytyrosol.Food Chem. Toxicol.

2013,55, 498–504. [CrossRef] [PubMed]

78. Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents”

(ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006.EFSA J.2011,9, 2033.

©2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

antioxidants

Article

Antioxidant Activity and Anthocyanin Contents in