• Tidak ada hasil yang ditemukan

The prototype was built at a laboratory scale to mimic the process of drying in a solar thermal system (such as greenhouse dryer). Recommend to build a large scale solar dryer.

The tests were conducted during spring, Recommend to test the equipment in other seasons.

Ascaris deactivation was not investigated due to lack of viable eggs in the sample. Recommend to perform this analysis in the future, with eventual spiking of viable eggs if not present in the sludge.

I would recommend the use of a mathematical model of the solar system, such as Comsol, in order to aid in the comparison as well as proposal of design modifications.

Page | 85

REFERENCES

Adair, D. (1985). Improved sundrying and solar drying: basic considerations and selected applications: Food and Agriculture Organization of the United Nations.

Akoy, E., Ismail, M. A., Ahmed, E.-F. A., & Luecke, W. (2006). Design and construction of a solar dryer for mango slices. Proceedings of International Research on Food Security, Natural Resource Management and Rural Development,Tropentag. University of Bonn, Bonn, Germany.

Alahmer, A., Omar, M., Mayyas, A., & Dongri, S. (2011). Effect of relative humidity and

temperature control on in-cabin thermal comfort state: Thermodynamic and psychometric analyses. Applied Thermal Engineering, 31(14-15), 2636-2644.

Almeida, M., Butler, D., & Friedler, E. (1999). At-source domestic wastewater quality. Urban Water, 1(1), 49-55.

Alsharkawi, A., & Rossiter, J. A. (2016). Dual mode mpc for a concentrated solar thermal power plant. IFAC-PapersOnLine, 49(7), 260-265.

Annamraju, S., Calaguas, B., & Gutierrez, E. (2001). Financing water and sanitation. Key issues in increasing resources to the Sector. Water Aid briefing paper. London: Water Aid.

Archuleta, R., Berkey, J., & Williams, B. (1983). Research on solar food drying at the University of California, Santa Cruz. Progress in passive solar-energy systems. Amer Solar Energy Soc Inc, 679-683.

Arinze, E. A., Schoenau, G., & Bigsby, F. W. (1979). Solar-energy absorption properties of some agricultural products. ASAE paperNo. 79–3071, American Society of Agricultural Engineers, St. Joseph, MI, USA.

Arlabosse, P., Chavez, S., & Lecomte, D. (2004). Method for thermal design of paddle dryers:

Application to municipal sewage sludge. Drying Technology, 22(10), 2375-2393.

Austin, L., & Van Vuuren, S. (2001). Sanitation, public health and the environment: looking beyond current technologies. Journal of the South African Institution of Civil

Engineering= Joernaal van die Suid-Afrikaanse Instituut van Siviele Ingenieurswese, 43(1), 29-33.

Page | 86 Bacelos, M. S., & Almeida, P. I. F. (2011). Modelling of drying kinetic of potatoes taking into

account shrinkage. Procedia Food Science, 1(0), 713-721.

Bahnasawy, A. H., & Shenana, M. (2004). A mathematical model of direct sun and solar drying of some fermented dairy products (Kishk). Journal of Food Engineering, 61(3), 309-319.

Bakare, B., Foxon, K., Brouckaert, C., & Buckley, C. (2012). Variation in VIP latrine sludge contents. Water SA, 38(4), 479-486.

Balint, P. J. (1999). Drinking water and sanitation in the developing world: the Miskito Coast of Nicaragua and Honduras as a case study. Journal of Public and International Affairs, 10(1), 99-117.

Banerjee, R. (2005). Capacity building for renewable energy in India. Paper presented at the Proceedings of International congress on Renewable Energy (ICORE 2005), January, Pune India.

Banga, J. R., & Singh, R. P. (1994). Optimization of air drying of foods. Journal of Food Engineering, 23(2), 189-211.

Basunia, M., & Abe, T. (2001). Thin-layer solar drying characteristics of rough rice under natural convection. Journal of Food Engineering, 47(4), 295-301.

Bergman, T. L., Incropera, F. P., Lavine, A. S., & DeWitt, D. P. (2011). Fundamentals of heat and mass transfer. New York: John Wiley & Sons.

Boesch, M. E., & Hellweg, S. (2010). Identifying improvement potentials in cement production with life cycle assessment. Environmental Science & Technology, 44(23), 9143-9149.

Bolaji, B. O., & Olalusi, A. P. (2008). Performance evaluation of a mixed-mode solar dryer. AU Journal of Technology, 11(4), 225-231.

Bolaji, B. O., Olayanju, T. M., & Falade, T. O. (2011). Performance evaluation of a solar wind- ventilated cabinet dryer. The West Indian Journal of Engineering, 33(1/2), 12-18 Bosshard, P., Hermann, W., Hung, E., Hunt, R., & Simon, A. (2006). An assessment of solar

energy conversion technologies and research opportunities. GCEP Energy Assessment Analysis, Standford University, California, USA.Summer 2006.

Box, F. (2010). Improving sanitation in Ghana-role of sanitary biogas plants. Journal of Engineering and Applied Sciences, 5(2), 125-133.

Brouckaert, C., Foxon, K., & Wood, K. (2013). Modelling the filling rate of pit latrines. Water SA, 39(4), 555-564..

Page | 87 Buckley, C., Foxon, K., Brouckaert, C., Rodda, N., Nwaneri, C., Balboni, E., Magagna, D.

(2008a). Scientific support for the design and operation of ventilated improved pit latrines (VIPs) and the efficacy of pit latrine additives. Report to the Water Research Commission, South Africa. Pollution Research Group, School of Chemical Engineering, University of KwaZulu-Natal.

Calvert, C., Martin, R., & Morgan, N. (1969). House fly pupae as food for poultry. Journal of Economic Entomology, 62(4), 938-939.

Chaanaoui, M., Vaudreuil, S., & Bounahmidi, T. (2016). Benchmark of concentrating solar power plants: historical, current and future technical and economic development.

Procedia Computer Science, 83, 782-789.

Chapuis-Lardy, L., Fiorini, J., Toth, J., & Dou, Z. (2004). Phosphorus concentration and solubility in dairy feces: Variability and affecting factors. Journal of Dairy Science, 87(12), 4334-4341.

Čičková, H., Newton, G. L., Lacy, R. C., & Kozánek, M. (2015). The use of fly larvae for organic waste treatment. Waste Management, 35, 68-80.

Cofie, O. O., Agbottah, S., Strauss, M., Esseku, H., Montangero, A., Awuah, E., & Kone, D.

(2006). Solid-liquid separation of FS using drying beds in Ghana: implications for nutrient recycling in urban agriculture. Water Research, 40(1), 75-82.

Condorí, M., Duran, G., Echazú, R., & Altobelli, F. (2017). Semi-industrial drying of vegetables using an array of large solar air collectors. Energy for Sustainable Development, 37, 1-9.

Corcoran, E. (2010). Sick water? The central role of wastewater management in sustainable development: a rapid response assessment. United Nations Environment Programme, UN-HABITAT, Nairobi, Kenya.

Coulson, J. (1999). Coulson and Richardson's chemical engineering Volume 1 – Fluid flow. Heat Transfer and Mass Transfer. Oxford: Butterworth Heinemann, 1999.

Dail, H. W., He, Z., Susan Erich, M., & Wayne Honeycutt, C. (2007). Effect of drying on phosphorus distribution in poultry manure. Communications in Soil Science and Plant Analysis, 38(13-14), 1879-1895.

Department of Water Affairs, (2012). Report on the status of sanitation services in South Africa.

Pretoria: Government Printer.

Page | 88 Deshmukh, A. W., Varma, M. N., Yoo, C. K., & Wasewar, K. L. (2014). Investigation of solar

drying of ginger (zingiber officinale): empirical modelling, drying characteristics, and quality study. Chinese Journal of Engineering. http://dx.doi.org/10.1155/2014/305823 Diamante, L. M., & Munro, P. A. (1993). Mathematical modelling of the thin layer solar drying

of sweet potato slices. Solar Energy, 51(4), 271-276.

Diener, S., Semiyaga, S., Niwagaba, C. B., Muspratt, A. M., Gning, J. B., Mbéguéré, M.,

Strande, L. (2014). A value proposition: resource recovery from FS—Can it be the driver for improved sanitation? Resources, Conservation and Recycling, 88, 32-38.

Doymaz, I. (2007). Air-drying characteristics of tomatoes. Journal of Food Engineering, 78(4), 1291-1297.

Doymaz, I., Gorel, O., & Akgun, N. (2004). Drying characteristics of the solid by-product of olive oil extraction. Biosystems Engineering, 88(2), 213-219.

Ekechukwu, O. V., & Norton, B. (1999). Review of solar-energy drying systems II: an overview of solar drying technology. Energy Conversion and Management, 40(6), 615-655.

El-Sebaii, A., Aboul-Enein, S., Ramadan, M., & El-Gohary, H. (2002). Experimental

investigation of an indirect type natural convection solar dryer. Energy Conversion and Management, 43(16), 2251-2266.

Fluri, T. P. (2009). The potential of concentrating solar power in South Africa. Energy Policy, 37(12), 5075-5080.

Forson, F., Nazha, M., Akuffo, F., & Rajakaruna, H. (2007). Design of mixed-mode natural convection solar crop dryers: application of principles and rules of thumb. Renewable Energy, 32(14), 2306-2319.

Franceys, R., Pickford, J., Reed, R., & Organization, W. H. (1992). A guide to the development of on-site sanitation: World Health Organization.

Freeman, M. C., Ogden, S., Jacobson, J., Abbott, D., Addiss, D. G., Amnie, A. G., Colford Jr, J.

M. (2013). Integration of water, sanitation, and hygiene for the prevention and control of neglected tropical diseases: a rationale for inter-sectoral collaboration. PLoS Neglected Tropical Diseases, 7(9), e2439.

Fudholi, A., Sopian, K., Ruslan, M. H., Alghoul, M., & Sulaiman, M. (2010). Review of solar dryers for agricultural and marine products. Renewable and Sustainable Energy Reviews, 14(1), 1-30.

Page | 89 Fytili, D., & Zabaniotou, A. (2008). Utilization of sewage sludge in EU application of old and

new methods—a review. Renewable and Sustainable Energy Reviews, 12(1), 116-140.

Gantzer, C., Henny, J., & Schwartzbrod, L. (2002). Bacteroides fragilis and Escherichia coli bacteriophages in human faeces. International Journal of Hygiene and Environmental Health, 205(4), 325-328.

Ghaffari, A., & Mehdipour, R. (2015). Modeling and improving the performance of cabinet solar dryer using computational fluid dynamics. International Journal of Food Engineering, 11(2), 157-172.

Gidner, A. V., Stenmark, L. B., & Carlsson, K. M. (2001). Treatment of different wastes by supercritical water oxidation. Paper presented at the 20th IT3 Conference. In: Twentieth IT3 Conference, Philadelphia, USA.

Gold, M., Niang, S., Niwagaba, C., Eder, G., Muspratt, A. M., Diop, P., & Strande, L. (2014).

Results from FaME (Faecal Management Enterprises)–can dried FS fuel the sanitation service chain. Paper presented at the 37th WEDC International Conference.

Goldemberg, J. (2000). World energy assessment: energy and the challenge of sustainability.

Geneva: United Nations.

Harrison, J., & Wilson, D. (2012). Towards sustainable pit latrine management through LaDePa.

Sustainainable Sanitation Practice, 13, 25-32.

Hem, S., Toure, S., Sagbla, C., & Legendre, M. (2008). Bioconversion of palm kernel meal for aquaculture: experiences from the forest region (Republic of Guinea). African Journal of Biotechnology, 7(8), 1192-1198.

Henley, E., Seader, J., & Roper, D. (2011). Separation process principles. New York: John Wiley & Sons.

Hossain, M., & Bala, B. (2002). Thin-layer drying characteristics for green chilli. Drying Technology, 20(2), 489-505.

Hossain, M. A., Woods, J. L., & Bala, B. K. (2007). Single‐layer drying characteristics and colour kinetics of red chilli. International Journal of Food Science & Technology, 42(11), 1367-1375.

Icerman, L., & Morgan, R. P. (1984). Renewable energy technologies for international development, Energy, 9(7), 545-554.

Page | 90 Jain, D., & Tewari, P. (2015). Performance of indirect through pass natural convective solar crop

dryer with phase change thermal energy storage. Renewable Energy, 80, 244-250.

Jayaraman, K., Das Gupta, D., & Babu Rao, N. (2000). Solar drying of vegetables.

Developments in Drying, 1, 179-206.

Joceline, S. B., Koné, M., Yacouba, O., & Arsène, Y. H. (2016). Planted sludge drying beds in treatment of FS from ouagadougou: case of two local plant species. Journal of Water Resource and Protection, 8(07), 697.

Kalogirou, S. A. (2013). Solar energy engineering: processes and systems. Cambridge, MA:

Academic Press.

Kamwere, M. M. (2017). Characterising thin layer drying of high moisture content vegetables in a solar tunnel dryer. MSc. dissertation, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.

Kant, K., Shukla, A., Sharma, A., Kumar, A., & Jain, A. (2016). Thermal energy storage based solar drying systems: a review. Innovative Food Science & Emerging Technologies, 34, 86-99.

Kemp, I. C., Fyhr, B. C., Laurent, S., Roques, M. A., Groenewold, C. E., Tsotsas, E., Kind, M.

(2001). Methods for processing experimental drying kinetics data. Drying Technology, 19(1), 15-34.

Kiranoudis, C., Maroulis, Z., & Marinos-Kouris, D. (1992). Drying kinetics of onion and green pepper. Drying Technology, 10(4), 995-1011.

Komakech, A. J., Banadda, N. E., Kinobe, J. R., Kasisira, L., Sundberg, C., Gebresenbet, G., &

Vinnerås, B. (2014). Characterization of municipal waste in Kampala, Uganda. Journal of the Air & Waste Management Association, 64(3), 340-348.

Kumar, D. P., Hebbar, H. U., & Ramesh, M. (2006). Suitability of thin layer models for infrared–hot air-drying of onion slices. LWT-Food Science and Technology, 39(6), 700- 705.

Langergraber, G., & Muellegger, E. (2005). Ecological sanitation—a way to solve global sanitation problems? Environment International, 31(3), 433-444.

Léonard, A., Vandevenne, P., Salmon, T., Marchot, P., & Crine, M. (2004). Wastewater sludge convective drying: influence of sludge origin. Environmental Technology, 25(9), 1051- 1057.

Page | 91 Lopez Zavala, M. A. , et al. (2002). Characterization of feces for describing the aerobic

biodegradation of feces. Doboku Gakkai Ronbunshu (Journal of Environmental Systems and Engineering) 2002(720): 99-105.

Makununika, B. (2016). Thermal drying of FS from vip latrines and characterisation of dried faecal material. Master of Science in Chemical Engineering, University of KwaZulu- Natal, Durban.

Malkki, S. (1999). Human faeces as a resource in agriculture. Nord. Jordbrugsforskning.

Maycock, P. D. (2005). PV review: world Solar PV market continues explosive growth. Refocus, 6(5), 18-22.

McLean, K. A. (1980). Drying and storing combinable crops: Farming Press Ltd.

Mihelcic, J. R., Fry, L. M., & Shaw, R. (2011). Global potential of phosphorus recovery from human urine and feces. Chemosphere, 84(6), 832-839.

Mirara, W. S. (2017). Drying and pasteurisation of vip latrine FS using a bench scale medium infrared machine. Master of Science in Chemical Engineering, University of KwaZulu- Natal, Durban.

Mnisi, R. (2011). An assessment of the water and sanitation problems in New Forest,

Bushbuckrifdge Local Municipality, South Africa. MSc dissertation, University of the Free State, Bloemfontein.

Mnkeni, P., & Austin, L. (2009). Fertiliser value of human manure from pilot urine-diversion toilets. Water SA, 35(1), 133-138.

Modinger, F., & Mayr, J. (2006). Options for the use of renewable fuels in tunnel kilns. ZI International, 59(8), 44-54.

Moe, C. L., & Rheingans, R. D. (2006). Global challenges in water, sanitation and health.

Journal of Water and Health, 4(S1), 41-57.

Mohanraj, M., & Chandrasekar, P. (2009). Performance of a forced convection solar drier integrated with gravel as heat storage material for chili drying. Journal of Engineering Science and Technology, 4(3), 305-314.

Mühlbauer, W., Esper, A., & Muller, J. (1993, August). Solar energy in agriculture. In ISES solar world congress, Budapest (pp. 23-27).

Mujumdar, A. S. (2006). Handbook of industrial drying: CRC Press.

Page | 92 Muspratt, A. M., Nakato, T., Niwagaba, C., Dione, H., Kang, J., Stupin, L., Strande, L. (2014).

Fuel potential of FS: calorific value results from Uganda, Ghana and Senegal. Journal of Water Sanitation and Hygiene for Development, 4(2), 223-230.

Mustayen, A., Mekhilef, S., & Saidur, R. (2014). Performance study of different solar dryers: A review. Renewable and Sustainable Energy Reviews, 34, 463-470.

Nikiema, J., Cofie, O., Impraim, R., & Adamtey, N. (2013). Processing of fecal sludge to

fertilizer pellets using a low-cost technology in Ghana. Environment and Pollution, 2(4), 70.

Niwagaba, C. (2007). Human excreta treatment technologies: prerequisites, constraints and performance. Thesis, Department of Biometry and Engineering, Swedish University of Agricultural Sciences.

Nnadozie, R. C. (2013). Access to basic services in post-apartheid South Africa: What has changed? Measuring on a relative basis. The African Statistical Journal, 16, 81-103.

Nwaneri, C. F. (2009). Physico-chemical characteristics and biodegradability of contents of ventilated improved pit latrines (VIPs) in eThekwini Municipality. Master's dissertation, University of KwaZulu-Natal..

O’Riordan, M. (2009). Investigation into methods of pit latrine emptying. Partners in Development, WRC Project, 1745.

Ogheneruona, D. E., & Yusuf, M. O. (2011). Design and fabrication of a direct natural convection solar dryer for tapioca. Leonardo Electronic Journal of Practices and Technologies, 3, 95-104.

Ogunji, J. O., Nimptsch, J., Wiegand, C., & Schulz, C. (2007). Evaluation of the influence of housefly maggot meal (magmeal) diets on catalase, glutathione S-transferase and glycogen concentration in the liver of Oreochromis niloticus fingerling. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(4), 942- 947.

Okos, M. R., Narasimhan, G., Singh, R.K, & Witnaurer, A.C. (1992). Food Dehydration. In D.R. Hedman and D.B.Lund (Eds.). Hand book of food engineering: Marcel Dekker.

Onyegegbu, S., Morhenne, J., & Norton, B. (1994). Second law optimization of integral type natural circulation solar energy crop dryers. Energy Conversion and Management, 35(11), 973-983.

Page | 93 Pangavhane, D. R., Sawhney, R., & Sarsavadia, P. (2002). Design, development and

performance testing of a new natural convection solar dryer. Energy, 27(6), 579-590.

Panwar, N., Kaushik, S., & Kothari, S. (2012). State of the art of solar cooking: an overview.

Renewable and Sustainable Energy Reviews, 16(6), 3776-3785.

Perumal, R. (2007). Comparative performance of solar cabinet, vacuum assisted solar and open sun drying methods. Master's dissertation, McGill University, Montreal, Quebec.

Pollution Research Group. (2017). Final rttc flow sheet (18-09-2017). University of KwaZulu- Natal. Retrieved from http://prg.ukzn.ac.za/docs/default-source/presentations/final-rttc- flow-sheet_simplified---v3-(updated-12-07-2017).pdf?sfvrsn=2

Power, C. (2010). Technology roadmap: concentrating solar power. IEA Technology Roadmaps , International Energy Agency.

Prakash, S., Jha, S., & Datta, N. (2004). Performance evaluation of blanched carrots dried by three different driers. Journal of Food Engineering, 62(3), 305-313.

Rose, C., Parker, A., Jefferson, B., & Cartmell, E. (2015). The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Critical Reviews in Environmental Science and Technology, 45(17), 1827-1879.

Ruiz-López, I. I., Córdova, A. V., Rodrı́guez-Jimenes, G. C., & Garcı́a-Alvarado, M. A. (2004).

Moisture and temperature evolution during food drying: effect of variable properties.

Journal of Food Engineering, 63(1), 117-124.

Sachs, J. D. (2012). From millennium development goals to sustainable development goals. The Lancet, 379(9832), 2206-2211.

Saeed, I., Sopian, K., & Abidin, Z. Z. (2008). Drying characteristics of roselle (1): mathematical modeling and drying experiments. Agricultural Engineering International: CIGR Journal 10.

Sahoo, S. K. (2016). Renewable and sustainable energy reviews solar photovoltaic energy progress in India: a review. Renewable and Sustainable Energy Reviews, 59, 927-939.

Seck, A., Gold, M., Niang, S., Mbéguéré, M., Diop, C., & Strande, L. (2015). FS drying beds:

increasing drying rates for fuel resource recovery in Sub-Saharan Africa. Journal of Water Sanitation and Hygiene for Development, 5(1), 72-80.

Serth, R. W. (2007). Process heat transfer: principles and applications: Elsevier Academic Press.

Page | 94 Sevilla, M., & Fuertes, A. B. (2009). The production of carbon materials by hydrothermal

carbonization of cellulose. Carbon, 47(9), 2281-2289.

Sharma Sunil, S. A. (2013). Technologies for energy recovery from faecal waste - Technical and finance analysis for gasification. Resource Recovery, 14(2), 345-350.

Simate, I. (2003). Optimization of mixed-mode and indirect-mode natural convection solar dryers. Renewable Energy, 28(3), 435-453.

Singh, S., Mohan, R. R., Rathi, S., & Raju, N. J. (2017). Technology options for FS management in developing countries: Benefits and revenue from reuse. Environmental Technology &

Innovation, 7, 203-218.

Sistani, K., Rowe, D., Miles, D., & May, J. (2001). Effects of drying method and rearing temperature on broiler manure nutrient content. Communications in Soil Science and Plant Analysis, 32(13-14), 2307-2316.

Sodha, M., Dang, A., Bansal, P., & Sharman, S. (1985). An analytical and experimental study of open sun drying and a cabinet tyre drier. Energy Conversion and Management, 25(3), 263-271.

Spinosa, L., & Vesilind, P. A. (2001). Sludge into biosolids: IWA publishing.

St‐Hilaire, S., Sheppard, C., Tomberlin, J. K., Irving, S., Newton, L., McGuire, M. A., Sealey, W. (2007). Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. Journal of the World Aquaculture Society, 38(1), 59-67.

Still, D., & Foxon, K. (2012). Tackling the challenges of full pit latrines, Volume 1:

Understanding sludge accumulation in VIPs and strategies for emptying full pits. Report to the Water Research Commission , 1745/1/12. Pretoria, South Africa.

Still, D.Foxon, K., O'Riordan, M. (2012). Tackling the challenges of full pit latrines: Water Research Commission, South Africa.

Strande, L., & Brdjanovic, D. (2014). FS management: systems approach for implementation and operation: IWA publishing.

Strauss, M., Larmie, S., & Heinss, U. (1997). Treatment of sludges from on-site sanitation-Low- cost options. Water Science and Technology, 35(6), 129-136.

Thiagarajan, I. V. (2008). Combined microwave-convection drying and textural characteristics of beef jerky. Thesis, University of Saskatchewan, Saskatoon, South Africa.

Page | 95 Thirugnanasambandam, M., Iniyan, S., & Goic, R. (2010). A review of solar thermal

technologies. Renewable and Sustainable Energy Reviews, 14(1), 312-322.

Tilley, E. (2008). Compendium of sanitation systems and technologies: Eawag Aquatic Research.

Timilsina, G. R., Kurdgelashvili, L., & Narbel, P. A. (2012). Solar energy: markets, economics and policies. Renewable and Sustainable Energy Reviews, 16(1), 449-465.

Tiwari, G., & Ghosal, M. (2005). Renewable energy resources: basic principles and applications: Alpha Science Int'l Ltd.

Toğrul, İ. T., & Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58(1), 23-32.

Tomar, V., Tiwari, G., & Norton, B. (2017). Solar dryers for tropical food preservation:

Thermophysics of crops, systems and components. Solar Energy, 154, 2-13.

Treybal, R. E. (1980). Mass transfer operations: McGraw-Hill.

Tyagi, V., Rahim, N. A., Rahim, N., Jeyraj, A., & Selvaraj, L. (2013). Progress in solar PV technology: research and achievement. Renewable and Sustainable Energy Reviews, 20, 443-461.

Udert, K. M., Buckley, C. A., Wächter, M., McArdell, C. S., Kohn, T., Strande, L., Etter, B.

(2015). Technologies for the treatment of source-separated urine in the eThekwini Municipality. Water SA, 41(2), 212-221.

United Nations Development Programme. (2000). World energy assessment: energy and the challenge of sustainability: UNDP.

Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: future prospects for food and feed security: Food and

Agriculture Organization of the United Nations.

Vega, A., Fito, P., Andrés, A., & Lemus, R. (2007). Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). Journal of Food Engineering, 79(4), 1460- 1466.

Veriansyah, B., & Jae-Duck, K. (2007). RETRACTED: Supercritical water oxidation for the destruction of toxic organic wastewaters: A review: Elsevier.

Vinnerås, B., Palmquist, H., Balmér, P., & Jönsson, H. (2006). The characteristics of household wastewater and biodegradable solid waste—a proposal for new Swedish design values.

Urban Water Journal, 3(1), 3-11.

Page | 96 Walker, J., & Duncan, G. (1974). Effectiveness of recommended greenhouse air circulation

systems. Transactions of the ASAE, 17(2), 371-0374.

Werther, J., & Ogada, T. (1999). Sewage sludge combustion. Progress in Energy and Combustion Science, 25(1), 55-116.

WHO. (2015). Key facts from JMP 2015 report. Retrieved 12-09-2017

http://www.who.int/water_sanitation_health/monitoring/jmp-2015-key-facts/en/

WHO & UniCeF. (2014). Progress on sanitation and drinking water: 2014 update: World Health Organization.

Williams, P. T. (2013). Waste treatment and disposal: John Wiley & Sons.

Winker, M., Vinnerås, B., Muskolus, A., Arnold, U., & Clemens, J. (2009). Fertiliser products from new sanitation systems: their potential values and risks. Bioresource Technology, 100(18), 4090-4096.

Zawilska, E., & Brooks, M. (2011). An assessment of the solar resource for Durban, South Africa. Renewable Energy, 36(12), 3433-3438.

Zuma, L., Velkushanova, K., & Buckley, C. (2015). Chemical and thermal properties of VIP latrine sludge. Water SA, 41(4), 534-540.

Page | 97

APPENDIXES

Appendix A: Ethical clearance

Page | 98 Appendix B: Drying chamber drawings

The construction drawings were drawn using SolidWorks and transposed to produce construction drawings.

Figure B. 1: Drawing #1

Page | 99

Figure B. 2: Drawing #2

Page | 100

Figure B. 3: Drawing #3

Page | 101

Figure B. 4: Drawing #4

Page | 102

Figure B. 5: Drawing #5

Page | 103 Appendix C: Standard operating procedures

C1: Drying Rig

1. Scope and Application

Drying is a mass transfer process consisting of the removal of a solvent by evaporation from a solute. The process involves a heat source and a carrying medium to absorb and transport the moisture away. In the most common case, a gas stream is used to apply the heat by convection and carry away the vapor. When a piece of wet material is exposed to unsaturated air, evaporation takes place from its surface. The rate of evaporation is higher with an increase in temperature of the air. At a given temperature the rate of evaporation is dependent on the vapor pressure difference between the air close to the material and that of the more mobile air surrounding it. The drying rig allows control of a preheated air temperature and flow rate.

2. Brief description of the Rig

A compressed air line is used to drive the flow through the rig. The flow rate is controlled by use of a valve on the compressed air line and monitored by a rotameter. A heater is also connected to control the temperature of the air stream. The sample is exposed to direct solar radiation in a double walled transparent drying box. The radiation is measured on site by use of a pyranometer.

3. Safety Precautions

Ensure that all electric cables are not in contact with water.

Do not switch on the heater when there is no air flow.

Ensure all pipes are firmly connected 4. Procedure

Start up

1. Switch on computer and open appropriate software (Solar Drying) and data logger 2. Test and preset the flowrate

3. Preheat air to desired temperature

4. Switch on mass balance and pyranometer 5. Place sample in the drying chamber Operation

1. Log and monitor rotameter regularly Shut down

1. Remove sample, Switch off the mass balance and pyranometer 2. Switch off the heater

3. Close the air supply

4. Turn off the computer and data logger