JOURNAL OF SCIENCE OF HNUE
Educational Sci, 2011, Vol, 56, No, 4, pp, 69-76
P H A T T R I E N N A N G L U C N H A N THIJ'C VA T U D U Y LOGIC CHO HQC SINH TRONG CAC G l 6 ON TAP, L U Y E N TAP
P H A N HOA HOC PHI KIM LCiP 11 ( N A N G CAO) B A N G VIEC SL/ D U N G SO DO TU* D U Y
Pham Thi Huyen, Nguyen Dii'c Dfmg va Vii Quoc Trung^*)
Trudng Dai hoc Sit pham Hd Ndi
Nguyen Thi PhUdng Thuy
Trudng Cao ddng Sit pham Dien Bien
^*'E-mail: vuquoctrungvn«}'ahoo.com
Tom tat. Bai bao dl cap tdi each thiet lap so db tu duy npi dung kiln thiic cin nhd trong cac bai on tap, luyen tap phin Hda hpc Phi kim ldp 11 (nang cao) va sii dung sP dd tu duy thilt kl cac hoat dpng hpc tap ciia HS trong gid hpc. Phuong phap sii dung so dd tu duy trong cac bai on tap, luyen tap giiip HS khai quat hda, he thong hoa, tim ra mdi lien he giiia cac kien thiic, khic phuc dupc nhiing han chi ciia phuong phap day hpc truyin thong, gop phin thitc hien dupc muc tieu cua qua trinh day hpc.
1. Mof dau
Theo dinh hudng ddi mdi day va hpc ngay nay, viec day hpc khdng chi dfrng lai d day kiln thiic ma cdn day hpc sinh each thiic, con dudng chilm linh kiln thirc dd mot each tfch cue, chii ddng va sang tao [1]. Trong cac bai day thi dang bai dn tap, luyen tap cd y nghia quan trpng trong viec hinh thanh phuPng phap nhan thiic va tu duy logic cho hpc sinh. Qua dd, giao vien cd dilu kien ren luyen cho hpc sinh phudng phap tu hpc, tu tdng kit, he thdng kiln thiic da dupc hinh thanh tan man d cac bai, cac phin thanh mot he thong hda kiln thiic cd quan he chat che vdi nhau theo mdt logic xac dinh, ddng thdi hinh thanh va ren luyen cho hpc sinh cac ki nang hda hpc CP ban [2], Qua khao sat thuc tl, viec dn tap cdn mang tinh nhic lai bai cii theo mot trinh tii nhit dinh, chi mdi "dn" chir chua "tap" va '•|u}-en" Do dd hpc sinh chua biet each he thong hda kiln thiic, se thu ddng nghe giang, ghi chep ma khdng bilt tu luu kiln thiic trpng t i m vap trf nhd ciia minh. \'i va}'. viec phat triln nang luc nhan thiic va tu duy logic cho hpc sinh trong cac bai dn tap, lu}'en tap la mdt viec lam cin thilt [3],
PlHun Thi HuyIn, Nguygn Diic Dung, Vu Quoc Trung va Nguygn Thi PhUPng Thiiy Trong e-ae- ki thuat day hpc dude sii dung di he thdng hda vk hoan thien kiln tluic, cluing ldi nhan thay ki thuat day hpc sii dung sd dd tu duy da k h i c phuc dUdc nhfmg han die ve ghi nhd eiia hoc sinh, mat khac cd t h i giiip hpc sinh phat trien dupe nang lUc- nhan thiic, tu duy logic, he; thdng va khai cjiiat kiln thiic mot each ed liie;'u cpia |4, 5],
2. Noi d u n g n g h i e n cu'u 2.1. Sd do t u duy
So do lu duy la moi ce')ng cu td chiic tU duy ne'u hing va ddn gian. la phUdng lieMi ghi clu'p da\' dii va sang lao do C.S Tony Buzan, mdt trong nhiing giao sU hang dill the gicii phai minh ra. So eld tu duy ed t h i dupc sir dung Irong cae budi thuylt tiinh. dpc sae-h, lam viec- theo nhdm,. |6j. Hie;'n nay trc'ii the gidi ed khoang 250 irie^'ii ngirdi thudng xii}'e''n sii dung sd dd lu duy va tai V'iei Nam sd do iia\' da dupc sir dimg nhilu trong da}' hpc d eac mdn nhu \'an hpc Giao due- cong dan, Toan hpc,
\'at li. Tuy nhien sP dd t u diiy ehua dupc sii dung nhilu trong linh vuc- day va hpc indn Hda hpc.
S P do t u duy cd c i u triic cd ban la cac: ndi dung dupc phat trien rdng ra tfr trung tam, nd gidng nhu c i u triic ciia cay trong thien nhien [6]. Trong mdn Hda hpc, cd t h i sii dung sd dd t u duy d l lien kit cac khai niem quan trpng, cac tinh chat cua chat va hpp chit,... khi hpc sinh dn tai), he thdng hda kiln thiic,
\'iec tao lap so do t u duy dupc thuc hien nhanh chdng \'a rrirc quan thdng ciua p h i n m i m Mindjet MindManager Pro 7.0.
De t h i l t lap so do tu du}', chiing ta e-d the'' b i t d i u tfr trung t a m vdi mdt chu d l hoac hinh anh cua chii de, ndi cac nhanh chinh d i n cac nhanh nhd sao cho khoa hpc, siic tich, true quan d l lam ndi bat dupc kiln thiic trong t a m c i n ghi nhd va moi lien he hiiu co giiia cac kiln thiie dd. Can sir dung man sac va cac dudng ke cong dupe td chiic rd rang di kich thich nao \'a thu hiit sir chii v ciia m i t .
Cd hai each thilt lap sP dd lu dii}- la \'e"^ b i n g ta}' \'a sir dung p h i n m i m vi tfnh. \ d i each ve"- b i n g ta}-, chung ta can gii}' va biit mau. Hay dat ngang td giiy, ve mdt khung hinh trung tam cd y chfnh ciia bai hpc, keo dai cac nhanh tfr khung hinh ma ban da ve sau dd lien kit eac- y trong bai b i n g cac tir n g i n gpn. Hay diln bilu tupng ha}' hinh minh hpa vao lirng nhanh d l ndi bat vin d l dac biet la viec phii hpp cac man sic:. Mat khac, \'ie;^c t h i l t la]) sd dd t u duy cdn dupc t h i l t lap nhanh chdng thdng cjua p h i n m i m Mindjet MindManager Pro 7.0.
Trong cac bai day thi dang bai dn t a p , luyen tap giiip hpc sinh khai quat hda, he thong hda, dao sau, md rdng kiln thirc da dupc hpc t a n man d cac p h i n , tim ra mpi lien he giiia cac kiln thiic, k h i c phuc dupc nhiing han chi ciia phUdng phap
Phdt trien ndng luc nhdn tkdc vd tu duy logic cho hgc sinh trong cdc gid on tap,...
day hpc truyen thdng. Cd thi ndi so dd tu duy la mdt cdng cu die lire giiip hpc sinh thuc hien dupc dieu dd. Giao vien cd the hudng dan hpc sinh sir dung phin mim nay d l sd dp hda ke hoach tu hpc dudi dang .sp do tu duy [6, 7].
so DO f 0 DL, V 1 (! H O L CO in; O N G PAN
HOC THU THAP T H 6 N G TIN / HOC xu LY I H O N G JIN t
HOC GHI N H O KIEN THUC Hpc VAN OPNG KIEN THUC • HOC CACH LAP K^ H O A C H HOC TAP
iAp J'..' t / o ;,. J . , , t)H' ' I p .
1 HS" "-
•30 d'l tu <-;;,•', oj.' noc ih-^.v gia 'ioaf
<i.ong ri-^'i!''^ Mro'-'g 9/-" bai
HS:
HS:
•Vti nhii Ghi loi bih hgc ttr aa do tu duy
•Hcii: th'ii theo sa dio ,'•/ rf'')- !ir ba; hor.
\i .-i'f> tKH: IHr . n :>i: - .'\viy
HS: -
5 H S : H t a p sa 66 lu' duy cho bai hoc tiSp theo
Hinh 1. Sii dung sd dd ti£ duy de sd dd hoa ke hoach tyt hgc cua hgc sinh Vdi hpc sinh, di thuc hien dupc kl hoach nay thi ban than cac em cin phai sip xIp cdng viec hpc tap d nha va tren ldp mdt each that khoa hpc, trinh tu khau chuin bi theo cac budc tfr 1 din 5, khi da chuin bi so dd hda bai hpc, din ldp hpc sinh khdng cdn bi dpng d khau ghi chep bai ma danh thdi gian tham gia cac hoat dpng day hpc dudi sii hudng din cua giao vien.
Doi vdi giao vien, khdng tien hanh kilm tra mieng diu gid ma thay vao dd la kilm tra sii chuin bi lap so do tu duy bai hpc ciia hpc sinh d nha, danh gia cho dilm thdng qua sir tham gia hoat dpng tren ldp ciia hpc sinh. Giao vien eln phdi hpp nhip nhang giiia day hpc va tu hpc cua hpc sinh theo sd dd tu duy, dac biet chu y din kiln thiic trpng tam cua bai giang, phin bd thdi gian td chiic cac hoat ddng hpp If, chuin bi philu hpc tap cho tffng bai hpc dl hpc sinh cd dilu kien van dung kiln thiic ngay tai Idp.
Pham Thi HuyIn, Nguygn Diic Dfmg, Vu Qudc Trung va Nguyin Thi PhUPng Thiiy
2.2. Cach t h i l t lap sd do tU duy noi d u n g kien thiJc cSn n h d bai on t a p , luyen t a p ph^n Hda hgc phi kim ldp 11 (nang cao)
' ' ' • ' j ' - ' r ' CIM hmw *if«tn>n
'Viirl ctuiao iJ llnhghltv^t khdng mM Un t i l M
N , . ( ) , , ' • 2 NO '•: '.' N , . V/,. '__' •?;*(. Tir,.,o.i)
^ L»w guy >w ''o* ""nii
H - . l
\'->- /• I N u a
{..,•<,
•T»n nM4u Ifong ntfOa
0»o yftci Ml,)tip^Nll,'*OH iKPh-^c. a<cw),-^w'H**<'*<J|t'''>»
I " " " h
://Vfi , V. JVfJ r 4 / / / ; I
TKNit,
U # ^ ' .Z.4«»MI\.tJ^
Hinh 2. Sd dd tit duy kien thiic cdn nhd d Bdi 13. Luyen tap tinh chat cua nitd vd hdp chdt cua nitd (SGK 11 ndng cao)
rfZHD
[C4u hinh •hpclron 1
J u ' V i y - h ' i / I
I - Uk^m d i nong chiy.
P IrAtig ^ Jo^ phai qujny Uong bong l6i chuyc'i din thinh P do [Cac d<ng w>u Mnh
• CAu Inic polttw b4n - Chuy4n thAnh hoi khi dun nong khdng co khdng khi vangvng tu hoi Ihjnh P irina khi Mm l»nh
Ttnhoi
khu-
I T * t I ^ '• »*X''i T d v M o i l V - w , — 5 - » 2 / ; y , Td¥«y1clo W'^\ - * i « 1 .
T d v o t h w c h * ! 6 / ' * « C J ^ — i - » i r , 0 . * l X U
AMU phqtphofn L i rr^t «»it tt4 Un co dd'ft<nh ininQ bif*h
Hpv c h i t )
»/,«!,
«,«^
[ IQ<K Miorr uww .iMinfT
Nil7,A>, . fr/>
>iii>,wa, . 2 H , 0
• «IKM|,,VI/> J
• TII c« CAC mu&i dlhldroph«lph«l diu t i n Mudi hidrophoiphit. pholphw cu«
him loat hrtw amont d ^ taw Mudi
phQlphM
• Phan
u«g thuy ' S ' n ' "i"* ^^V"^ ^ ****
phAo -Nh^nbldlntudi
photphJl trung ho« U j f ' * 2 / V / - » J l x ^ , i
,{Otw» ch* )
Ufig dung)[
Phrtpho C*i,(/*0'.).,*3Jg>,i-K:—g-»at'a3MP,-h2/'»3CO
Photpho. Sin xuildMm Mnphotphoftc.
dong cho m^ic dtch qutn ay yuji! pholphj^ San KuAl phin bon.
Supophotphal don, iup«phloph«t kop.
phtn \kn nung chay
Hmh 3. Sd do tvt duy kien thiic cdn nhd d Bai 17. Luyen tap tinh chdt cua photpho vd cdc hdp chdt cua photpho (SGK 11 ndng cao)
Phdt trien ndng luc nhdn thUc vd tu duy logic cho hgc sinh trong cdc gid dn tap,...
De thilt lap sP db tu duy kiln thiic c^n nlici ciia cac bai on tap va luyen tap, chung toi diia vao npi dung kiln thiic cua timg phan dl xac dinh cac van dd trung tam va cac nhanh phu. Sau do chung toi su dung phaii mim Mindjet. Mindmanager Pro 7.0 d l xay dung va hudng dSii hpc .siiili tu xa>' dung scj do tu duy cho bai luyen tap phan Hda hoc phi kim ldp 11 (nang cao). So do tu duy kiln tluic can nhd vl cac nguyen t5 phi kim dupc trinh bay d Hinh 2, Hinh 3 va Hinh 4.
[ivi^y
CAu hinh tttctron nguydn ti/
0»*mdt^n:2.SS o(Cacbon)]
Cic d»ng Ihuhmh Kim cifo^Q. than chi, fuhiikn
L.'i.'v^V I
Cjiu hinh tlochon nguydn t>/
r f t i i i n I h i i I t I n U ' *-•'•• •'•••'
Clc dfitg Ihu hmh:
• ilic linh thi, iHic vd d|nh hinh Klm ctKrng Hung thin chi 0'2000C. 50-100 nghtn
^Im.xui Uc F>. Cf. In Th*n chi Nung thtn
c ^ 6 3500-1000 c. ^H£>cbon}L khdng cQ khdng khi
a q i x ** ^a^2a> cN[e(siitc}
Kim circng OA trang aut Ttian chi Ot^n ci/c.
ch^ tao chit bdi ThanhojiHi
g(Cacbon}
Chit ban din. ch4 t>o thdp chju nhif L ptn m^t trd)!
'ejSillc [
[&cmchSt}o Ttnhkhi/
CliCWO ' >iCu\CO^ •
» 1 M l
Tmh o»i h d j ^ a ., **
^ T c i i / i , " • >c«^
I «'O.Ff|0, - >3fcHC '!^
^Hpy chat)5
CO l « OKil irung llnh, ca tinh hhir m^nh C02 - U m^t oitit •Kit
J 'Tan Irong nifd'C tfo avil
—^cacbonlc
• Cd llnh oMi hdn
^ f (Khdng duns khi C03
^ mngk hay ri,\'fy(ri\
Tan tfong ki&m ndng chay
Tac dyng vfrl dung d|ch HP
• AMit khdng b i n , BfO^ >CO^iHp
^ AKit yiu. phdn II hai nSc
bl mAl ntfO'e: ^ n s J
- ^ - ^ - ^ • Y i u h o ' n a x i l c a c b o n i c /b^aO^ ^CC^t^g,Q-^g,g<^^ MyJQ;
- Mudi cacbonat cua kitn lofi hiim d i Un. bin nhifl. Mu&i cacbonal khic it tan vi mu6l hldfocacbofial dit b| nhl^t ph^n
• MUOI silical cua kim loa<
ki*m d< tan irong nu^c
2 K a I K n , — ^ NHjO), i CX), i 11,0
'^ ^ ' '^'^yjin iigAt KI mang, ch|« axil
Hinh 4- Sd do ti£ duy kien thUc cdn nhd d Bdi 24- Luyen tap tinh chdt cua cacbon, silic vd hdp chdt cua chung (SGK 11 ndng cao)
2.3. Suf dung sd d6 tu* d u y thi§t k§ cac hoat dong hpc t a p cua hoc sinh t r o n g gid hoc
Giap vien co thi sii dung sP do tu duy theo cac budc .sau:
- Giao vien kilm tra sP dd tu duy da chuan bi P nha ciia cac nhdm theo npi dung dupc phan cong.
Mot so nhom len trinh bay sP dd tU duy ciia minh, cac nhom khac theo doi va nhan xet.
- Giao vien tdng kit va dua ra so dd tu duy npi clung kiln thiic cua bai luyen tap hoac giao cho mot nhdm khac dam nhiem cdng viec nay.
Giao vien dua ra he thong bai tap cung co d l ren luyen kl nang cho hpc sinh.
Pham Tin Huyen, Nguydn Diic Dfmg, Vu Qu6c 'ftung va Nguyfin Thi PhUPng Thiiy Tfr c() SP li luan vk thi.rc le ap dung sP do t u duy trong viec t h i l t kl cac hoat dpng hpc tap ciia hpc sinh trong cac bai dn tap, luyen t a p , chung tdi da thu dupc k(M qua nhU sau:
Hoc sinh rat hiing thii khi cimg cac ban trong nhdm trao ddi dd thiet ke sd dd tu duy tlicM) mot clui de kieii tluic Nhd sP dd \\t duy ma hpc sinh cd the khac sau dupc kien tluic va van dung linh hoat van cac linh huong trong tliUc tiln.
Su dung thanh thao \a hien (|ua s() dd t u duy se giiip hoc sinh sang tao hdn, ghi nhd tot h()n, t i l t kiem thdi gian, nhin thay biic tranh tdng the. to cluic va phan loai suy nghi ciia ban, do dd nang cao d u p c nang lUc nhan thiic va tu duy logic cho hoc sinh. .Mat khac pliUPng i)ha]) nay rat dPii gian, de sir dung, nd tao ra cho cac em i)hirPiig i)lia]) tu duy khdng chi trong gid dn tap, t5ng ket mdn Hda hpc ma ca trong timg bai hpc va cac mdn hpc khac.
Chiing toi da tiln hanh thirc nghiem sU i)hani de danh gia tinh hieu qua cua viec ap dimg sP do tu dii\ trong \iec thilt kl cac hoat dpng hpc t a p ciia hpc sinh.
Qua trinh dupc thuc hien tai trudng T H P T .\gu.\en Trai vk T H P T Xguyin Du Thai Binh, nam hpc 2009 2010. 0 mdi trudng cluing tdi chpn mot cap ldp cd trinh dp tUPng dupug, so lupng hpc sinh nhu nhau va cua ciing mdt giao vien day mon Hda. 0 ldp thuc nghiem day theo giao an cd sir diing sP dd t u du>'. ldp ddi chiing day theo giao an cua giao vien thudng sir dung. Kit qua gid da\' dupc danh gia bang bai kilm tra cuoi gid vdi d l bai hai ldp la nhu nhau sau dd duiic xii If bang phudng phap thong ke toan hpc.
Bdng 1. Phdn phoi tdn so, tdn sudt vd tdn sudt luy tich qua bdi kiem tra
X, 0
1 2 3 5 6 7 8 9 10 Tong
So hoc sinh dat diem X, TN
0 0 0 0 4 3 6 17 30 26 7 93
DC 0 0 1 3 7 16 23 25 12 5 3 95
Ti le hoc sinh dat d i l m X,(%)
TN 0 0 0 0 4,30 3,23 G.15 18.28 32,26 27,96 7,52 100
DC 0 0 1.05 3,16 7,37 16,84 24,21 26,32 12.63 5,26 3.16 100
Tl le hoc sinh dat diem tijf X, trd xu6ng(%)
r.\
0 0 0 0 4.30 7,53 13,98 32,26 64,52 92,47 100
DC 0 0 1,05 4.21 11,58 28,42 52,63 78,95 91,58 96,84 100
Phdt trien ndng luc nhdn tkdc vd tU duy logic cho hgc sinh trong cdc gid on tap,...
Bdng 2. Cdc tham so ddc triing cua bdi kiem tra Bai kiem
tra Ian 1
X ± m TN
7,85 ± 0.02
DC 6,35 ± 0.02
S-' TN 1.98
DC 2.54
S TN 1.41
D C 1.59
V{%) T N 17,96
D C 25.04
X
CO
X
Lap thp'c nghiem • Lop doi chu-Tig
100
so
cC
•10
20
0 1 V » • — . -...»^
•
• _^_..-*"
•'
• / * - ^ /
/
— I 1 1
6 Oiem
10 12
Hinh 5. Do thi dvtdng luy tich ket qua bdi kiem tra
Dua tren kit qua thuc nghiem ^•a thdng qua viec xU li so lieu thuc nghiem, chiing tdi nhan thSy chat lupng hpc tap d ldp thiic nghiem cao hon ldp dpi chiing.
3. Ket luan
Sau mdt thdi gian tim hilu, nghien ciiu va xay dung sP dd tu duy ap dung cho dang bai dn tap. luyen tap phin Hda hoc phi kim ldp 11 (nang cao), chiing tdi da gdp phan phat triln dupc nang liic nhan thiic, kha nang tu duy logic, sang tao cho hpc sinh. qua dd hinh thanh cho hpc sinh phupng phap tu hpc, tii khai quat hda, dap sau kiln thiic, ghi nhd kiln thiic bang tri nhd hinh anh mang lai cho hpc sinh nilm say me, hiing thii hpc tap. Su dung sP do tu duy da gdp phan khac phuc dupc nhiing han chi cua cac phUPng phap day hpc truyin thdng, tirng budc nang cao chat lupng day va hpc.
TAI LIEU T H A M KHAO
[1] Bernd Meier, Nguyin Van Ciidng, 2005. Tdi lieu hdi thao tap hudn phdt triin ndng luc nhdn thiic thdng qua phuang phdp day hoc vd phuang tien day hgc. Bp Giap due va, Dao tao - Du an phat triln Giao due Trung hpc phd thdng.
[2] Nguygn Cirpng, Nguyin Manh Dung, Nguyen Thi Situ, 2000. Phuang phdp day hoc Hda hoc tap 1. Nxb Giao due. Ha Npi.
[3] Dang Thi Oanh, Nguyin Thi Sufu, 2006. Phudng phdp day hoc cdc chuang muc quan trong trong chuang trinh sach gido khoa Hda hoc phd thdng. Nxb Dai hpc Sii pham. Ha Npi.
Pham Thi Huyen, Nguyfm Diic Dung, Vu Qu6c Trung va Nguygn Thi PhUPng Thiiy
14| Xgu\en CiiPug, 2007 Phuang phdp day hoc Hda hgc d trUdng pho thdng vd dai h,gc Mat so vdn. de ca hd.n. Nxb Gi^o rluc. Ha Npi.
[5] T()n>' Buzan, 2007, Su diing tri tue ciia bQ.n. Nxb Tong hpp, thanh pho Ho Chi Minh.
[G| Gia Linh, 2007 Hudng ddn. .sit dun.g hdn dd tu duy. Nxb Tir dien Bach Khoa.
|7| ToiiN- Bu/an, 2007 How to mind map. ('ong ty sach .Anpha.
|8] Le Xuan IVong, Nguyen Huu Dinh, Le Chi Kien, Le .Mau QuyIn, 2007 Hda hoc 11 ndng cao. \'xl) Giao due. Ha Npi.
A B S T R A C T
Development of awareness and capacity for logical thinking of students in revision and practice hours in Chemistry of the 11th class (enhanced level)
with some knowledges on Non-metallic by using the scheme of thinking The paper deals with the way of building scheme of thinking with some knowL edges on Non-metallic in revision and practice hours in Chemistry of the 11th clas.s (enhanced level) and using the scheme of thinking to organize study activities for students. Method of using this scheme of thinking helps students to generalize, to s>'stematiz(- to find out the relationship between knowledges and overcomes short- comings of traditional teaching methods, contributing to carrying out the aim of teaching.