KHOA HQC CdNG N G H |
T O I U U H O A H E THOIXIG V A K H A IXlAlXIG UIMG D U M G TROIXIG QUAlXl L Y T A I IXlGUYEIXi IXIUQC
Le Hung Nam' T^MTAT
H&i h6a c^c muc ti6u su dung trong quy ho^ich, qujin ly h^ th6ng ngu6n nu6c tru6c di§n bi^n bdt thuing ciia dilu kifin tu nhi€n, y6u cdu cCia phit tri^n du6l tic dOng chi ph6\ ciia y^u td thj truing dang la vdn d^
biic xiic hifen nay a nuoc ta. Qua rA so^t, dAnh giA k^t qud ung dung phuong phAp m6 hinh toAn mfl ph6ng, phuong phap mo hinh toAn tdi uu trong quan ly t^ nguy&n nu^c, h$ didng h6 chiia nu6c da duQc d^ xu^t duQC su dung toi iiu phi tuy^n k^t h(?p phan tich tdi uu Pareto trong nghiftn cmi ung dung nhim tim 16i gi^i cho b ^ toan quy ho^ch vA quan ly h$ thdng nguon nii6c. C6ng ngh^ GAMS dugc ddnh giA lA mdt cdng cu phu hop phuc vu cho phAn tich, tinh toAn tdi uu cAc h$ thdng Imi vyc sdng vk hd chua phiic t^p b Vi^t Nam.
De phat trien nghifen oiu, tri^n khai ung dyng phucmg phAp lu$n vA cdng cy tdi ini h$ thdng vAo thyc tiSn 6 Vi^t Nam, ngoai uu ti6n ddu tu cho cdng tAc dAo tgo, nghidn ciiu tri^n khai ling dyng thi cdn t^o mdi tni6ng tdt cho boat dong trao ddi tb6ng tn giua nhA nghifin ciiu vdi ddi ngu cAn bd quan ly, v ^ hanh hd thdng cong trinh, cung nhu cAc bfin huong Igi li^n quan d^ hidu rO duvc tinh uu vi$t cua tdi uu hda hd thdng, ddng thdi phai dam bao chuydn tai dupc thdng tin vd tinh minh b^ich, r6 rAng phuong phAp luAn tdi uu, tinh mem deo don gian cua cdng cy va tinh djnh lugng cCia hi^u qua iing dyng phuong phAp luAn tdi uu va cong cu tdi iru hoa hd thdng ddn ngudi cd thdm quydn ra quydt dinh.
Tit khda; GAMS, mat Pareto, guy hoach ddng, quy trinh v$n hanh h^ thd'ng, tdi uu phi tuySn.
LMODAU
Di^n bien bat thuong ciia dong chay cac lim vuc s6ng g ^ day, dac biet la suy giam nguon nuoc mua can dan d^n nhu cau hue thiet nghidn ctiu khai thac nang cao hi6u qua su dung he thong c6ng trinh thuy loi va nang cao hi$u qua su dung nuoc la mOt npi dung quan trong (To Trung Nghia va Le Himg Nam, 2007).
Tren the giai cung nhu b nuoc ta, hd thong nguon nuoc va cong trinh khai fliac su dung niroc da duoc quan tam dau tu phat tri^n - den nay cong tac quan ly nguon nuoc da mang lai cac k^t qua vo ciing to 16n phtic vti cho muc tieu phat triln dat nuoc trong sudt qua trinh lich su. Cimg voi qua trinh phat trien cua lich su, ctia nhu cau phuc vu cac hoat dpng phit triln kinh tl-xa hpi thi he thdng nguon nuoc va cong trinh khai thac nguon nuoc dupc xay dung phuc vu da muc ti^u. Qua trinh phat triln cua cac mtic tidu phuc vu nhu cau su dung, ciing voi tkc dpng cua nin kinh t l thi hirong da lam t5ng miic d6 phiic t^p trong hoat dpng quan ly, van hanh he thdng nguon niroc.
: Tranh ch^p trong chia se ngu6n nuoc giiia cic muc i tidu sii diing, giiia phat triln va bao ton nguon nuoc ngay ciing tra ndn phiic tap yeu cau co huong tiip
'Tdng eye Thiiy igi - Bp Nong nghifp va Phat trien nong thon
cSn phit hpp trong phan bo, chia se ngudn nuoc phuc vu muc hdu phat trien. Mau thuan trong chia se nguon nuoc, tranh chap trong khai thac, sii dung nguon nuoc gan day co thi k l din nhu giira phat triln cong trinh thuy lpi phuc vu da muc tidu clip nuoc cho do thi, cong nghidp, tudi, phong chong Iii vdi phit triln, khai thac hd thdng cong trinh ho chiia thiiy didn ngay cang hoc 16 ro va can dau tu nghien ciiu giai quylt.
D l dilu hoa, phan bo nguon nuoc giiia cic muc tidu su dung trong nghidn ciiu quy hoach cung nhu quan ly co t h i van dung mo hmh mo phong hoic mo hinh toi uu. Mo hmh toin mo phong co kha nang cho biit h^ thd'ng sephan hdi nhu the nao theo cic kich ban de ra? Tuy vay mo hinh toin mo phong khong t h i tra loi cau hoi: Viyhd thdng phin hdi nhu viy da td't nha't hay chua? mb hinh toin tdi uu sd tra ldi cho cSu hoi nay (Hillier va Liebeman, 2001; Mays va Tung, 1992; Helweg v i Labadie, 1977). Linh vuc tdi uu hda hd thdng dupc xem la m6t trong nhiing linh vuc nghidn cuu thu hiit tap trung cic nha nghidn cuu trong suot lich su phit triln. Den nay tdi uu hoa hd thdng trong quan ly, phan bd va sii dyng cac nguon tai nguydn han hep, trong do co ngudn nudc, vin dupc dac bidt tip tnmg dau tu.
Phit triln ciia ^ i uu hda he thdng lidn quan din cu s a toan hpc, kha ning v l c6ng nghd phan mem.
NONG NGHIEP VA PHAT TRIEN N 6 N G T H 6 N - KY 2 - THANG 4/2012 41
KHOA HQC C 6 N 0 N O H t
phan Cling, con ngudi, ddu vio sd li^u. Sy phit triln ciia cic yiu td trong thdi gian vira qua da bu6c d^u vi se tao dilu ki^n cho khi nang triln khai ip dyng vio quan ly phan bl tdi uu tii nguydn nudc phyc vu phat triln kinh tl - xS hOi b nudc ta.
Dudi day li kit qui phin tich, dinh gii qui trinh phit triln vi iing dyng ciia phuang phip tdi uu hda hd thdng trong quin ly phin bd ngudn nudc ndi chung va khi ning triln khai img dyng trong quin ly tii nguydn nudc d nudc ta.
L PHUONG PHAP NGHiN CUU
Da tiln hinh dinh gii qui trinh phit triln phuang phip tdi uu hda toin hpc, dac bi|t t|.p trung vio tdi uu phi tuyIn trong quin ly, v ^ hinh h | thdng - da di vio cic npi dung phuang phip tdi uu, cong cu ling dyng, khi ning vl sd li|u, thyc tl triln khai ling dyng trong thuc tl. Vdi vi|c dinh gii mOt sd irng dyng tdi uu hda h§ thdng b trong nudc vi ngoii nudc nghidn ctiu niy da dua ra cic khuyin cio trong phit triln, iing dyng cong ngh^ tdi uu hda hd thdng trong quin ly, khai thic hpp ly tii nguydn d Vidt Nam.
1 . KET QUA NGHDI CUU VA THAO LUAN
1. Phuang phip tdi im
Ddi vdi bii toan cap nudc cho cic muc tidu sii dung thi loai md hmh toin thong dyng phii kl din li mo hinh md phdng can b ^ g nudc va md hinh phan bd tdi im nguon nudc. Myc tieu sii dyng b diy cd thi hiiu bao gdm ceqi nudc sinh ho^t, cdng nghidp, tudi, giao thong thiiy, phit didn, moi trudng. Nhu da ndu d phdn trdn md hinh tdi uu sd giiip tim dupc ldi giai hii hda cd tinh „tdi uu hon" so voi mo hinh toin md phdng.
Phuong p h ^ tdi uu h^ thdng dupc trinh bay trong nhilu tit h^u tra ciiu. l)ng dyng md hmh dilu khiln tdi uu hd thdng tai nguydn nudc dupc hilt din qua cac nghidn ciiu t?ip trung ttr nhimg nim 60 ciia Ihl ky 20 va cd thi phin theo dang mo hinh tdi uu dupc su dyng dl md phdng hd thdng. Mpt sd phuong phip tdi uu dupc t^p trung phit triln vi dua vio iing dyng phd biln nhu tdi uu tuyIn tinh, tdi uu mang, tdi uu dpng ("quy hogch dpng" theo mot sd tii li^u Vi|t Nam), tdi uu biln sd nguydn/biln gian doan, tdi uu phi tuyln. Ngoii ra cdn phai kl din ly thuylt trd choi, ly tiiuylt chudi Markov, ly thuylt xIp hang, ly thuylt quan ly hang hoi tdn kho... Cd thi md ta bai toin tdi uu tdng quit nhu sau:
Tim cijc tr) him myc tidu F (X);
Thda man ring budc C,CX)>ej.
Hai phuang phip tdi uu dugc nhdc din nhi^
nh^t li tdi im tuyln tinh vi tdi uu ddng (Yakowits, 1982), cic ling dung cu thi cua hai phuong phip nAy da dupc ghi chip vi xu^t bin nhilu trong thdi gian qua. Phuong phip tdi uu tuyln tinh dupc chii y 6 giai doan khdi ddu. Phit triln ciia tdi uu tuyln tinh di dupc xem li mdt trong nhiing tiln bd quan trpng nh^t ciia thi k^ 20. Tdi uu tuyln tinh da cd nhirng budc tiln bdt thudng hi nhirng nim 50. Trong suot qui trinh phit triln, dac bi|t trong giai doan ddu, d^n nay ly thuylt tdi uu tuyln tinh da gdp phdn phit triln kmh tl thi gidi, ph&m vi ting dung ly thuylt tdi uu tuyln tinh trong cic nginh kinh tl vdn phit triln.
L;^ thuylt tuyln tinh cho phip md ta bii toin tdi ini vdi cic ring budc vi him myc Udu cd dang tuyln tinh, trong khi tdi tm ddng yiu cdu cic qui trinh tdi iru thudng cd dang don gian phii dupc phan doan thinh cic giai do?ii, tai cic giai doan biln tdi im nhin cic trang thii ridng bi^t Mpt sd iing dyng cii thi ciia tdi uu dpng cd thi kl din nhu nghiin ciiu ciia Young trong vin hinh hd chiia (Young, 1967), nghidn ciiu vin hinh hd thdng lidn hd chua cho lim vuc song Gunpowder River, Baltimore, M?
(Karamouz et al., 1992). Tdi uu dpng, hay quy hoach ddng theo mdt sd tai Udu 6 Vi|t Nam, li mdt trong nhiing phuang phip tdi uu dupc tap trung chii y trong nhilu tii li|u nghiin ciiu. Tdi uu dpng cung cdp mdt ky thu^t cd tinh h | thdng dl xic dinh tdi uu cho t$p hpp cic hinh dOng cho mot qui trinh (cac giai do?n) vdi trgng thii khic nhau. Ciing vdi tdi uu tuyln tinh thi tdi uu dpng cung dupc gidi thidu rgng rai trong cic chuang trinh giang dgy cic bac dai hgc vi trdn dai hpc ciing vdi cic vi dy iing dung sinh dpng. Tuy viy thyc tl iing dyng cho thay khi he thdng nghidn ciiu phiic tap thi vi|c iing dyng hai loai tdi uu ndu trdn, d$c bi|t li tdi uu dong, sd bat lpi - khd md ta h | thdng thyc.
Mpt ndi dung d§c bi|t quan trong la tdi uu phi tuyln. Vi mdt gii thuylt co ban ciia tdi uu tuyln tinh li tdt ci cdc md ta toin (ham myc tidu, ring buoc) phai b dang tuyln tinh. Tuy viy h§ thdng thyc can md ta hdu hit phi tuyln, do viy thudng khdng thi sii dung gia thilt nay. Hau hit cic bii toan thyc mo ta hi|n tupng tu nhidn diu a mdt miic dp phi tuyln nao dd, do vay hdu hit cdc bai toin tdi uu cdn md ta diu ff dang phi tuyln.
42 NONG NGHIEP VA PHAT TRIEN N 6 N G T H C N • KY 2 - THANG 4/2012
KHOA HQC C O N O N G H |
Hidn chua cd mot phuong phip giai n i o cd t h i dupc ap dyng cho tat ca cic bii toin tdi uu phi tuyln.
Tuy nhidn giai phip cho bii toin phi tuyln dupc cii tiln lidn tyc bdi phit triln v i su dyng mpt sd gia thilt cho mpt sd bai toin tdi uu phi tuyln thudng g$p.
Phuang phip giii bai toin tdi uu phi tuyln hi|n vdn cdn la mdt vdn d l cdn rdng m d m i k h i ning con ngudi cd t h i khim p h i hoin toin vin cdn rat xa vdi.
Nhieu tii Udu da cung cdp hudng giai quylt bii toin tdi uu phi tuyln quan trpng thudng gap trong thuc thi nghidn cuu, ting dyng.
Nhin chung cac tai li|u cic gidi thi|u v l vin hinh he thdng da cung cdp ddy du cic thdng tin v l ly thuylt, phuong phap giii, cung nhu mdt bd cic ting dyng thuc tidn suih dpng v l tdi uu hd thdng d i dupc ling dyng thinh cdng trong nhidu nginh kinh t l khic nhau, die bidt l i v l tdi uu tuyln tinh, tdi uu phi tuyln va tdi im ddng. Tuy viy thdng thudng cic ung dung trong quin ly ngudn nudc chi dupc nhdc din trong cic tap chi nghidn ciiu, cdc sich chuydn mdn ve tai nguyen nuoc.
O Viet Nam tii Udu giing day ve vin hinh tdi uu hd thdng trong quy hoach v i quan ly tii nguydn nudc cd thi ke den xuat bin ciia cic t i c gia H i Vin Khdi, Phd Due Anh v i Ding Hiru Dao; cic tii Udu niy dupc dimg lim giao trinh giang day sinh vidn, thac sy nganh cong trinh, thuy ndng cai tao dat, thuy didn v i tiiuy van cong trinh tai trudng Dai hpc Thuy lpi trinh biy cic npi dung v l phan tich he thdng ngudn nudc nhdm muc dich trang bi phuong phip tinh toin quy hogch v i quin ly ngudn nudc. Hd thdng tii li§u niy sau khi gidi thieu v l hii toan tdi uu tuyln tinh, tdi uu dpng (quy hoach hiyin tinh v i quy hoach ddng theo cich gpi ciia t i c gia) da di vao gidi thidu each iing dung trong quy hoach hd thdng ngudn nudc nhu vin hinh cdp nudc, phdng IQ. Mac dii cic tii li|u ndu trdn dupc soan thio chu yiu ddnh cho sinh vidn cic nganh dio tao cua hirdng Dai hpc Thuy lpi nhung cac vi dy minh hoa chua hoin toan tip trung vio hd thdng tii nguyen nudc.
Cd t h i ndi nghidn ciiu van hinh tdi h§ thdng tii nguyin nudc da dupc phit triln manh md v i rdt da dang. Ddi vdi tung bii toin, vide chpn phuong phdp thich hpp d l giii phu thudc vio dang h i m myc tidu, ring budc v i sd lupng c i c biln tdi uu. Tuy thudc vdo d§c diim ciia bii toin tdi uu nghidn cuu cua hai t i c gia Edgar vi Himmelblau (1988) da d l xudt cic budc xdy dyng va giai bii toan tdi uu he thdng nhu sau:
BudcJ.: Phin tich ban chat hii toan d l cd thi thdy rd dupc cic die tinh ridng bidt d l cd t h i xic djnh h | thdng biln tdi uu.
Elldc_2: Xdc djnh tidu chuin tdi uu, thilt Idp him myc tidu hi biln tdi uu da xdc dinh v i cic h | sd tuang iing.
Elldt3: Phit triln h | thdng cac quan h | todn hpc md phdng, lidn hd giua cic biln tdi uu, sd U|u vio ra vi cdc h | sd tuong irng, bao gdm cic ring buoc dudi dang ddng thiic, bdt ding thirc - gpi chung li cic ring budc - cd thi su dung cic quan h | vit ly, him kinh nghi|m.
BuijcA: Trong tnrdng hpp pham vi cua bii toin q u i Idn cdn: (i) Phdn ra thinh nhiing phdn nhd d l mo phdng hon; (iO Don giin h o i him myc tidu ho$c cich md phdng.
BudsLS: Ung dyng ky thudt giai tuang thich.
Eu&Lfi: Kiim tra k i t qui, phin tich dd nhay ciia md hinh bang cich thay ddi hd sd cung nhu cic gia thilt.
Mpt sd bii toin khdng bdt buoc phii theo sit cic budc trdn, tuy vay ndn xem xdt, can nhdc cy thi timg budc khi tiln hinh xiy dyng md hinh.
Thuc t l bii toin dilu khiln tdi uu hd thdng l i xic dinh gii tri ciia mpt tip hpp cic bien tdi uu de dat cue tri gii tri him muc tidu, ddng thdi phii thoi man tat c i cic rang budc Udn quan. Rat nhieu cic phuong phip da dupc xiy dyng nhim muc dich giii cic bdi toin dilu khiln tdi uu. Vdi iing dyng thyc tiln, pham vi cua bii toin tdi uu cd the len din hing trim, hdng nghin, hing trim nghin cic biln tdi im ciing cic ring buoc. Hd thdng niy ddi hdi phii thyc hi|n mpt sd lan tinh toin cue ky Idn - tiidng thudng khdng till giai dupc bing tinh tay, thu cdng.
Mdt vdn d l Idn cdn dupc quan tdm giii quylt dd l i vdi bii toin tdi uu da myc tidu. Vdi bii toan tdi uu don myc tidu nhidm vy chinh l i tim diem cue tq ciia him myc tidu - trong khi tdi uu da myc tidu n l u cd gdng thay doi gii tx\ cua mdt myc tidu, thong thudng, sd tdc dpng thay ddi, thudng theo hudng bat lpi, din cic gii trj myc tidu khic. Vi dy trong quin 1^ hd chiia da myc tidu su dyng cdp nudc, chdng lii khi gia tang myc tidu chdng lu cd t h i phai dinh mdt dung tich phdng lu Idn, ddng thdi phii klo dii thdi gian d cudi miia lii d l myc nudc hd chiia phai giir d myc nudc thdp - d l thda m i n myc tidu gia tang dp an
NdNG NGHIEP VA PHAT TRIEN N O N G THON - K^ 2 - THANG 4/2012 43
KHOA HpC C O N G NGHt
toan phdng lu sd, ddng tiidi, ddn din riii ro cao t ^ ddu miia khd tiip tiieo hd sd khdng tich dupc din muc nudc ding bmh thudng theo thilt k l giy tiii|t hai cho myc tidu cap nudc cua hd chua trong mita can tiip theo sau. Vi|c gia ting nhi|m vu niy (phdng lu hoic cdp nudc) sd ddng thdi ldm giim khd ning dip ling muc tidu kia.
Di^u licii iipip Hit (lu>) Hinh 1. Dudng cong Pareto hai myc tidu cdp nudc v i
chdng IQ
Giii quylt van d l giira cdc muc tidu ddi khing, de dat dupc muc tidu tdng thi (mdt muc tidu) cd thi quy cic gii tri cic muc tidu sir dyng v l mpt don vi tinh, cd till quy ra don vi tiln t^ va giii bai toin nhu mdt bii toin tdi uu don myc tidu sii dyng. Khd khin khi giii quylt theo huong niy nam d chd vide quy cic myc tiiu v l mpt dan vi tinh thong thudng khdng dupc thuylt phyc. D l giai quylt van d l ndu trdn, gdn day mdt hudng tiip cin khac k h i kha quan la xiy dung m i t cong tdi uu Pareto trong khong gian da chilu. Mat cong tdi uu Pareto dupc tao bdi cic "trgng thii tdi uu" hoic cd the gpi l i cic "diem tdi uu" ciia hd thdng phyc vu cho cic n h i hoach dinh xem xet dua ra cic quylt djnh quin ly, vin hanh hd thdng tii ngudn nudc.
Mpt cich hiiu tdi uu Pareto nhu sau, gii trj x*
dupc gpi l i diim tdi uu Pareto n l u khdng tdn tgi gii tii biln tdi uu X thda man cic ring budc d l cd t h i cai thi^n mdt sd h i m myc tidu m i khdng t i c dpng xdu din It nhdt mdt him muc tidu khic. Thuc t l phuong phip lua chpn ndy thudng khdng ddn din mpt ldi giai duy nhdt m i thudng hinh thinh mpt tdp hpp cic diim tdi uu Pareto. Mat cong trong khdng gian da chilu tao bdi c i c diim tdi uu Pareto dupc gpi l i mat cong Pareto. Trdn co sd mat cong Pareto nha hoach djnh se cdn nhic va quylt djnh phuang i n chpn.
2. Cdng cy giii bii toin tdi uu
Cimg vdi cac tai Udu tham khao v l phuong phip tdi uu hd thdng, mpt sd cdng cy giii b i i toan tdi uu
h | thdng bang m i y tinh c i nhdn cung da dupc phat triln k h i phong phii, dgi di|n cd till li|t kd nhu sau:
Phdn m i m LINDO dimg d l giai bdi toan toi uu tuyln tinh, tdi uu hjyin tinh biln nguydn, tdi uu him b§c hai.
Ngdn ngir miy tinh LINGO dung di tfiiltk^
vi gidi cic d^ng tdi uu tuyln tinh, tdi uu hiyin tinh biln nguydn, tdi uu phi tiiyln.
• H | tiidng GAMS dupc tiiilt k l d l giii cac bii toin Idn v l tdi uu tuyln tinh, tdi uu phi tuyln, tdi mi biln nguydn.... GAMS Id mdt lo^i ngdn ngir lip trinh bdc cao dupc su dyng d l quan ly sd lidu, md phong h | thdng ciing vdi mdt bd c i c thu vi|n toin giai tdi uu.
Trudc ddy UNDO da dupc su dyng khi rpng.
Tuy nhidn gdn diy cdng ngh^ GAMS ngiy cing dugc chii y dua vio nghidn ciiu iing dyng, die bi|t tiong quy ho^ch vd quan ly tai nguydn nudc nhd tinh mem deo v i k h i ning iing dyng bao quit sin cd cua cong ngh|.
Nhu da trinh biy d trdn ly thuylt tdi uu phi tuyln da dupc phdt triln manh cd k h i ning giii duoc hdu h i t cic bai toan ciia thyc tidn d l r a Mdt sd cdng cy giai bdi toin phi tuyln d i duoc phit triln kha hoan chinh nhuUNGO, GAMS. CALSIM, PERL
Cy t h i phyc vu cho quan ly ngudn nudc mdt sd cdng cy, phdn m i m da dupc phit triln nhu MIKE BASIN OPTIMISATION ff)an Mach), RESSIM (My) phuc vu md phdng cic hd thdng ngudn nuoc ndi chung. Hd thdng cac cdng cy md hinh toin thilt k^
cho chung h | thdng ngudn nudc, hoac thilt k l riing cho mpt h | thdng ngudn nudc cy t h i da duoc dua vio ung dyng thinh cdng trong nhilu nghidn ctru;
tuy v§y khi dua vio iing dyng cic cdng cy niy thdng thudng ngudi sii dyng bit budc phai qua cic budc rat khat khe nhdm x u ly, don gian hda h | thdng mo phdng d l sao cho 'Vira" vdi k h i ning cita cong cu (tiiudng da dupc cd djnh).
B^ giai quylt diim tdn t?i n i y tiii cic cdng cu nhu UNGO, GAMS, CALSIM, PERL dupc tiiln khai ling dung k h i rpng r i i trong quy hogch v i quan ly ngudn nudc. Thuc chdt diy l i h^ thdng cic ngon ngu miy tinh cd kha n i n g xiy dung md hinh todn kit n^i vdi bd thu vi^n c i c cdng cy giai bii toin tdi uu h^
thdng. Mac dii phai tdn cdng siic phdt triln bp mS chuong trinh may tinh md hinh nhung cic cdng cij niy cho phip ngudi sit dung md ta chi tilt cic d$c
44 NONG NGHlfP VA PHAT TRIEN NONG T H 6 N - KY 2 - THANG 4/2012
KHOA HOC C O N G N G H t
thii ciia hd thdng can md phdng do vay cac iing dyng cua cac cong cu nhu LINGO, GAMS, CALSIM, PERL dupc phdt triln rdng khdp tren toin thi gidi, trong dd cd cic ling dyng quy hoach va quin ly nguon nudc. Theo dinh gii cua hai tac gia Mays vi Tung tiii GAMS la mot trong nhtrng cong cu phit hpp d l giai bai toin van hanh phin bd tdi uu ngudn nudc (Mays vi Tung, 1992).
3. Sd U|u dau vio
Nhu mpi cdng viec phin tich danh gia, nghien ciiu ling dyng md hinh toin hay md hinh toin tdi uu hda he thdng thi chdt lupng ngudn sd lidu ddu vao sd quylt dmh chat lugng, do tin ciy ciia kit qua dau ra tir tinh toin md hinh. Gan gidng md hinh toin md phdng he thdng ngudn nudc thdng tiiudng thi ydu cau sd lieu ddu vio md hinh chinh gdm cic loai sd lieu khi tuong thuy van, sd heu vl quy md cic hp su dyng nudc, sd Udu thdng sd vat ly hd thdng cdng trinh khai thic sit dung nirdc.
Sd lieu ngudn nudc, ddng chay, mua cd the dupc coi li dim bao cho hau hit cic he thdng sdng Idn d Vidt Nam - ngoai ra cd the bd sung, phuc hdi nhd cac phuong phip tinh, md hinh toin thdng thudng.
Thdng sd, die tinh cdng trinh khai thac sir dyng nudc chii yiu l i cic thdng sd ca ban dupc luu trir trong cic hd so thiet ke cdng trinh.
Thong tin, sd Udu vl nhu cau vi hoat dpng sii dung nudc cua cic hoat dpng kinh tl, thdng thudng, se l i cic dau vio dupc quan tim nhdt ddi vdi md hinh toan md phdng vi die bidt ddi vdi md hinh toin tdi tru he thdng. 6 day cd till k l den sd hdu v l nhu cdu su dung nudc cho cac myc dich sii dyng nudc khac nhau, hieu qui sir dung nudc cho cic myc dich sii dung nudc. Thong thudng nhu cau su dung nudc dupc xac dinh dua trdn quy md hoat ddng san xudt ling vdi cic dieu kidn tic ddng ciia yiu td thdi tilt v i vdi trinh dd khoa hpc cdng nghd ciia hoat dpng sii dung nudc ... thudng dupc tinh bdng khdi luang nudc h-en mpt don vi quy md hoat dpng sin xuat (mVha ddt d-dng liia vu ddng-xuin, 1/ngudi/ngiy cho cap nudc smh hoat) hoac cd t h i l i quy md hoat ddng san xudt duoc bao v | , duy tri nhu didn tich dat khu cdng nghidp, do tiii dupc bao vd trinh tic dpng ctia 111.
Md hinh toin tdi uu cd diem khic co bin vdi md hmh toan md phdng li phai dat dupc eye trj cua him
tdi uu - tdi da lpi nhuan hoac tdi thiiu thiet hai tinh bdng don vi tiln td, don vj san pham ...
D l md ta hd thdng ngudn nudc sit vdi he thdng thuc cic ring budc bao him cic yiu td tren, thdng thudng, cdn phii xic dinh dupc gia tri kinh t l cua tai nguydn tidu hao, bj sir dung trdn don vi sin pham thu dupc qua ho^t ddng san xuat. Cu thi a day cd the li gii tri/lpi nhuin thu dupc trdn mpt m^ nudc sir dung tudi cho liia nudc, cho cay trdng can, cho cap nudc sinh hoat, cho cap nudc cdng nghidp.... Diy li mot ndi dung phirc tap trong tinh toin tdi uu kinh t l hidn nay trdn thi gidi va die bidt l i d Vidt Nam. Tinh toin gia tri kinh t l cua nudc cho cic muc tidu sir dyng nudc thdi gian vira qua, cd thi. dinh gia la chua dupc quan tam diing mirc. Mpt sd d l tai nghidn cuu khoa hpc cd dua vio npi dung tinh toan kinh t l ciia nudc.
Dac bidt gdn day nghien ciht phuong phdp tinh gid tri kinh t l cua nudc cho cac hd su dyng nudc khac nhau tai luu vuc sdng Hdng {J)io Xuan Hpc va Dao Vin Khiem, 2006) da tinh toin gia tri kinh t l ciia nudc su dung cho cic myc dich cap nudc sinh hoat, cdng nghidp, tudi, nudi trdng thiiy sin, ngoii ra cdn udc tinh thidt hai kinh t l do d nhidm nudc thii gay ra.
Kit qua irng dung thit nghiem duoc ip dyng tinh toan cho mdt sd viing dac tnmg trdn lim vuc sdng Hdng-Thii Binh - cy thi nhu gii tri kinh t l ciia nudc phyc vu tudi duoc tinh toin cho cic he thdng thuy lpi sdng Nhud, Niii Cdc vi Liin Son; gii tri kinh te ciia nudc cho cdp nudc sinh boat dd thi thinh phd Ha Ndi vi cap nudc sinh hoat ndng thdn cho Nam Dinh, Hii Duong, Vinh Phiic - phuang phap va kit qua cua de til nghien ciiu can dupc triln khai nhin rdng d Vidt Nam.
Ngoii gii tri kinh t l cua nudc, khi md t i cic rang hupc trong bai todn tdi uu rapt thdng sd quan trpng khic cd the dupc gpi la gii tri bidn cua nudc ling vdi cic quy md cua hoat ddng san xuat.
4. Ong dyng thyc tiln - Tren thd gioi
Ung dyng phuang phdp tdi uu trong quin ly tii nguydn nudc dupc chii ^ tip trung, die biet la cic irng dung trong quy hoach va quan ly he thdng hd chiia. D l giii quylt van d l suy giam ngudn nudc luu vyc sdng Aral la luu vuc sdng qudc t l chay qua cic qudc gia Trung A tiiudc Lidn bang Xd Viet cli, miu thuan trong chia se, khai thac sii dyng, mau thuan giiia qudc gia Ihupng ngudn vdi qudc gia nim d ha
NONG NGHIEP VA PHAT TRIEN NONG THON - KY 2 - THANG 4/2012 45
KHOA HOC C 6 N G N G H |
du nghidn ciru chia se lpi ich trong hpp tic khai thdc vd bao vd ngudn nudc sdng Aral viing Trung A da sir dung bii todn md phdng tdi uu h | thdng hd chiia vi d i de xudt giai phip quan ly, vdn hinh vdi myc tidu hii hda cdc rdng budc, ddng thdi dam bdo lpi ich phit dien, tudi vi bio vd mdi trudng.
Cd till k l din cong cy CALSIM (Close et al., 2003) do Cue Tii nguydn Nudc bang Califonia phdi hpp vdi Cyc Cai tgo Ngudn nudc Lidn bang My phit triln phuc vu cdng tdc quy hoach vd quan ly h | thdng ngudn nudc bang Califonia qua ket hpp ngdn ngir lip trinh, thu vi|n giii tdi uu tuyln tinh vi thinh phdn dd hpa. CALSIM da dupc chpn tiiay till h | thdng md hinh quy hogch ngudn nudc bang vi vimg thung lung trung tim Califonia (DWl^IM) trudc diy. Nghidn cuu vl phin bd dung tich chdng lu cua h | thdng 8 hd chiia luu vuc sdng Paranaiba-Grande (dien tich luu vuc 375.000 km^ d Brazin sir dung phuang phip tdi uu kit hpp phin tich thdng k l (Marien et al., 1994) da d l xudt phuang i n phin bd dimg tich chdng lu cho timg hd chiia theo thdi gian dim bao muc tidu chdng lu cua hd thdng Udn hd chiia. Trong nghidn ciru nay thuan tiiy chi xem xet den hidu qua chdng lu ma chua tinh din hidu qua phit didn cua h | thdng 8 hd chiia. Nghidn oiu cua Rinaldi vi Soncini-Sessa v l vdn hdnh hd thdng dan hd chiia Como phyc vu chdng lu, phat didn luu vyc sdng Adda mien Bdc nudc Y. Nghidn ciiu da phdn tich sd Udu van hinh trong qua khii, dinh gii cac thidt hai cung nhu hidu ich din cic mit phdt didn, miic dd ngip lu, cap nudc cho ndng nghidp d l xay dung mit cong tdi uu Pareto trong khdng gian ba chilu (phit didn, thidt hai ngip lu, cdp nudc), lim ca sd so sinh hii hda giira dupc vdi mat, giiip cho nhd hoach dinh cd t h i chpn dupc cdc phuong an vin hinh hd Como tdt hon so vdi qui khii hai hda cdc muc tidu sir dyng, giiia chdng lu cho ha du v i phit triln kinh t l viing ven long hd (Guariso et al., 1986).
Ngo Le Long (2006) d i ung dung cdng cy md hinh toin MIKE 11 & AUTOCAL k i t hpp md phdng thiiy ddng luc hpc (MIKE 11), dd tim giai phdp vin hinh tdi uu (AUTOCAL) d l hii hda myc tidu phit didn vi chdng lu trong dilu hinh hd Hda Binh, Vi|t Nam. Kit qua nghidn ciiu cii thidn ding k l lupng didn phat m i khdng anh hudng din an toin phdng IQ cho ha du. Nghidn ciiu ciing d l xudt khung dilu hanh theo thdi gian thyc, bao gdm du bio theo thdi gian thirc ddng chay vao hd trong thdi gian mita lu.
- T^ Vidt Nam
Qud trinh nghidn cuu trudc diy ciia cic co quan nhu Vi|n Quy hoach Thuy lpi, Vidn Khoa hpc Thiiy lpi, Vi|n Co hpc xiy dung cic quy trinh van hanh he thdng hd chiia Idn trdn Itru virc sdng Hdng-Thii Binh trong miia lu bing cich sii dyng cdng cy md hinh md phdng k i t hpp vdi xii ly' sd li|u cic kich bin to hpp lu Unh toin, thu ddn cic phuong in nhdm dam bio cic rdng budc thdng sd vdt ly cua hd thdng ho, cic ring budc v l muc nmjc lii trong cic giai doan miia lu. Ddng tiidi trdn ca sd kit qui tinh toin da djnh lupng tdc dpng din lim tSng giam sin lupng di|n ciia cac h | thdng cic nhi miy thuy di|n trdn he thdng d l d l xudt quy trinh. Diy cd thi coi li phuong phip thdng thudng, truyin thdng sir dung cdng cii md hinh toin thiiy dpng luc hpc trong sdng kit hiiip phuong phip phin tich thdng kd toin hpc. Phuong phip ndu trdn d i dupc vin dung xiy dung quy trinh vdn hinh lidn hd chiia trdn sdng Hdng - tir td hpp 2 hd Hda Binh + Thdc Bi, din td hpp 3 hd Hda Binh + Thic B i + Tuydn Quang v i gdn diy li vin hinh to hpp 4 hd Son La + Hda Binh + Thdc Bi + TuySn Quang.
Nam 2006, d l tai nghidn ciiu co sd khoa hpc va thuc tiln dilu hinh cdp nudc cho mita can ddng bang sdng Hdng ciia cac tic gia Ld Kim Truyen va H i Vin Khdi da tinh toin dilu phdi hd thdng 4 ho chiia trong miia can cap nudc cho ha du dya tien co sd phit triln md hmh toin md phdng dilu tiet ho chira ddc lip, bac thang hd chiia, ciing vdi iing dung rad hinh toin md phdng MIKE 11 trudng hpp nM ddng chay thilt k l 85% - d l tai da xiy dyng quy binh dilu tilt lien hd chiia trong miia c?n phyc vu c^
nudc cic nginh kinh t l k i t hpp phit didn.
Kit hpp ling dyng md hinh toin tdi uu va md hmh toin md phdng tai Vi|n Quy hoach Thuy lpi (To Trung Nghia va Ld Himg Nam, 2008) da md tavan hdnh h | thdng hd chiia trdn sdng Hdng ti-ong miia c^n. Tir k i t q u i tinh toin tdi uu h | thdng sir dung cdng n g h | GAMS da md phdng va giai bii toan tdi uu phi tuyln cic rang budc v i tdi uu h | thdng 3 hd chua Idn trdn luu vuc sdng Hdng - Thai Binh. Qua do xay dung quy tiinh dilu tilt hd thdng hd chira Idn ti-ong miia can hing n i m trdn luu vuc sdng Hong-Thai Binh. Kit qua nghidn cuu d i de xuat cdc phuong an vdn hanh cic hd chiia Idn trdn luu vuc sdng Hdng- Thii Binh tai tiing Uidn (10 ngiy) ti-ong sudt miia c^n, tiiy thudc vao dilu ki^n ddu miia khd ciia h6 46 NONG NGHIEP VA PHAT TRIEN NONG THON • K i 2 - THANG 4/2012
KHOA HOC CdNG N G H |
thdng v i cap nhit qua hing giai doan ciia miia khd.
Kit qua nghidn cim cho thay d i m bao ngudn nudc cho vu ddng xuan h i n g nim se tic ddng khdng dang ke din san lupng didn phat cua hd thdng hd chira (Kit luin niy cung tuong ddng vdi k i t qua tinh tir nghidn ciru ciia cdc tac gia Ld Kim Truyin va H i Vin Khdi nim 2006).
Ddi vdi trudng hpp so dd tinh cho luu vuc sdng Hdng-Thii Binh vdi 68 bidn ddng chiy vio, 358 bidn nhap luu khu giira, 36 hd chiia, 1152 mit lay nudc, 93 niit ydu cau ddng chay mdi trudng, 12 nut phin luu, thuc t l khi giii tdi uu he thdng phan bo ngudn nudc luu vuc sdng Hdng-Thii Binh bd cdng cu giai ciia GAMS da sit dung ma tran tdi uu vdi khoing 160.000 phuong trinh ring budc v i khoing 140.000 biln tdi
Trudc dd cdng nghd GAMS cung da dupc irng dyng d l d l xudt phuang dn phin bd tdi uu ngudn nudc phyc vu cic muc tidu sir dyng nudc cho luu vuc sdng Ddng Nai (Son, Huy vd Ringler, 2002), cho viing Thupng du sdng Thii Binh (Td Trung Nghia et al., 2006). Ngoii ra cd thi k l din mpt sd nghidn ciru gdn diy nhu nghidn ciiu dilu hinh dan hd chiia phuc vy da myc tidu tudi, phdt di|n, phdng lu v i cap nudc cho hg du cua hai tdc gii Nguyin T h i Hitng v i Ld Hiing (2011) d i dua vio img dyng tdi uu ddng kit hpp phin tich tdi uu Pareto - triln khai iing dyng thii nghidm cho hai hd chiia A Vuang va Dinh Binh. Cic nghidn ciiu do Bd Tai nguydn vi Mdi trudng gan day sir dung phuong phip md hinh todn md phdng xay dung quy trinh van hinh cic hd thdng Udn hd chiia.
uu (xem bang 1).
Bdng 1. Tdm tat k i t qui, quy md bii toin tdi uu phin bd ngudn nudc luu vuc sdng Hdng-Hiii Binh CTd Triing Nghia v i Ld Himg Nam, 2008)
GAMS Rev 146 x86/MS Windows 01/05/09 09:58:00 Page 5 G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m
Model Statistics SOLVE md6061 Using NLP From Une 26499 MODEL STATISTICS
BLOCKS OF EQUATIONS 56 SINGLE EQUATIONS 162,262 BLOCKS OF VARIABLES 34 SINGLE VARIABLES 142,988 NON ZERO ELEMENTS 414,363 NON LINEAR N-Z 52,632 DERIVATIVE POOL 1,158 CONSTANT POOL 559 CODE LENGTH 428,412
S O L V E S U M M A R Y MODEL md6061 OBJECTIVE obj
TYPE NLP DIRECTION MAXIMIZE SOLVER CONOPT FROM LINE 26499
**** SOLVERSTATUS 1 NORMAL COMPLETION
****MODELSTATUS 2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE 46514.4878 RESOURCE USAGE, LIMIT 1438.859 100000.000 ITERATION COUNT, LIMIT 6815 100000 EVALUATION ERRORS 0 0 Danh gii nghien cuu, img dung cdng n g h | tdi uu hda tiong quy hoach, quan 1^ ngudn nudc h-dn thi gidi cho thdy tdi uu hda hd thdng ngudn nudc rat dirpc chii y, dac bidt ddi vdi tdi uu hda hd thdng hd chiia. Tuy viy, iing dyng thuc t l cua phuang phip tdi uu vao cic hd thdng cdng trinh ciia Chinh phu hoic cdng hinh phyc vy muc dich cdng cdng cdn d pham vi hep - li do chinh l i ddi vdi c i c h^ tiidng niy chua dupc xic djnh ro myc tidu van hinh khai thdc, hay ndi cich khic muc tieu hi chi phdi bdi nhilu yiu td phiic tap -ngudi cd tham quyin ra quylt djnh cung
nhu cin hd dupc giao nhi^m vy van hanh, thdng thudng vi U do an toan, hinh ddng theo tiidng Id tir trudc Id sir dyng kinh nghi|m hoac k i t qua hi md hinh md phdng. Trong khi dd vdi khu vuc tu nhin khi muc tidu kmh t l , lpi nhuin chju tac dpng manh theo quy luat thj trudng thi phuong phip tdi uu dupc triln khai iing dyng manh md v i da dem lai lai ich to Idn.
IV. KET LUAN
Da cung cap mdt cich nhin v l phuong phip tdi uu, cdng cy tdi uu, ydu cdu v l sd lidu va ung dung
N 6 N G NGHIEP V A PHAT TRIEN N 6 N G THON - Kt 2 • THANG 4/2012 47
KHOA HOC C d N G NGHfe
phuong phap tdi uu trong quan ly ngudn nu(Vc ti-dn till gidi va tai Vi|t Nam. Kinh nghi|m till gidi cho thay tdi uu tuyln tinh, tdi uu dpng c6 uu dilm vl tinh hpc tiiuit trong khi tdi uu phi tuyln gdn hon v(n iing dung giai quylt cic van d^ ciia thuc tiln hoat ddng kinh tl. Die bi|t tdi uu phi tuyln cd k h i ning ip dung cho cic hd tiidng phuc t^p m i tdi uu tuyln tinh, tdi uu ddng han chi trong kha ning img dyng. Sir dung md hinh toin tdi uu k i t hpp phan tich tdi uu Pareto thich hpp de cung cap cic giii phdp phuc vy qui trinh ra quylt dinh d giai doan quy hoach cung nhu giai doan quin ly ngudn nudc. Vl cdng cu md hinh hda, kit qud nghidn ciru cho thay cdng n g h | GAMS cd nhilu diem ndi trdi nhu mim deo khi md ta die thii cic hd thdng thyc, cd tiie giai quylt bai toan Idn, giai nhilu dang bii toin tdi trong dd cd tdi uu phi tuyln, tdi uu tuyln tinh, tdi uu ddng.
Trudc yeu cdu ciia co c h i thi trudng ciing vdi didn biln phuc tap ciia dilu kidn tu nhidn, ngudn nudc, thdi gian tdi can cd hudng tm tidn triln khai nghien ciiu, iing dung cdng nghd tdi uu trong cdng tic quy hoach, quin ly tii nguydn ndi chung, tii nguydn nudc ndi ndng va die bidt chit y den quan ly van hinh he thdng hd chira. Tuy nhidn, de cd mdi tnrdng thuan loi cho phirong phap tdi uu phdt triln can thiet (i) trudc hit, phai cd su trao ddi siu, thudng xuydn giua cin bd nghien ciru vdi cin bp quan ly, van hinh hd thdng vi dam bao thdng tin cu till minh chiing tinh hidu qua ciia phuong phdp, cdng cu dupc chuyin din cac nha hoach dinh; (ii) phii phit trien cic cdng cy, md hinh mim deo, md ta sit nhat vdi thuc t l hd thdng. Ngoii ra, cdn ddu tu triln khai tip trung chuong trinh dio tao, nghidn ciru iing dyng v l Unh vuc tdi uu hda h | thdng trong quin ly, bao vd tii nguydn thidn nhiin tgi cic tnrdng dai hpc, vidn nghidn ciiu; cd co c h i khuyin khich cic thinh phan kinh t l tham gia vio linh vuc ndy.
TAI UEU THAM KHAO
1. Close, A., Haneman, W. M., Labdie, J. W., Loucks, D. P., Lund, J. R., McKinney, D. C.
Stedinger, J. R., 2003. A sti-ategic review of CALSIM II and its use for water planning, management and operations in Central Califonia. Califonia Bay Delta Authority Science Program Association of Bay Governments, Oakland, California. 129 pp.
2. Dio Xuan Hpc v i Dao Ngpc Khidm, 2006. Bio cao tdng hpp d l tai nghidn ciiu phuang phap tinh gia
ti-j kinh td ciia nudc cho cdc hd sir dung nudc khac nhau tai luu vuc sdng Hdng,
3. Edgar, T. F., D. M. Himmelblau, 1988.
Optimization of Chemical Processes. McGraw-Hill, New York.
4. Guariso, G., Rinaldi, S. and Soncini-Sessa, R,, 1986. Tlie management of Lake Como: A mulUobjectives analysis. Water Resources Research.
Vol. 22, No. 2,109-120.
5. Helweg, O. J., Labadie, J. W., 1977. Linked models for managing river basin salt balance. Water Resources Research 13(2), 329-336.
6. HiUier, F. S., Uebennan, G. J., 2001, Introduction to Operation Research. McGraw-Hill Companies, Inc.-New York, 1214 pp.
7. Karamouz, M., Houck, M., Delleur, J., 1992, Optimization and simulation of multiple reservoir systems Journal Water Resources Planning and Management, 26(3). 447-454.
8. Ld Kun Truyen vi H i Vin Khdi, 2006. Bao cao tdng hpp d l tai nghien cihi co sd khoa hpc va thuc tidn dilu hanh cap nudc cho miia can ddng bdng sdng Hdng.
9. Lund, J. R, Guzman J., 1999. Derived operating rules for reservoirs in senes or m parallel.
Journal of Water Resources Planning and Management 125(3), 143-153.
10. Marien, J. L., Damizio, J. M. and Costa, F. S., 1994. Building flood control rule curves for multipurpose multireservoir systems using controllability conditions. Water Resources Research. Vol. 30, No. 4,1135-1144.
11. Mays, L W., Tung, Y.-K., 1992.
Hydrosystems Engineering and Management MsGraw-HiU, Inc.-United States, 530 pp.
12. Ngo Le Long, 2006. Optimising reservoir operation A case study of the Hoa Binh reservoir, Vietnam. PhD Dissertation - Technical University of Denmark - Institute of Envu-onment & Resources October 2006,50 pp.
13. Nguydn T h i Himg va Ld Hiing, 2011. Mo hinh toin dilu tilt tdi uu van hanh hd chiia da muc dich (vdi myc dich tudi, p h i t di^n, phdng lu, dam bao mdi tnrdng sinh thii hoic cap nudc cho ha du). Tap chi Khoa hpc v i Cdng nghe D i Ning - s6 2 (43), 2011,35-43.
48 NONG NGHipP VA PHAT TRIEN NONG T H C N - KY 2 - THANG 4/2012
KHOA HOC C 6 N G NGHfe
14. Son, T. D., Huy, N. V., and C. Rmgler, 2002.
Md hinh tdng hpp kinh t l - thiiy vin luu vuc sdng, cdng cy tdi uu hda ngudn nudc luu vuc sdng Ddng Nai v i viing phu can. Tap chi Ndng nghidp va Phit tiiln Ndng tiidn, sd 8, 2002, 7U-712.
15. Td Trung Nghia va Ld Himg Nam, 2007. Han hin luu vuc sdng Hdng va giai phip. Tap chi Hoat dpng Khoa hpc cua Bd Khoa hpc Cdng nghd 2/2007(573), 16-17.
16. Td Tmng Nghia v i Le Himg Nam, 2008. Xiy dung quy trinh vin hdnh hd tiidng lidn hd chiia Hda Binh, Thic Bi, Tuyen Quang phyc vy cap nudc trong miia can cho ha du luu vyc sdng Hdng-Thii Binh.
Tap chi Ndng nghidp v i PTNT sd 1 nim 2008, ti-ang 71-75.
17. Td Tnmg Nghia v i Ld Himg Nam, Nguydn Thj Bich Thuy, Quach Thj Xuin, Pham Thanh Tii, Dio Xuan Thing, 2006. Tdi uu hda phin bd ngudn nudc vitng Thupng du sdng Thii Binh phuc vy phit tiiln kinh t l bang img dung cdng nghd GAMS, Tap chi Ndng nghidp v i Phit ti-iln Ndng tiidn sd 13, 48- 52.
18. Yakowitz, S., 1982. Dynamic programming appUcation In water resources. Water Resources Research 18(3), 673-696.
19. Young, G., 1967. Finding reservoir operating niles. J. Hydraul. Div. Am. Soc. Civ. Eng. 93(6), 297- 321.
SYSTEM OF OPTIMIZATION AND POTENTIAL APPUCATIONS IN WATER RESOURCES MANAGEMENT
Le Hung Nam Summary
Harmonizing different water use objectives in water system planning and management in the context of changing natural conditions and development requirements under pressures of market drivers emerges as an urgent issue in our country. Through review and assessment of available applications of modeling simulation and optimization approaches in water resources and reservoirs system, the article proposes an application of combined non-linear programming and Pareto optimization to solve the problems of water resources planning and management GAMS technology is assessed as a suitable tool for the analysis and optimization of the complex systems of river basins and reservoirs in Vietnam. In order to develop researches and practical applications of the system optimization methodologies and tools, it is essential to establish good environment for information exchange between researchers and system managers and operators as well as vrith stakeholders for the sake of well understanding advantages of system optimization in ensuring the transmission of information on transparency and clarity of the optimization metliodologles, the flexibility and simplicity of the optimization tools and the quantification of optimization application effectiveness to decision makers.
Keywords: Dynamic programming, GAMS, Pareto tont, non-linear programming, operation rule.
Ngudi phan bi|n: PGS.TS Trdn Viit 6 n
NONG NGHIEP VA PHAT TRIEN N 6 N G THON - KY 2 - THANG 4/2012