r J- '5^S~
KHOA HOC - CONG NGHE
MOT SO KET QUA NGHIEN CIJIU VE MAY EP THAN SINH HOC TUT TRAU
Le Minh Lu , Nguyen Chung Thong^
T O M T A T
Nghiin ciru ndy di xudt sa do cdu tgo. nguyen ly ldm vi4c vd ca sa ly thuyet tinh todn cho mdy ep than sinh hoc tir trdu. May ep ldm vi§c liin tuc 2 giai dogn theo kieu true vit. Cdc phdn tii- than trdu dugc ep lgi nhd gidm ddn budc vit trong bg phdn ep. Qud trinh chuyen dgng cua than trdu trong true vit bao gdm chuyen dgng tinh tiin dgc tr^tc vd chimin dgng quay theo true vit. Quy lugt bien ddi dp sudt phirc tgp vdphu thuge vdo nhiiu yeu to.
Tir khod: mdy ep, than hogt tinh sinh hgc, trdu.
SOME RESULTS OF RESEARCHING ABOUT THE RICE HULL BIOCHAR PRESS Le Minh Lu', Nguyen Chung Thong ^ SUMMARY
This study recommended the principle diagram and calculation base for the rice hull biochar press. It is screw-type extruder that viforks continuously two stages. The elementes of biochar are pressed by the descending of lathe of screw thread. The process of moving of biochar are combined of the progressive motion and the rotary motion. The changed rule of pressure is complex and depends on many factors.
Keywords: press, biochar, rice hull.
I. DAT VAN BE
Than sinh hpc cdn ggi la Biochar dugc sdn xudt bdng phuong phap nhiet phdn (dot chay trong dieu kien thieu oxy) tir nguydn lieu cd ngudn gdc sinh khdi thuc vat, nd la mdt chat gdm chu yeu Id nguyen td carbon d dang vd dinh hinh, mgt phan niia cd dang tinh the vun grafit. Ngoai carbon thi phan cdn lai thudng la tan tro, chu yeu la cac kim loai kiem va vun cat. Thdy ro dugc nhieu tac dung cua than sinh hgc, trong thdi gian qua nhdm tac gia thudc Hgc vien Ndng nghiep Viet Nam da tap trung nghien cuu ling dung than sinh hgc tir phu phdm ndng nghiep, dac biet tir trdu vao trong viec san xudt gia the trdng cdc loai cdy, cac loai hoa cdy canh cd gid tri cao, sdn xudt dat nhan tgo de hoan nguyen cho cac vung da khai thac, xu ly nudc thdi trang trai chan nudi...Tuy nhien, than sinh hpc tir cdc phu phdm ndng nghiep nay lgi rdi rac va cd t h l tich khd ldn, de cd the ung dung rpng rai vao cac nganh san xudt khac, trong sinh hoat va cdt giir thi cdn phai dugc ep lgi dudi dang banh, thanh hoac vien. Nghien cuu lira chgn nguyen ly lam viec va co sd ly thuyet tinh toan '•^ Hgc vien nong nghiap Vi?t Nam.
TAP CHI CONG NGHIEP NONG THON - SO 19 -
phu hpp cho may ep la mdt budc quan trpng trong viec dua than sinh hgc tu trau phu pham ndng nghiep vao phuc vu sdn xudt va sinh hoat.
n . DOI TirONG, PHlTONG PHAP NGHIEN CtTU 2.1. Doi tirgng nghien cihi
Nghien cuu ve dac diem co ly tinh ciia than sinh hpc tu trdu, ddng thdi nghien cuu cac nguyen ly, cac may moc va thiet bi ep cac vat lieu dang bpt, toi rdi thanh thanh hogc dang vien, tren co sd dd dua ra nguyan ly lam viec cho may ep than trdu.
Nghien cuu cac ydu td anh hudng den qua trinh va chdt lugng cua viec tao thanh hoac tao vien tir than trau nhu cac yeu td ve dp suat, van tdc ep...
Cac thdng sd ciia than trau: khdi lupng rieng khoang 150kg/m^, dien tich be mat 500 ddn 2500mVg, gdc ma sat tir 35° ddn 45°.
2.2. Phu-ffng p h a p nghien cihi
Phuang phap nghien ciiu dan yeu td nham nghien ciiu dnh hudng cua tirng yeu td vao tdi cac thdng sd ra, qua dd tim dupc miic bien thien, khoang bien thien va khoang nghien ciru
2015 9
KHOA HQC - C 6 N G N G H ? thich hpp cua timg y l u td, lam co sd cho
phuong phap nghidn ciru thuc nghiem da ydu td.
Ap dung phuang phap md phdng dd lira chpn cdu true va nguydn ly lam viec cua may ep than sinh hgc lam co sd cho viec thiet kd nham gidm bdt thai gian va kinh phi cho nghien cmi thuc nghidm.
Ap dung phuong phap nghien cihi thuc nghiem dd xac dinh dnh hudng ciia cdc thdng sd ddn cac chi tieu ky thuat ciia may bd sung cho CO sd ly thuydt tinh todn thiet kd may.
Ky thudt su dung:
Sir dung chuong trinh phdn mdm md phdng tien tidn (Inventer, Acad...) de thiet ke may tren may vi tinh.
Su dung cac thidt bi thi nghiem, thiet bi do nhu cdn ban, may ep, may do dp dm, may do he sd ma sat... ddng thdi sir dung kj* thugt tinh toan va 1^ thuydt tinh toan trong mdy ep dd xac dinh cac thdng sd ky thuat ciia viec tao thanh hogc tao vien.
m . KET QUA VA THAO LUAN 3.1. Nguyen ly Iam viec cua may ep Cd 2 nhdm may ep la nhdm may ep de tach pha long ra khdi pha ran va nhdm may ep dk tgo hinh. Ve mdt nguyen ly lam viec thi c6 nhieu logi nguyen ly nhu nguyen ly ep kidu piston, nguydn ly kidu true vit, ng;uyen ly kidu ep can, ep dap, nguyen ly kieu khi nen... Mdi mdt logi nguydn ly cd cac dac didm lam viec rieng, nguyen ly kieu piston phii hgp de ep cac loai vat lieu dgng banh, dgng sgi va tach pha long, tuy nhien lai ldm viec gian doan, khdng lien tuc;
nguyen ly kieu ep can phii hgp vdi ep dang tdm hoac ep tach pha Idng; nguyen ly kidu khi nen lgi can phal cd cac thiet bi may moc ddt va ky thuat cao [6].
De dap ling dugc cac yeu cdu vd ky thuat cho san phdm cd the tao ra dudi dang thanh hogc dgng vien va lam vide lien tuc, dgc biet la thugn tidn cho vide dieu chinh, su dung va cd gia thanh phii hgp vdi tiii tidn va trinh dp cua ngudi su dung, chung tdi xdy dung md hinh
nguydn ly lam viec cho may ep than trdu lam vide lien tuc theo nguyen ly kidu tryc vit:
10
Hlnh 1. Sa do nguyin ly cua mdy ep 1. Dpng CO, 2. Tmyen dgng dai, 3. Pheu cap !i?u,
4. Vit, 5. Dau tao hinh, 6. Khung may.
Md ta nguydn ly: nguyen lidu hdn hgp than trdu dugc dua vao bd phan true vit qua phdu cap lieu 3. d ddy hdn hpp than trdu se dugc nhao trpn d viing cap lieu Lc va bl nen ep d viing ep Le, sau khi qua ddu tgo hiiih 5 se dugc sdn phdm dang thanh hay dgng vidn. Dd cd dugc cac thanh hogc vidn cd do dai tuong ddi nhu nhau thi ngay sau ddu ep tao hinh dugc bd tri mdt dao cdt theo kidu cat cd tdm ke hoac tu gdy do trgng lugng.
Do chat, kich thudc va hinh dang ciia san phdm cd the didu chinh mpt each de dang, bang cdch tang hodc giam dudng kinh cua vit vd vd, thay ddi budc cua vit hodc thay doi hinh dang cua ddu tgo hinh. Vdi nguyen ly nay, sdn phdm ra se lidn tuc va bdt cdc thao tdc bdng tay ciia ngudi sir dung, ngoai ra cd thd ldp them bang truydn cung cap gliip cho viec cung cdp nguydn lidu dupc ddu va on dinh han.
3.2. C a SO' ly thuyet cua qua trinh ep Ep la qua trinh co hpc phirc tgp didn ra trong bd phgn ep. Tuy nhien cd thd md phdng quy luat bien ddi cac thdng sd trong qua trinh ep bdng toan hpc dua tren cac quy lugt thay ddi ap suat va van tdc chuydn ddng cua vdt lieu, qua dd cd thd xac dinh dugc mot sd thdng sd vd cdu tgo vd chd dp lam viec nhdm dinh hudng cho vide TAP CHI CONG NGHIEP NONG THON - SO 19 - 2015
KHOA HOC - CONG NGHE thidt kd. CJ day ta chi xet cac ydu td chinh trong
qua trinh ep dd la: he sd len chat \\f, he sd rdng 6, ap sudt ep p (kG/cm^), he sd ma sat f, chidu cao banh ep h (cm), nang sudt ly thuydt ciia may epQit(kg/h)[7].
Ap sudt ep phu thudc vao nhidu ydu td:
nhiet do, he sd ma sat, chidu cao bdnh ep... dac biet chidu cao cua banh ep, nd dupc the hien bdi ddthi:
A p (kG/cm')
Hinh 2. Bd thi chi suphu thuoc ciia dp sudt vdo chieu cao bdnh ep.
Theo nguydn ly ket cdu cua may, mat ngoai cua vit xoan cd dang tru, mang vit cung cd dgng hinh tru. Qua trinh dich chuydn vdt lieu trong mang vit xoan ciing tuong t u nhu qua trinh van chuydn vdt lieu cua vit tai. De dam bao qua trinh ngp lieu dugc Udn tuc tir viec trgn hdn hgp sang bg phan ep, nang sudt van chuydn tinh theo ly thuydt Qit cua vi't xoan d viing cap lieu phdi blng nang suat cua bg phgn trdn QtrOn [4], [7].
^ _ 7 t ( R ; - r ^ )
60 ^.S.n.y (kg/h) (1)
. Q c = Q u (2) Neu nhu vdt lieu quay cimg vdi vit xoan vdi
van tdc tOvi = co thi nang suat thuc te ciia vit xoan Qc= 0 vi khdng co sir dich chuyen dpc true.
Ndu 0 < (Ovi < 0) thi vdt lieu cd van tdc quay trung binh khac vdi van tdc quay cua vit xoan, khi do nang suat cua vit xoan dupc tinh theo cdng thiic [7], [8]:
Q . = Ql..Tlnc (3) trong do:
qnc - he sd thd tich nap lieu:
trong dd:
Rv , rv - ban kinh ngoai va trong cua vit xoan, m;
S- budc vit xoan, m;
n - tdc dp quay cua vit xodn, vg/ph;
7 - khoi lugng rieng ciia vgt lieu, kg/m^.
Tuy nhidn khi vit xoan quay thi vdt Heu cd thd quay theo va vdn tdc gdc cua vdt cOvi cd thd dao dgng trong gidi han 0 < C0vi< to.
Neu van tdc gdc cua vat lieu ©vi = 0 thi nang sudt thuc td Qc cua vit xoan d vimg cap lieu bdng nang sudt ly thuydt Qu:
= 1 - - (4)
Tii cac ket qua trdn cho thdy, khi thidt ke che tgo vit xoan cdn chii y mpt sd dac didm sau:
- De nang cao nang suat can phai giam chuydn dgng quay cua vat lieu theo vit xoan, nghla la hinh dgng va tinh chdt bd mat cua vit xoan phai dam bdo su lien ket nhd nhat vdi sdn phdm.
- Bd mat trong cua mdng vit ham dugc san phdm quay, nliung ma sat theo chidu dgc true phai nhd khdng can trd su di chuydn theo phuang dgc true cua vat lieu.
Hlnh 3. Da gidc bieu diin sir dich chuyen cita vdt lieu.
Vi vdy can phai gia cdng vit xoan c6 dp nhdn bdng cao, budng vit cd the tao cac gd theo hudng dgc true dd hgn chd chuyen dpng quay ciia vat lieu theo vit xoan nhung khdng can trd chuydn dpng dpc true cua vat lieu [2].
Su chuydn ddng cua vdt lieu trong vimg cap lieu bao gdm chuyen ddng quay va chuyen ddng tinh tidn theo phuong dpc true. De xac djnh cac
TAP CHl CONG NGHIEP NONG THON - SO 19 - 2015 11
K H O A H Q C - C O N G N G H E thanh phdn vgn tdc ciia vat lieu, ta xet mdt phan
tir vgt lieu M tgi didm A ndm trdn ban kinh trung binh ciia vit xodn. Ndu cdt mdt tru dd cd didm A chuydn ddng dgc theo dudng sinh rdi trdi phdng ra thi dudng xodn vit se trd thdnh nhiing dudng thdng nghieng vdi mgt cdt ngang true vit xodn mgt gdc a (gpi la gdc nang cdnh vit), ta dugc da gidc van tdc bieu didn sir dich chuydn cua vdt lieu trong viing cap lieu.
Nhu da phan tich d trdn, qua trinh dich chuydn vdt lieu trong budng 6p gidng nhu qud trmh dich chuydn timg ldp dpc theo canh vit, nhanh hay chdm phu thudc vdo buoc vit S, dang vit xodn. Do cd thd gia thuyat rdng, trong qua trinh dich chuydn khdng cd qua trinh xao trdn giiia cac ldp tren canh vit, khi dd quy dao chuydn ddng cua cdc phdn tii moi vgt lieu tren dudng vit la chuydn dgng phiic tap, bao gdm:
- Chuyen ddng quay tuong ddi cua vgt lieu quanh true vit xoan vdi van tdc gdc cOvi:
COvl=CO-C>qc (5) trong dd:
coqc- van tdc gdc cua vat Ueu so vdi mdng vit, s'';
to- van tdc gdc cua vit xodn, s"'.
- Chuyen ddng tinh tidn cua vat lieu dpc true vit xodn vdi vgn tdc Vnc:
Neu budc vit khdng ddi, thi mpi didm cua vat lidu trong ranh vit xoan sd cd quy dao dudng xoan dc. Van tdc chuyen ddng VM cua vat lieu tai didm A trdn bd mgt cua cdnh vit, each dudng tam true vit xodn mdt khoang Rtbc se gdm van tdc tinh tidn theo chieu true Vnc va van tdc tidp tuyen Vqc=Rtbc-C0qc vudng gdc vdi true ciia vit xoan do chuyen ddng quay tgo ra, do dd:
v'„. = V^M-< = yl<~KcK (6)
Gid sir phdn tOr vat lieu M tai vi tri ban kinh trung binh Rtbc di chuydn tir didm A tdi A3. Tir diem A ve dogn thdng AA2 vudng gdc vdi dudng tdm cua vit xoan bidu didn vdn toe vdng cua vit xodn, tir A2 ve dogn thdng nghidng mdt gdc a (gdc ndng cdnh vit) bieu didn van tdc trupt tren canh vit khi khdng co trupt quay A2A0
12 TAP va khi CO trugt quay A2A3, tir cac didm Ao va A3 d\mg dogn thdng vudng gdc vdi AA2 ta dugc dogn thdng A1A3 va AAo bidu didn vdi van tdc dgc true cua vgt U?u khi cd trugt quay va khi khdng cd trugt quay, trong dd:
AA3= VM bieu dien van tdc tuy$t ddi chdt didm v^t lidu M (gpi tdt la van tdc tuyet ddi cua vat lieu);
AA2 = V bieu diln vgn tdc vdng ciia vit xodn (v = Rtb-co);
A2A3 = Vt bidu dien van tdc trugt cua vgt lieu trdn rdnh vit khi cd trupt quay;
A2A0 = Vo bidu dien van tdc trupt dai ciia vgt lidu trdn ranh vit khi khdng cd trugt quay;
A A | = Vqc bieu dien van tdc vdng cua vdt lieu so vdi vit xodn;
AAo = Vno bi^u didn van tdc dpc true cua vgt lieu khi khdng cd truat quay;
A1A2 = Vvic bidu didn van tdc vdng cua vat lidu so vdi vit xoan;
A1A3 = Vnc bidu didn van tdc dpc true cua vdt lidu khi cd trupt quay.
Tir da gidc van tdc ta cd the xac dinh dugc van tdc cua vat lieu khi khdng cd trupt quay va cd trupt quay nhu sau:
- Khi khdng cd trugt quay, van tdc dpc true ciia vat lidu dupc xac dinh theo cdng thiic [7]:
3600.Y.F^
trong do:
Qc- nang sudt van chuydn vdt Heu cua vit xoan trong vimg cdp Hdu, kg/h;
Fc- dien tich tidt didn ngang cua vdt lidu trong vung cdp lidu, m'^.
- Khi cd trugt quay, van tdc dpc true ciia vat li?u dupc xac dinh tir dd thi tam giac vgn tdc A1A2A3:
Vnc=Vvlc.tga = (v-Vqc)tga
= (V-Rtbc.COqc)tga ^ (8) Tir cdng thiic (8) cho thdy mudn tang vdn tdc dpc true Vnc cua vat lieu co thd tang van tdc vdng cua vit xodn v, tang gdc nang a hodc gidm vdn tdc vong cua vat li^u so vdi mang vit Vqc- CHl CONG NGHIlIP NONG THON - SO 19 - 2015
KHOA HQC - CONG NGHE Viec tinh toan van tdc cua vdt lieu trong
vung ep cung tuong tu nhu trong viing cdp lieu nen cd thd dung cdng thiic (8) de xac dinh van tdc di chuydn cua vat lieu. Tuy nhien do dudng kinh true vit xoan cd dang hinh cdn vdi gdc nghidng so vdi dudng tdm cua vit xoan la p n6n vdn tdc di chuydn dpc true, dugc xac djnh theo cdng thiic:
Vne = (v-Vqe)tga.COsP ( 9 )
Van toe vdng ciia vat lieu tai ban kinh trung binh ciia cdnh vit so vdi mang vit d bp phdn ep, phu thudc vao gdc nghieng P va khoang each theo chidu dgc true cua diem dang xet ddn gdc tga dp X, dugc tinh theo cdng thiic:
Vqe= Rlbe.Oi)qe^(Rlbc+ X.tgP/2)a)qc ( 1 0 )
Thay cdng thiic (10) vao (9), ta xac dinh dupc van tdc di chuyen cua vdt lieu theo chidu dgc true:
Vne= [v-(Rtbc + x.tgp/2)a)qe].tga.cosp (11) Cdng thiic (11) cho phep ta khdo sat mdi quan he giiia van tdc di chuydn cua vdt lieu Vne theo chieu dgc true vdi chidu dai vit xoan x. Do dd gdc nghidng p cua true vit rat nhd ndn khi tinh toan cd the tinh gdn dung tgP ~ p va cosP ~ 1.
Qua trinh bien ddi ap suat, chuyen dpng cua vdt lieu didn ra khi ep nguyen lieu than trau trong mdy ep kieu vit xodn la qud trinh rat phiic tgp, den nay chua cd cdng trinh nghien ciiu ly thuyet nen ep vdt lieu than trau trong may ep kieu vit xodn dugc cdng bd. Vi vdy vide nghien cuu de dua ra mgt phuang trinh ly thuyet bieu didn qua trinh ep ridng cho logi vat lieu nay gap nhidu khd khan. Nhung gid thuyet sau day cd thd thich hpp cho viec van dung mpt sd nghidn ciiu ly thuyet nen ep cac loai thuc phdm khac vao qua trinh nghdn ciiu qua trinh ep than trdu:
- Nhidt dd cua vat lieu thay ddi khdng dang kd trong qua trinh ep, do dp dm cao va thdi gian vdt lieu trong budng ep rdt ngin.
- Thd tich pha khi trong than trdu trong budng ep khdng dang ke, khdng anh hudng tdi qua trinh khao sat va tinh toan.
TAP CHi CONG NGHIEP NONG THON - SO 19
Ap dung ket qua nghidn cuu ly thuydt cua Xokolov A.Ia [7] ve qua trinh nen ep, phuang trinh vi phdn bieu dien mdi quan he giiia dp sudt ep theo chidu dpc true vdi he sd thd tich ngp Hdu (0< x<Lc):
_L^xosa^rdp_^_ . i V i 2 ) trong dd:
p, c - he sd dp nhdt ddng luc ciia vdt lieu;
Rtbc- ban kinh tnmg binh cua vit xodn, m;
p- dp sudt ep theo chidu true cua vit xoan, N/m^;
X- khodng each theo chidu dpc true tu didm dugc xet tdi gdc tpa dp, m;
tttb- gdc ndng canh vit theo ban kinh trung binh, rad;
lb- chieu dai dudng bao ciia mang vit tai tidt dien thang gdc vdi dudng xoan dc, m;
0- ling suat cat gidi hgn cua vat lieu, N/m^.
Ta cd thd van dung cdng thirc tinh ap sudt d vimg cdp lieu de xdy dung phuang trinh bidu diln quy luat bidn ddi ap sudt trong vimg ep cd bd sung he sd giam the tich vat lieu trong vimg ep (Lc < X < L):
1 F. .cosa,K ^5^(dP.4..,23.,oS,ina,-0,33ilC13) trong dd:
Tige- he sd giam thd tich vdt lieu trong viing ep.
Tir hai phuang trinh ap suat trdn sau khi bidn ddi ta dugc phuang trinh bieu didn quy luat thay ddi dp sudt trong vung cdp lieu va vimg ep nhu sau:
dx
;2 ^.c-^o-'^R.e ^ 0 3 3 6 l,23.10=7i(R;-rJ)sma,i (14)
(15) dp \7t(R',-(r,+xtgP)')cosa,|, I,, J dx~ 1,23.10'ii(R',-(r,+xtg|3)')sina,t
Phuong trinh (14) va (15) bieu dien quy luat bien doi ap suat p trong vung cap lieu va vung ep theo chieu dai vit xoan x. Day la ca sa ly thuyet quan trong de khao sat anh huong cua
2015 13
KHOA HQC - CONG NGHE mot s5 thong s6 vi cku tao va ch6 do lam viec
CLia b q phfin e p .
Til CO si tinh toan ly thuy& va ket qua nghien cuu thuc nghiem xac dinh cac thong so nhu ap suit tao dp, van tpc t6c ep... nhom nghien cuu da xac dinh dug'c mot s6 thong so lam viec chinh cho may ep than sinh hoc (Biochar) tit triu, nhu sau;
Bang 1. Cdc thdng sd ky thudt ciia mdy ep TT
1 2 3 4 5 6 7 8 9
Thong so Nang suit thiet ke may Cong suit dgng co dien So vong quay ciia vit xoan
Chi^u dai vit xoan Vimg cap lieu Vungep
Ban kinh ngoai cua vit xoan
Ban kinh trong cua vit xoan
Goc nghieng Ap suat ep Van toe ep
Donvi kg*
kW v6ng/ph
mm mm mm mm mm do N/mm-"
m/s Gia tri
200 7,95 150 380 172 208 64 32 5,3 2,83 0,0375
Bang 2. Bu&c vit vd goc ndng tren moi buac vit Thiitu
vong vit Buoc vit S
(mm) Goc nang a
(do) 1 86 53
2 86 53
3 68 46
i 51 38
5 40 32
6 34 27
7 15 13
chuydn dpng tinh tien va chuydn ddng quay theo true vit, de tang nang sudt cua qua trinh ep cdn phai dam bdo su Hdn k^t nhd nhdt giiia cac phan tit, ddng thdi l^m chd chuyen dgng quay theo true vit nhung khdng cdn trd sir di chuydn theo phuang dpc true bdng each tao cac gd tren vd theo hudng dpc tryc. Ket qud nghidn ciiu la ca sd cho viec thiet kd, che tgo may ep than sinh hpc (biochar) tir trdu - phu phdm ndng nghidp phuc vu san xuat va sinh hogt.
Tai li^u tham khao
1. Nguyen Trpng Hiep, Nguyen VSn Lam (2003), Thilt Ke chi tiet mdy, Nha xuat ban giao dgc.
2. Jrkn Thj Hirimg, N g u y i n Dai Thanh (1995), Giao trinh chi tiSt mdy, NXB D^ii Hpc Nong Nghiep I, Hd Npi,
3. Ddng The Huy (1995), Mpt so phuang phap toSn hpc trong ccf hoc nong nghi?p, NXB Dai Hpc Nong Nghiep I, Hd NOi.
4. Tr^n Nhu Khuyen (2007), Gido trinh Thiet b\
trong cong nghe ch€ biSn nong sdn thuc phSm, NXB Dai Hpc Nong Nghiep I, Hd Npi.
5. Trdn Nhir Khuyen (2006), NghiSn ciiu thiet kk che t^io may ^p nuac dira kieu vit xodn, Tap chi Nong nghiep va Phdt triln n6ng thon, s6 2-2006, Ha Npi.
6. Trdn Minh Vupng , Nguyin Thj Minh Thuan, Mdy phuc vg chdn nuoi, Nhd xu4t bdn Gido due.
7. Xokolov A.Ia (1976), Co scr thilt kk mdy san xudt thgfc phdm, (Tdi lipu djch), NXB Khoa hpc ky thudt. Ha Npi.
8. Jonh A.C. (1990), How to apply response surface methdology, Amer Society for Quality, pp 1 - 4 5 .
N g a y nhSn b a i : 18/8/2015 Ngay p h a n b i ^ n : 30/8/2015
NguM phan bifn: PGS.TS. Chu Vdn Thien, Vien C a dien nong nghiep va Cong nghe sau thu hoach.
IV. KET LUAN
Nghidn cuu da dua ra so do nguyen ly lam vide kieu true vit cho may ep than sinh hgc tir trdu, vdi nguyen ly nay may se lam vide lien tuc theo 2 giai doan: giai dogn cdp lieu va giai doan ep tgo hinh san phdm. Quy ludt chuydn ddng va bien ddi dp sudt ciia than sinh hpc trong bp phdn ep la qua trinh chuyen ddng va bien ddi phiic tap phu thudc vao nhidu ydu td, nguyen lieu than triu
14 TAP CHf CONG NGHIEP NONG THON - SO 19 - 2015