• Tidak ada hasil yang ditemukan

ol trUoIng trung hpc phd thong Thiet ke va sd dung Rubrics lam cong cu danli gia trong qua trinh day hpc Toan

N/A
N/A
Protected

Academic year: 2024

Membagikan "ol trUoIng trung hpc phd thong Thiet ke va sd dung Rubrics lam cong cu danli gia trong qua trinh day hpc Toan"

Copied!
6
0
0

Teks penuh

(1)

mnn iniHtii/dng inao

Thiet ke va sd dung Rubrics lam cong cu danli gia trong qua trinh day hpc Toan ol trUoIng trung hpc phd thong

Trjnti Thj PhiTtfng Th^o

Tnfdng O31 hpc SU pham - fiai hoc Ttiii Nguyen Sfi 20 LUOng Nggc Quyfin, thanh phfl ThSi Nguyen, tinh Thii Nguyen, Vigt Nam

Email' Trinhphiionglliao@dhsp&i.edu.vn

TOM TAT: Dinh hudng dSi mdi giio dijc phS thdng Viit Nam chuyen tU col trgng dinh gia tSng kit sang coi trgng dinh gii qua trinh va hudng vao nang luc ngudi hgc. Ciu hdi dit ra li "Lim the nao dS cd the danh gii xie thue dugc nang luc cQahgcjinh trong qui trinh d^y hoc?". Bii viit nhim mgc dich nghidn cdu de xuat quy trinh thiit ki va sd dung Rubrics trong qui trinh day hgc giup giao viim danh gii chinh xie nhat kit qui hgc t$p thing qua vi$c thue hien nhiem vu trong boi cinh thue mi ngudi hgc d^t dugc trong qua trinh day hgc. TU dd, giup dieu chinh phuang phip day hgc eua giao viin va hgc sinh nhim ning cao kit qui hgc tip. Bai bao sd dpng phuang phip nghidn cdu li thuyit de nghien cUu thiit ki Rubrics trong dinh gii kit qui hgc tap eua hgc sinh trong bdi cinh thue. Kit qui cho thiy. cd thi danh gia xie thue kit qui hgc tap eua hgc sinh, ddng thdi ning cao khi ning tu dinh gia eua hgc sinh thdng qua hoat ddng, sin phim thUc mil hgc sinh thUc hign.

Tif KHOA: Rubric; ddnh g l j ; day lioc Todn; hoc sinh.

• • NhSn bii 20/3/2019 -> NhSn kgt qu^ phan bi$n v i chinh sifa 15/4/2019 -> Duy^t dSng 25/4/2019

I.DItvffnde

Toin hoc la mon hgc nen tdng giiip hpc sinh (HS) c6 tu duy v£i kiSn thue dl hoc t6t cdc mon hpe khac. Trong DH Toin 6 truong pho thong, vSn de thach thurc d6i vcri giao viSn (GV) chinh Id \km th6 nao dg tao ra hiing thu hpc loan cho HS va dam bao cho tat cd HS co dupe ki6n thiic, kT nJng dl ung dyng loan hpc vao giai quyet cac nhiem vu Ct$t ra trong th\rc tien. Vdi thoi gian han ehe ciia cdc gio hgc Todn trSn l(5p, GV thu£mg tap trung vdo vi?c 1dm thi nao de tao ra cdc hoat dpng hpc cho HS ma it chii tam den hojit dpng ddnh gid (DG) xem HS dp dyng kien thue da hgc vio thye tien nhu the ndo. DG truyen thong trong day hpc (DH) Todn a tnrdng trung hpc pho thdng (THPT) hi?n nay chii yeu la cdc bdi kiem tra trSc nghi?m khach quan hoac tu lu^n. Hinh thiic kilm tra nay chii yiu DG HS ve kien thiic vd tu duy logic trong qud trinh giai bai tap va npi dung gan nhir khong gdn vdi bdi cdnh thyc. De cd thi thyc hi^n duac DG xae thyc ket qua hpc tap ciia HS, chiing ta su dung Rubrics lam cdng cy DG trong qua trinh DH Todn Rubrics giiip DG xac thyc ket qua hpc tap ciia ngudi hpc thdng qua cdc hdnh vi dupe mo td d cdc muc khdc nhau. Nlu nhu DG tniyen thdng cd thi do ludng sy phdt trien ciia kien thiic thi Rubrics Id mdt cdng cy DG giiip do ludng ket qua hpc tap ciia HS trong gidi quyet nhi^m vy th\rc.

2. N$i d u n g n g h i e n cuftj

2.1. Suf dung Rubrics l^m cong cu ddnh gid trong qud trinh day hpc h tnfdng trung hoc pho thong

Khdi nifm Rubrics: Theo Jdnsson, A., & Panadero, E.

(2016) thi Rubrics Id mpt cdng cu dirpc thiit kl de hd tro cdc chuyen gia DG khd nSng, ndng lyc ciia HS giiip hd trp GV xdc dinh cdc phdm chat ciing nhu thdnh tich dat dupe

ciia HS. Rubrics md td cdc pham chat vd thdnh tich dat dupe ciia HS d cdc miic chat lupng khdc nhau theo ma tran hai chieu: Mpt chieu la ndi dung can DG va mpt ehilu la miic dp chdt lupng san pham [l,tr.24].

Jonsson vd Svingby (2007) da coi Rubrics Id mdt cdng cy chdm diem de DG xdc thyc mpt nhi^m vy phiic hgp ciia HS. Nd bao gdm cdc tieu chuan vd cdc tieu chi md HS phdi dat dupe trong qud trinh hpc tap phiic hpp do [2, tr.l31].

Knight (2006) dua ra khdi mem Rubrics Id mOt cdng cu DG de DG khach quan vd xdc thye ve cdch thiic HS dp dung kien thiic ciia minh vdo cdc nhiem vy thyc trong cupe sdng [3, tr.45]. Theo Le Thj Ngpc Nhdn (2014), Rubrics la mpt cong cu diing de DG ket qud hpc tap ciia ngudi hpc dupe the hien bdng ban md td cdc tieu chi DG theo cdc cdp dp khdc nhau tren eo sd ede yeu cau, myc tieu can dat ciia mdn hpc[4,tr.l47].

Tir cdc nghiSn ciiu tren co the dinh nghia Rubrics Id mpt cong eu chdm diem de DG khd ndng hodn thdnh cong viec dich thue eua HS thong qua cdc nhiim vu thue duac giao Rubrics bao gom cdc tieu chudn ve npi dung vd ede ITnh vuc quan trong cdn DG nguoi hge vd cdc tieu chi dgt duac cdc tieu chudn dd.

Lpi ich eua vipc su dfing Rubrics lam eong cfi BG trong qua trinh DH & trudng THPT

Doi v&i GV-

1/ Cong eu DG Rubrics giiip do luang cd qud trinh hgc tgp eua HS- Rubrics khdng chi DG ket qud hpc t^p ciia HS ma DG qud trinh hpc tap eua HS. Vdi cdng cy DG Rubrics.

GV hoan toan cd thi DG ngudi hpc bdng diem sd theo cdc tieu chi da quy dinh ddi vdi san pham md HS npp l^i. Hon thi nira, GV cd the EKJ dupe ca qua trinh hpc t|p eua HS thdng qua cdc cau hdi vdn ddp, cdc phieu ty DG va EXJ

SfJ 16 thing 4/2019 -13

(2)

NGHIEN CCrU Lt L U A N

ddng dang eua cdc ban trong nhdm/ldp.

2/ Rubrics Id cong cu phdn hot hiiu qud kit qud hpc lap eua HS: Vdi cong cy DG Rubrics, GV co nhimg phdn hdi chinh xdc vl kiln thiic md HS cd duac, ki ndng ma HS cd thi van dung dugc mdt cdch chi tiet, chinh xac va hoan todn khach quan, khong chil quan phy thupc nhan xet ciia GV vl HShoacHStyDGHS.

Bdi v&i HS:

l/HS CO nhiiu eo hgi thi hiin su hieu biet sdu sac han vi iTnh vuc ehii de Todn hge: Mdi mdt nhifim vu yeu cdu HS phdi the hien khd nang tu duy (phan tich, tong hgp va sdng tao), ddng thdi yeu cau HS phdi tang cudng thao luan, hpp tac vdi ban be, thay co de thyc hien nhiem vu.

2/ HS duac thu thdch dp dimg nhimg gi hg dd hpe duac vdo thue hien ede nhiem vu trong thi giai thue: HS thay dupe kien thiic, ki nang vd nang lyc thyc hien eiia minh d miic dd nao nham gnip GV va HS dieu ehinh phuang phdp DH hudng vao vi6c nang cao ket qud hpc tap eua HS.

3/HSduac ren luyen khd ndng luDG vd DG dong ddng- Rubrics la cac ma tran hai chieu, md ta cac tieu chi DG, do dd trong cdc DG trinh dien thdng qua cdc nhiem vu thye, ngudi ta cd the thiet ke cac Rubrics de HS tu DG hoac HS tham gia DG ban (DG dong dang). Viec DG nay mang lai su thuan Igi cho HS, giiip HS ren luyen kl nang DG de tham gia vdo viec dua vd nhan cdc thong tin phan hdi.

2.2. Thiet ke Rubies lam cong cu danh gid trong qud trinh day hoc loan is tn/dng pho thong

De cd the thiet ke dupe Rubrics 1dm cdng cy DG trong qud trinh DH ndi chung, DH Todn ndi rieng, can tuan thii theo cdc budc sau [5, tr.l2]:

Buae 1: Xde dinh muc tieu DG HS

Bat ki mdt ki kiem tra nao, mpt hinh thiic DG ndo eiing can biet se kiem tra nhimg gi, gdm nhiing kien thiic ndo?

Can xac dinh HS tiep thu kien thiic d miic dp nao? HS cd nhttng kT nang ndo vd miic dp tu chiu trach nhiem ciia HS ra sao? Do vay, trudc khi bat dau xay dung mdt cdng cu DG theo Rubrics, GV can xem xet lai phan kien thiic da day cho HS vd phan ki nang da ren luyen cho HS trong qud trinh day kien thiic do, chi rd pham vi kien thiic, kT nang can DG xac thu-c HS.

Bu&c 2: Xdc dinh chudn cdn DG

Chudn la nhirng yeu cau HS can biet vd can lam dupe sau khi hpc phan kien thiic nao dd, chuan quy dinh miic dp HS d^it dupe thdng qua cac hanh vi cd the quan sat duge, DG dupe. Thdng thudng, khi xay dung Rubrics, can xdc dinh va tap hpp 3 thanh phan ciia chuan gdm:

Chudn npi dung la nhung md td \ e ndi dung kien thiic Toan md HS biet de sir dung trong qud trinh lam ra sdn phdm.

Chudn qud trinh Id nhirng mo td \ c kl nang ma HS can thao tde, ren luy?n de dp dyng cdc kien thiic dd hpc t^o ra san phdm theo yeu cau.

Chudn gid tri Id nhOng md td cdc pham chat ma HS dat dupe sau qua trinh hoc tap phan kien thirc dd, nhirng thai dp chudn myc eua HS ddi vdi gid tri eua kien thirc vd cac

san phdm dugc t?o IB sau khi dp dyng kiln ihiic do trong bdi cdnh thyc.

Bu&c 3: Xdy dung di kiim tra DG kit qua hgc tgp ciia HS CO sir dyng Rubrics

Khdc vdi DG thdng thudng, DG thdng qua Rubrics thudng dupe thyc hien thdng qua viec yeu cau HS thyc hi^

mpt nhiem vy phiic tap hem Nhi?m vy dd bdt bupc phai t^

ra sdn phdm chii khdng don thudn Id trd Idi cau hoi van dap hay tren gidy. Do vay. Rubrics thudng dupe thiet ke trong cdc dl kilm tra DG md phdi yeu cdu HS thyc hi?n trong mgt qud trinh nao do vd kiln tao ra mpt sdn phdm thyc. Cdc kieu DG cd su dyng Rubrics thudng Id DG trinh diln; DG thijc kit qud hgc t^p. Dilu quan trpng trong qud trmh xdy dyng dl kilm tra DG cd sii dung Rubrics chinh la xdc dinh cac nhiem vu md HS phai thue hien. Cac kieu nhi?m vy co the thiet ke cho HS thyc hi$n trong qud trinh td chuc DG theo Rubric trong DH Toan nhu sau:

- Yeu cdu HS xdy dung mpt bdo edo thuyit trinh hope mpt Poster vi ung dung Todn hpe trong thue tien: GV co thi giao cho HS cdc van de trong cugc sdng c6 sing dyng Todn hpc, sau dd yeu cdu HS thu th^p tdi lieu, bdo cdo thuyet trinh hoac dimg Poster de trinh bdy ket qua nghien ciiu theo cdc yeu cau ngi dung ciia bdi thuyet trinh.

- Yeu cdu HS kiin tao ra mgt sdn phdm thifc: GV yeu cdu HS vdn dyng kien thirc Todn hpc de kien tao ra mpt san pham thyc trong cudc sdng.

- Yeu cdu HS thue hien cdc du dn hge tap: Giao cho HS hodc nhdm HS thyc hi?n cdc dy dn lien quan den kien thiic Toan hgc; San pham eua du an van la nhiing sdn phdm md hinh; San pham thyc nhung qua trinh thyc hi^n dy dn thudng ddi ban mpt nhiem vy thyc va thudng phai co h^rp tde giira cac thdnh vien trong nhdm mdi cimg thyc hi?n dupe dy an. Neu xdy dyng bdi thuyet trinh, poster ho^c kien tao san phdm thyc thudng cd the giao theo cd nhan bo^

nhdm nhung ddi vdi thue hien du an hpc tap thudng sS la nhiing nhipm vy phiic tap, yeu cau phdi danh nhieu tbcri gian thi mdi cd the hodn thdnh dugc.

Bu&c 4: Xdy dung Rubrics su dung Idm eong DG trong qud trinh DH Todn a trucmg phd thong

Sau khi xdc dinh dugc nhiem vy md HS phdi thyc hi^n vd cdc chuan cdn DG xac thyc kit qud hpc tap ciia HS. de xay dyng duge Rubrics DG kit qud hgc tap ciia HS, GV thudng trdi qua 3 giai doan the hi?n d Bdng 1:

Quan trpng nhdt ciia mpt Rubric la cdc tieu chi DG. GV phdi xdy dyng cdc tieu chi DG cho tung npi dung Id dpc 1^

nhau de chdc chan khi DG khdng bj triing cheo nhau vd d^c trung cho mpt ddu hi?u ciia bdi thi. Khi xay dyng cdc tieu chi, GV nen thdo ludn vdi GV khde cung bg mdn va d$c bi?i nen thdo luan ciing HS de cd tieu chi tdt. Mudn xay dyng dugc tieu chi tdt, GV cdn thyc hi?n cac nguyen tde sau:

- Cdc tieu chi cdn md ta theo mpt logic chung la di tir miic cao nhdt den miic thdp nhdt ho$c ngugc l^i.

- Cac tiSu chi can md td de chi rd rang ranh gidi giiia c4c mite dp hoan thanh ddi vdi timg HS vd giija cac HS vdi nhau.

44 TAP CHl KHOA HQC GIAO DUC VIET NAM

(3)

B^ng 1 : Cdc glal doan xay diAig cong cv OG Rubrics [6,tr.27]

Giai do^n 1 Len ]/ tiidng

Cic nhiem vu ma GV phai lliilc tiien

- Xdc dinh cdc Ueu chi vS Iden ttiifc, kf ndng vd thcii do c§n OG HS - M6 td hdnh vi thdnh thao nhdt 66\ vdi timg Hgu chi neng bi^t.

- Md td hcinh vi tti^ hl^n l^ong dat do! vdi tiTng tieu chi ri^ng !e.

Glal do^n 2 Xay d i ^ g Rubrics - U 3 chgn sd li/dng miic hanh vi bleu hien ciia HS se dUdc sir dung trong phieu diem.

- Mfl td cdc cap dp hanh vi frung gian cho ti/ng tieu chi rieng biet.

- xay di/ng bieu diem cho tiing ngi dung can OG, miJc diem dat dUdc Siong qua cac hanh vi OG Glal dogn 3 ThiJ nghiem Rubrics - Thtf ki^m tra Rubrics vdi cdc nhiem vu ciia m^t nhdm HS d^ DG miJc do phu hdp vd dp tin c^y ciia

Rubrics.

- OlSu chinh phieu OG khi can thiet.

- Cdc tieu chi md td the hien dugc day du cdc nOi dung ciia hing boat ddng hoac cdc yeu cau ciia sdn pham ma HS taora.

- Cdc tieu chi can md ta dugc nhiing hoat ddng eua HS can thyc hien de thyc hien myc tieu, giiip hp tu DG va ciing DG ede b^n trong nhdm/ldp.

Bu&c 5: Chia se phieu DG v&i HS truac khi HS thue hien nhi^m vw vd hu&ng ddn HS cdch tu chdm diim, chdm diim cm cdc ban trong nhom trong qud trinh hoe tap

2.3. Minh hoa viec xay diTng v i suT dung Rubrics lam cdng cu tfdnh gia trong day hoc chifdng Ham siii (I6p 1 0 - THPT) qua mpt vj du

Chiing toi dua fren quy trinh thiet ke da dl xudt d muc 2.2, xdy dyng mot dl kilm tra ddnh cho HS ldp 10 THPT.

Dl kiem txa. dupe thyc hien trong qud trinh DH Toan vd td chiic sau khi hpc xong chuong Ham sd. Ndi dung de kiem tra nhu sau:

De bii: Vdi thiit kl ddc ddo, cdng Parabol eua Trudng D?i hpc Bdch khoa - Ha Ndi dupe xay dyng each day khodng 50 ndm va la niem ty hdo ciia bao the he smh vien tiing hpc Trudng D^i hgc Bach Khoa - mdt ngoi trudng danh tieng, hien dai hdng ddu cd nudc. Vdi s\r dpc dao ciia chiec cong, mdi nhdm hay chudn bi mdt bdi viet vdi chu de

"Chi4c cong Parabol ki dieu".

Thdi gian thyc hien bdi viet: 01 tudn.

Thyc hi?n nhi$m vu: Theo nhdm, moi nhdm 05 HS.

Sdn pham ySu cdu: 01 bdi thuyet trinh ve phuang phdp tinh chi6u cao cdng Parabol thugc Trudng Dai hpc Bach Khoa gdm cdc ngi dung sau:

- Gidi thipu, tim hieu ve cdc cdng trinh Parabol ngodi thyc te trong nudc vd thi gidi nhu: Cdu treo Binh Thdnh tr6n tuyin qudc Ip 19 ndi thdnh phd Hue vdi cdc huyen nii^n nui A - ludi, Cdu A-ra-bi-da d Pdoc- td Bd Dao Nha;

cong Ac-xo d thdnh phd St. Louis ciia tilu bang Missouri (Mi)..,

- Vjn dyng cac kiln thirc ve hdm sd de de xuat cdch tinh chilu cao ciia cdng parabol thupc Trudng Dpi hpc Bach Khoa.

Xfiy d^rng Rubrics DG ket qua th^c hi|n nhi?m vy hflc t$p eua HS

Bu&c 1. Xde dinh kien thirc, kindng, thdi dg cdn DG HS trong ki DG

Kien thirc- Xac dinh dugc hieu biet ciia ngudi hpc ve cae kien thiic Hdm sd bac hai trong chuong trinh Dai so 10 va DG khd nang van dung cdc kien thiic dd vao bai todn thyc tien cudc sdng ve tinh todn cac cdng Parabol

KT ndng: DG kl nang tinh todn; xir li thdng tin; kT nang lam viec nhdm; kT ndng thuyet trinh ciia HS.

Thdi dp: DG miic dp hieu biet ciia HS ve cdc cdng parabol, vi?c sir dung kien thiic Toan hgc trong thue tien mang lai nhiing Ipi ich ndo ve kinh te, xa hgi (Vi du, cdng Parabol ciia thanh phd St. Louis ciia tieu bang Missouri (MT) mang lai Igi ich nhiSu ve du lich...),

Bu&e 2: Xac dinh cdc chudn cdn DG

Chuan vi ngi dung: HS phdi neu dugc cac kiln thirc khodng cdch giiia 2 diem trong mat phang; dd thi ciia ham sd bac hai y = ax^+ bx + c (a;^), xdc dinh tpa dp diem tren true sd. Tim dugc phuang trinh parabol dya vdo 3 diem thupc dd thi.

Chudn qud trinh: HS phai ve dugc dd thi ham sd bac 2 (xdc dinh dugc dinh parabol, xdc dinh tryc ddi ximg, xdc dinh mpt sd diem thupc dd thi,

Chudn gid tri: HS phdi cd thai dp hpp tde t6t; neu dugc Igi ich ciia cdng Parabol trong cudc sdng tai Viet Nam va cdc nudc tren the gidi.

Bu&e 3: Xde dinh sdn phdm eua HS

Sdn phdm ciia HS la bdi thuylt trinh ddi khdng qua 20 phiit kem theo file power point.

Bu&c 4- Xdy dung Rubrics

Cd 2 Rubrics se dupe xay dung dk DG HS gdm: Rubnc bdi thuylt trinh vd Rubric DG ddng dang HS.

- Tieu chi DG bai thuylt trinh: Gdm 03 tieu chi: Npi dung; Hinh thiic; Kha nang thuylt trinh.

- Tieu chi DG ddng ddng: G6m 05 tieu chi: Nhdn nhipm vy; Tham gia xay dung kl hoach boat dpng ciia nhdm; Thyc hi?n nhi?m vu vd hd trg, giiip do cdc thanh vien khac; Ket qua 1dm vi?c; Trach nhiem vdi ket qud lam yi^e chung,

- Miic chi sd hdnh vi bai thuylt trinh: Gdm 4 mirc bieu hipn hanh vi ciia HS (xem Bang 2):

a. Xdy dung Rubric DG bdi thuyit trinh (.xem Bdng 3) b. Xdy dimg Rubrics DG ding ddng eua HS (xem Bdng 4)

S616 thdng 4/2019 45

(4)

NGHllNCOrULfLUAN

B^ng 2 : Chi so hanh v i , muTc di^m DG HS

Hdnh vi dat dudc Bi^u diem

Trung binh

Bdng 3 : Rubric OG b^l thuyet trinh ve phifdng phap tfnh chieu cao c6ng Parabol thuoc Tri/dng Dai hoc Bdch Khoa

MDI: do DG/Mi)c Mm li/Ong ilng 1 chi OG Can cJ g j n g Trung bi

NQI dung bdi thuylt trinh

- Gidi thi$u ve muc dich cong viec dUdc giao.

- Khdng ke ten vd mo ta ditdc them bat ki cflng trinh Parabol ndo khdc, - Khdng dUa ra ditoc cdch tinh todn chieu cao cdng parabol.

- NOi dung thuyet trinh c6 cdu tnic thi^u logic, tinh thuyet phyc ngi/di nghe k6m.

- Gidi thieu ve muc dfch cong viec;

- Ke ten dii(fc ft nhSt 03 cong trinh Parabol tai Viet Nam vd the grdi trd Ign nhi/ng khdng mo td dUOc cdc cdng trinh dd,

- Neu diidc ddy du cdc k i l n thiic hdm s6 vd dd ttij ham so bdc 2:

d?ng ciia ham so bdc 2 ax2 + bx

( * ^\

+ c = 0; tpa dp dinh - ^ " • - —

\ 2o 4a I

0 1 x u i t dUdc cdch tinh todn chieu cao cdng parabol (Gan true toa dO, xdc dinh toa dd 03 diem thupc dd thj, tim diiOc phtfdng trinh parabol di/a vao 3 d i l m thupc do thj, xdc dinh tga dd dinh.

- NOI dung thuyet trinh cd cdu tnic tudng ddi logJc^uye^ phyc diidc nhldu ngudi nghe.

- Oat cdc Ueu chi d mile Trung t)inh, c d t h d m : - Ke ten vd mfl td dUdc It nhdt 04 cflng thnh Parabol t9i Vigt Nam vd the gidi trd Ign.

- NDI dung t h u y l t trinh cd cau tnjc logic, t h u y l t phyc diidc da sd ngiidj nghe.

- Oat cdc tigu chi d mile m.

c6 them:

- K l ten vd md td dUOc til OS cdng trinh Parabol tgi Vl^

Nam vd t h i gidi tn) ISn.

- Neu diiOc cdc lOi Ich eua cdc cdng Parabol trong W thudt, ^ n g ddi s i n g vd trong vi$c phdt t r i i n kinh t l , x d h ^ . - Npi dung thuylt trinh c6 c &

triic logic cao, thuylt ph^c hodn todn ngiidi nghe.

Hinh thdc - Slide khdng hdp li v l mdu sac, k i c h c d . . . - Khdng dda ra dupe cdc hinh ve, video minh hpa ve cdng trinh Parabol trong thue te.

- Slide phu hdp v i cd chd, mdu sde vd sd lUdng,

- Qua dupe cdc n$i dung bdo cdo nhung khdng kem hinh ve, video minh hpa.

- Oat cdc tieu chi d mile - Ogt cdc tlSu chi fl mCtc Khi.

tmng binh, kem them, k l m them-

- Cd cdc hinh ve, video - Cdc slide t h i hi|n sV sing mmh hpa cho bdi thuylt t^o, logic trong bdi bdo cdo, trinh.

Khd ndng thuyet trinh

- Ndi khflng ro rdng.

- Ndi qud so vdi thdi gtan quy dmh trSn 10 phut.

- Cd nhdm chi cd 01 ngudi bdo cdo.

- Khdng trd tdi, Vanh ludn li gidi quan d i l m khi di/pc trong qud trinh bdo cdo.

- Ndi rfl rang nhung chUa t h i hi|n diidc nfli dung trpng tdm can bdo cdo (Chua md td tdt phuong dn do tren thyc t l d l xac dinh ddpc toa dd 3 diem thupc dd thj hdm sd; ho^c chpn cdc iSim gdy khd khdn cho vi|c do, cdch b'nh toa dp dinh).

- Ndi qud so vdi thdi gian quy dinh tren 05 phut,

- Ca nhdm chi cd 01 ngddi bdo cdo - Ndi dung tra Idi, tranh ludn II gidi quan d i l m khi diiOc hdi lai trong qud trinh bdo cdo chya ddy dii.

- Dgt cdc tieu chi d mile trung binh, kdm them, - Thuyet trinh rd dUpc trpng tdm vd dil cdc nfli dung ygu cau (mo td tdt phydng dn do tren thyc l l de xdc djnh dU(ic tga dp 3 diem thuflc dd thi hdm sd, cdch tinh toa dp dinh),

' Trd Idi, tranh ludn If gidi quan diem khi di/dc hdi 1^

trong qud trinh bdo cdo mflt cdch thuylt phyc.

• Dat cdc tieu chi d mdc Khd, k i m them:

- Cd nhdm ludn chuyin nhau ciing bdo cdo d l ^ 1 hi|n rd Idid ndng ciia tiAig cd nhdn vd kha ndng hop tde.

- Cd nhdm thay nhau difa ra cdc cdu trd Idi, sSn sang tranh ludn Idm sang td cSc n$i dung lien quan d i n b ^ thuylt hinh mflt cdch chWi xdc.

46 TAP CHI KHOA HOC GlAOOyC VIETNAM

(5)

Trinh Thi Phi/dng TtiJo

Bing 4: Rubric DG long ding qua Irinh lam viec ciia HS

TIcuchlDG

mcsom/mcfii

Can cd gang t l i e m

m tirnng ang Trung binh 2Sieni

Kha 3 tiem

Tni 4 niem NhJn nhi^m vy. Tii chdl nhdn nhiem vg. Mien cddng khi nhdn nhiem

vy dUdc giao.

Khdng xung phong Chu ddng xung phong nhdn nhUng vui ve nhan nhilm nhiem vy.

vu khi dUdc giao.

Tham gia xay di,(ng Khflng tham gia y kien xay Cdn it tham gia y kiln xay Tham gia y kien xdy Hang hdi bdy td y kiln, tham kl hoach hogt ddng di/ng k l hoach hoat dpng ddng ke hogch hogt ddng dyng kl hoach hoat gia xdy dUng kl hoach hogt ciia nhdm, nhdm, nhdm. ddng nhdm. ddng ciia nhflm.

Ttii/c hlln nhl@m vy Khflng cd gdng hoan thdnh Cd gang hoan thdnh nhiem vy Cd gang hodn tiianh Cd gdng hodn thdnh nhi$m vd h6 tro, giup dd nhllm vu ciia bdn thdn vd ciia ban thdn nhyng chya ho nhiem vu eua bdn than vu cua bdn thdn ddng thdi cic thdnh viln khdc khdng ho trd nhOng thdnh trd cdc thdnh vien khdc nhUng chUa chii dflng ho chii ddng hd trO cdc thdnh

vien l<hdc. trd cdc thdnh vien khdc. vien khdc trong nhdm Kit qui lam vl|c. Sdn pham khdng dat yeu San pham chUa day dii nhUng Cd sdn pham tdt nhUng Cd sdn pham tdt theo yeu

cau hogc npp qud thdi gian npp dung thdi gian hodc sdn n$p cham qua 1 ngdy. cdu dl ra vd ddm bdo dung quy dinh 3 ngay. pham day dii nhung nflp qud thdi gian.

quy dinh 2 ngdy.

Trich nhi§m vdi kit Khflng chiu trdeh nhiem ve Chua san sdng chiu h"dch qui idm vi@c ehung. sdn phdm chung. nhllm vl sin phdm chung.

Chiu trdeh nhiem vl sin phim Chung khi di/de yeu cau.

Tl/ giae chiu trdeh nhiem vl san pham chung.

2.4. K£t qui M nghiem bi^dc diu t^l ldp 10A6 TriTijIng Trung hpc pho thong Th^l NguySn, nSan hoc 2018 - 2019 Dja diem, doi tirgng, cic birdc ti^n h^nh thu* nghiem sir ph^m: De thir nghiem viec sir dyng Rubrics lam cong c\i DG trong qud hinh DH Toan d trudng THPT, tac gia da lya chgn ddi tugng thur nghiem la 47 HS ldp 10A6 - Trudng THPT Thdi Nguyen (Trudng phd thdng thue hanh thupc Truong Dgi hpc Su pham Thai Nguyen) do tac gia true tiep gidng dgy. Day Id ldp thugc ban Khoa hgc tu nhien, sue hpc mdn Todn kha.

Cdn cijr vao thyc te sd luyng HS trong ldp, d^ tien hanh th&nghi?m, tde gid da chia ldp thanh 7 nhdm (moi nhdm 6 dk 7 HS). Qua trinh thirc nghiem dugc tac gia thiet k6 theo cdc budc sau;

- Bu&e I: Giao nhigm vy hgc tap cho cac nhdm va cho cac nhdm 1 hian de chudn bj.

De thugn ti$n cho vi$c giao nhifm vy va giai dap cac thic mdc phdt sinh, tde gid da lua chgn hinh thirc giao nhi?m vy trin nh6m Idp, d6 HS cd th^ xem lai thdng tin nhiem vu va hdi them GV vl ySu cSu nhi$m vu neu can.

- Bu&e 2: Td chiic thao lugn toan ldp

Ngay sau khi giao nhiem vu 01 ngay, tac gia da td chiic thdo lu^in todn ldp d6 thdng nhdt cac ndi dung: Xac dinh kien thiic, kl nfing, thai dp cin DG HS trong ki DG, cac chuin ciin DG, sdn phSm cSn d^t dugc eiia nhdm.

- Bu&e 3: Td chiic bdo cao kSt qua

Di cd the DG so bg kSt qua vl mat npi dung va hinh thiic

•rinh bdy bao cdo, lie gia yeu cau HS ngp bai bao cao tnrde cho GV.

Tnrdc khi c6c nhdm bao do k6t qua, GV de nghj cac nhdm trudng thu l^i philu DG ddng dSng qua trinh Idm

vi?c ciia cdc thanh vien trong nhdm. Trong qud trinh cdc nhdm bao cao kit qua, GV phat cho cac rih6m cdn lai phieu DG bai thuyit trinh ve phuong phap tinh chilu cao cdng Parabol thugc Trudng Dai hgc Bach Khoa.

- Bu&c 4: Tdng hop ket qua

Dya tren phiiu DG cua cac nhdm, cdc ea nhan, GV tdng hgp, dua ra nhan xet va cho diem HS.

M$t sd ket qua budc dau

- Nhdn xet vi mat dinh tinh: Tat ea cac nhdm d6u ed sy chudn bi cdng phu ve mat hinh thiic trinh bay. Cdc nhdm d6u trinh bay chinh xac vi mat toan hpc each do chieu eao ciia cdng, tuy nhien vdn ed 02 nhdm trinh bay phucmg an giai quyit chua thue su logic. Da sd HS dugc yeu cau deu ty tin trinh bay hieu biit va each giai quyet van de ciia minh, chi cd it HS vin cdn ryt re thiiu tu tin khi trinh trinh bay vin di. Trong 7 HS dugc GV lya chgn ngau nhien mdi trinh bay d cac nhom cd 4 HS manh dan trinh bay, sd cdn lai van trinh bay dugc nhung chua thyc sy tu tin.

- Thong ki dinh lupng:

+ Diim thao luan ciia cac nhdm: Diim ciia mdi nhdm dugc tinh trung bmh tir 7 ddu diim (bao gdm 6 DG cua nhdm ban va 1 DG cua GV). Kit qud ban ddu eho thdy, hdu hit cac nhdm diu da hoan thdnh nimig ddi tdt nhi?m vy hpc tap ciia nhdm minh (xem Bang 5). Xet cac diem thanh phan cd thi nhan thdy, cd nhdm chuin hi kha tdt, tuy nhien phan trinh bay l^i khdng dugc DG cao (nhdm 4). Li do nhdm dua ra la do GV gpi ngau nhien nen thanh vien dai di?n nhdm chua phai la thanh vien ed kha nfing trinh bdy tdt nhat.

+ Tdng hgp bang theo ddi ca nhan: Mdi ca nhan dugc cdc thanh vien trong nhdm DG vi cdc mfit: Nhgn nhi?m vy; tham gia xay dyng ke hoach hogt dgng ciia nhdm; thyc

Sd 16 thang 4/2019 47

(6)

NGHIEN c u u LI LUAN

Bang 5: Tdng hdp diem cua cac nhom Bang 6: Bing phan bd tan s5, tan suat didm c i nhin

NhOmI NhiSiiiZ N h 6 m 3 N h 6 m 4 N l i 6 m 5 N h 6 m 6 N h 6 m 7

3.1 33 3 3.4 3.1 3.1 3.3

2.9 2.7 2.4 3 2.4 29 2.7

3 3.4 31 2.4 24 3.1 2.4

9 9.4 8.5 8.8 7.9 91 8.4

19.0

hien nhiem vy va ho trg, giiip dd cac thanh vien khac; ket qua lam vi?c va trach nhipm vdi ket qua lam vi?c chung.

Diem cua mdi mat dugc DG theo thang diem ttr 1 d^n 4 nhu da xay dung, diem cua cdc ca nhan dugc tinh bfing tnmg binh cpng ciia cac thanh vien trong nhdm. Ket qua tdng hgp dugc trinh bay trong Bang 6.

Tir ket qua budc dSu sau khi tien hanh thu nghi?m su pham, de DG dugc diem cu the cho mdi HS can cd them cdng cu quy ddi ddi diem, tinh diem ciia cd nhin theo diem nhdm va theo ket qua hoat ddng cua cd nhan.

3. K^t lu|n

Rubrics giiip cho HS chii ddng hon trong vi?c nd lyc vuon len d^t dugc thanh tich mong mudn ciia minh. Rubrics la cdng cy DG giup cy thi hda hon cac yeu cfiu DG cua GV ddi vdi HS, giiip HS thiy duge su mmh bach hen trong quj trinh DG kit qua hgc tap ciia ban than. B6n c^nh dd, v6i sy hgp tde ciia nhdm de lam viec. Rubrics cdn giup HS ren luy?n kT ndng ty DG va DG ddng ddng dk gitip HS ty tin hem trong qua trinh hgc tap. Vdi vi?c DG da chiiu tir GV, HS, bgn ciing ldp. Rubrics se giup DG xie thyc hon ket qud hpe tap cung nhu qua trinh ren luy^n ki nfing v^n dpg Toan vao thyc tien cua HS trong viec thue hi?n nhi?m v\i, bdi canh thyc d^c bi^t cdn cd th6 giiip cho HS thay dugc gid tri va ve d?p cua Toan hpc trong cudc sdng.

T^i U^u tham khdo

[1] Jonsson, A., & Panadero, E. ,(2016), The Use and Design of Rubrics to Support Assessment for Learning, Scaling up Assessment for Learning in Higher Education, p. 99-111.

[2] Jonsson, A., & Svingby, G.,(2007), The use of scoring rubrics: Reliability, validity and educational consequences Educational Research Review, 2(2), 13ty-144.

[3] Knight, L. A. ,(2006), Using rubrics to assess information literacy. Reference Services Review, 34(1), p.43-55.

[4] LeThiNggcNhan,(20I4), Vgn dyng Rubrics di xdy dyng tieu chi ddnh gid mdn hpc, T^p chi Khoa hpc Trucmg D^i hgc Su ph^m Thdnhph6 Ho Chi Minh, s6 62, tr.l47-151.

[5] Leonhardt, A.,(2005), Using Rubrics as an Assessment Tool in Your Classroom. General Music Today, 19(1), p. 10-16.

[6] Helvoort J. van, (2010), A scoring rubric for performanix assessment of information literacy in Dutch Higher Education, Journal of Infomiation Literacy, 4(1), p.22-39.

DESIGN AND USE OF RUBRICS AS AN EVALUATION TOOL IN TEACHING MATHEMATICS IN HIGH SCHOOLS

Trinh Thi Phuong Thao Thai Nguyen University of Education 20 Luong Ngoc Quyen street, Thai Nguyen province, Vietnam Email' [email protected]

ABSTRACT: Orientation of reforming Vietnamese high education has shifted from attaching importance to overall evaluation to attaching importance to process evaluation and focusing on learners' capacity. The question is 'How to truly evaluate students'capacities in the teaching process?" The article aims to study and propose the process of designing and using rubric in the teaching process so that teachers can evaluate learning results in the most accurate way throuffi the implementation of tasks in the real context that learners achieved in tfM teaching process. Thereby, it helps to adjust the teaching methods of teachers and students in order to improve learning results. This study uses theoreticai research methods to study the design of rubrics in evaluating students' learning results in a real context. The results show that it is possible to truly evaluate students' learning results and improve abilities of self-evaluation of students through real activities and products implemented by students

KEYWORDS: Rubric; evalualion; teaching Mathematics: students.

48 TAP CHl KHOA HOC GIAO DUG VIET NAM

Referensi

Dokumen terkait