Stability and Integration on so (3) ∗ −
Ross M. Adams ∗ , Rory Biggs, Claudiu C. Remsing
Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140, South Africa
XV th International Conference: Geometry, Integrability and
Quantization, Varna, Bulgaria, June 7–12, 2013
Outline
1 Introduction
2 Classification
3 Stability
4 Integration
Outline
1 Introduction
2 Classification
3 Stability
4 Integration
Problem statement
Hamilton-Poisson systems on so (3) ∗ −
Classify quadratic Hamilton-Poisson systems Stability
Integration via Jacobi elliptic functions.
Poisson structure
(minus) Lie-Poisson structure
{F , G} (p) = −p ([dF (p), dG(p)]) , p ∈ g ∗ Hamiltonian vector field:
H[F ~ ] = {F , H}
Casimir function:
{C, F } = 0
Hamilton-Poisson Systems
Quadratic Hamilton-Poisson System (g ∗ − , H) H A,Q : p 7→ pA + pQp > , A ∈ g
Equations of motion:
p ˙ i = −p ([E i , dH(p)]) H ~ = Π − · ∇H
Q (PSD) quadratic form
A = 0 - homogeneous
A 6= 0 - inhomogeneous
so (3) =
A ∈ R 3×3 | A > + A = 0
Basis:
E 1 =
0 0 0
0 0 −1
0 1 0
E 2 =
0 0 1
0 0 0
−1 0 0
E 3 =
0 −1 0
1 0 0
0 0 0
·
Commutator relations:
[E 2 , E 3 ] = E 1 [E 3 , E 1 ] = E 2 [E 1 , E 2 ] = E 3 Poisson structure on so (3) ∗ −
Π − =
0 −p 3 p 2 p 3 0 −p 1
−p 2 p 1 0
C(p) = p 1 2 + p 2 2 + p 2 3
Automorphisms: Aut(so (3) ∗ − ) = Aut(so (3)) = SO (3)
Outline
1 Introduction
2 Classification
3 Stability
4 Integration
Affine equivalence
Definition
Systems G and H are affinely equivalent if
∃ affine automorphism ψ such that ψ ∗ G ~ = H ~ Proposition
The following systems are equivalent to H A,Q :
H A,Q ◦ ψ : where ψ - linear Poisson automorphism H A,rQ : where r 6= 0
H A,Q + C : where C- Casimir function
Classification on so (3) ∗ −
H(p) = pQp >
1 2 p 2 1 p 2 1 + 1 2 p 2 2
H(p) = pA + pQp >
αp 1 p 2 + 1 2 p 1 2 p 1 + 1 2 p 1 2 p 1 + αp 2 + 1 2 p 1 2
α 1 p 1 + α 2 p 2 + γ p 3 + p 1 2 + βp 2 2
Conditions α > 0
α 1 , α 2 ≥ 0
γ ∈ R
0 < β < 1.
Homogeneous systems
Proof (sketch)
Let H Q = pQp > (Q PSD 3 × 3 matrix).
∃Ψ ∈ SO(3) such that ΨQΨ > = diag(a 1 , a 2 , a 3 ), where a 1 ≥ a 2 ≥ a 3 ≥ 0
Then a 1
1
−a
3ΨQΨ > − a 3 C(p)
= diag(1, α, 0), 0 ≤ α ≤ 1.
ψ = diag(− √ 2 √
1 − α, 2 p
α(1 − α), − √ 2 √
α) brings H α (p) = p 1 2 + αp 2 2 into H 1 (p) = p 2 1 + 1 2 p 2 2
ψ · H ~ α = H ~ 1 ◦ ψ :
p ˙ 1 = 2
√ 2α √
1 − α p 2 p 3 p ˙ 2 = 4 p
α(1 − α) p 1 p 3 p ˙ 3 = 2 √
2α(1 − α) p 1 p 2 .
Inhomogeneous systems
Proof (sketch)
Let H A,Q = pA + pQp > .
By Proposition, H A,Q is A-equivalent to (for some p 0 ∈ so(3) ∗ − )
H a (p) = p 0 , H b (p) = p 0 + 1
2 p 1 2 , H c (p) = p 0 + p 2 1 + βp 2 2 Consider Ψ ∈ SO(3) s.t. ΨQΨ > = Q. Let H 1,α (p) = αp 1 , then H a (p) ∼ = H 1,α , α > 0.
Consider ψ : p 7→ ψ 0 (p) + q s.t. ψ 0 · H ~ 1,α = H ~ 1,β ◦ ψ:
For ψ 0 = [ψ ij ],
−αψ 13 p 2 + αψ 12 p 3 = 0
−αψ 23 p 2 + αψ 22 p 3 − β(ψ 31 p 1 + ψ 32 p 2 + ψ 33 p 3 + q 3 ) = 0
−αψ 33 p 2 + αψ 32 p 3 − β(ψ 21 p 1 + ψ 22 p 2 + ψ 23 p 3 + q 2 ) = 0
Inhomogeneous systems
Proof (sketch)
Consider H b (p) = p 0 + 1 2 p 2 1 . Then Ψ =
±1 0
0 S
, S ∈ O(2), for ΨQΨ > = Q Thus H b (p) is equivalent to (α 1 , α 2 ≥ 0)
H 2,α (p) = α 1 p 1 + α 2 p 2 + 1 2 p 1 2 Let α 1 = 0. Then H 2,α ∼ = H 2,1 , where H 2,1 = p 2 + 1 2 p 2 1
Indeed, H ~ 2,α and H ~ 2,1 are compatible with the affine isomorphism
p 7→ p
1 0 0
0 α 2 0 0 0 α 2
+
0 1 − α 2 2
0
>
Outline
1 Introduction
2 Classification
3 Stability
4 Integration
Types of stability
Lyapunov stable
∀ nbd N ∃ nbd N 0 s.t. F t (N 0 ) ⊂ N spectrally stable
Re(λ i ) ≤ 0 for eigenvalues of DH(p e ) Lyapunov stable = ⇒ spectrally stable Energy methods
Energy Casimir: (λ 1 , λ 2 ∈ R ),
d(λ 1 H + λ 2 C)(p e ) = 0 and d 2 (λ 1 H + λ 2 C)(p e ) | W ×W < 0 W = ker dH(p e ) ∩ ker dC(p e )
Continuous energy Casimir: H −1 (H(p e )) ∩ C −1 (C(p e )) = {p e }
Classification on so (3) ∗ −
H(p) = pQp >
1 2 p 2 1 p 2 1 + 1 2 p 2 2
H(p) = pA + pQp >
αp 1 p 2 + 1 2 p 1 2 p 1 + 1 2 p 1 2 p 1 + αp 2 + 1 2 p 1 2
α 1 p 1 + α 2 p 2 + γ p 3 + p 1 2 + βp 2 2
Conditions α > 0
α 1 , α 2 ≥ 0
γ ∈ R
0 < β < 1.
Stability: H(p) = p 2 + 1 2 p 1 2
Equations of motion
p ˙ 1 = −p 3 p ˙ 2 = p 1 p 3 p ˙ 3 = p 1 (1 − p 2 )
-2
0
2
E
1*-2
0
E
2* 2 -20 2
E
3*-2
0
2
E
1*-2
0
E
2* 2 -20 2
E
3*Stability: H(p) = p 2 + 1 2 p 1 2
Each state e µ = (µ, 1, 0) is stable, µ ∈ R Let H λ = λ 1 H + λ 2 C.
For λ 1 = 1 and λ 2 = − 1 2
dH λ (e µ ) = 0 and d 2 H λ (e µ ) =
0 0 0
0 −1 0
0 0 −1
W = kerdH(e µ ) ∩ kerdC(e µ ) = span
1
−µ 0
,
0 0 1
Thus (µ 6= 0)
d 2 H λ (e µ )| W ×W =
−µ 2 0
0 −1
Stability: H(p) = p 2 + 1 2 p 1 2
Each state e µ = (0, µ, 0) is stable for µ ≤ 1 For µ < 1, the Hessian is given by
d 2 H λ (µ, 0, 0) =
−( 1−µ µ ) 0 0 0 − µ 1 0 0 0 − µ 1
For µ = 0
C −1 (C(e 0 )) = (0, 0, 0) For µ = 1
H −1 (H (e 1 )) ∩ C −1 (C(e 1 )) = (0, 1, 0)
e µ is (spectrally) unstable for µ > 1.
Classification on so (3) ∗ −
H(p) = pQp >
1 2 p 2 1 p 2 1 + 1 2 p 2 2
H(p) = pA + pQp >
αp 1 p 2 + 1 2 p 1 2 p 1 + 1 2 p 1 2 p 1 + αp 2 + 1 2 p 1 2
α 1 p 1 + α 2 p 2 + γ p 3 + p 1 2 + βp 2 2
Conditions α > 0
α 1 , α 2 ≥ 0
γ ∈ R
0 < β < 1.
Stability: H(p) = p 1 + 1 2 p 1 2
Equations of motion
p ˙ 1 = 0
p ˙ 2 = (1 + p 1 )p 3 p ˙ 3 = −(1 + p 1 )p 2 .
-2 0
2
E
1*-2 0
2
E
2*-2 0 2
E
3*Stability: H(p) = p 1 + 1 2 p 1 2
Each state e µ,ν = (−1, µ, ν) is unstable Let = p
µ 2 + ν 2
Consider open ball B centred at e µ,ν An integral curve of H, for any ~ δ > 0,
p(t) = (−1 + δ, µ cos(δt) + ν sin(δt), ν cos(δt) − µ sin(δt))
∀ V ⊂ B , e µ,ν 2 ∈ V , there ∃ δ > 0 s.t. p(0) ∈ V Furthermore
kp( π
3δ ) − e µ,ν 2 k = p
δ 2 + µ 2 + ν 2 >
Stability summary
-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
(d)
12p
21p
21+
12p
22αp
1-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
(e) p
2+
12p
12p
1+
12p
12p
1+ αp
2+
12p
21Outline
1 Introduction
2 Classification
3 Stability
4 Integration
Classification on so (3) ∗ −
H(p) = pQp >
1 2 p 2 1 p 2 1 + 1 2 p 2 2
H(p) = pA + pQp >
αp 1 p 2 + 1 2 p 1 2 p 1 + 1 2 p 1 2 p 1 + αp 2 + 1 2 p 1 2
α 1 p 1 + α 2 p 2 + γ p 3 + p 1 2 + βp 2 2
Conditions α > 0
α 1 , α 2 ≥ 0
γ ∈ R
0 < β < 1.
Integration: H(p) = p 2 + 1 2 p 1 2
Equations of motion
p ˙ 1 = −p 3 , p ˙ 2 = p 1 p 3 , p ˙ 3 = p 1 (1 − p 2 ) Separation: Let h 0 = H(p(0)) and c 0 = C(p(0))
Level sets H −1 (h 0 ) and C −1 (c 0 ) are tangent if their gradients are parallel
For λ ∈ R \{0}
∇H(p) = λ∇C(p) ⇐⇒
p 1
1 0
= λ
2p 1 2p 2 2p 3
p 1 = 2λp 1 , p 2 = 1
2λ , p 3 = 0
Integration: H(p) = p 2 + 1 2 p 1 2
Seperation
For λ 6= 1 2 : p 3 = p 1 = 0, p 2 ∈ R \{1}:
h 0 = p 2 and c 0 = p 2 2 = ⇒ c 0 = h 2 0 Therefore we consider:
c 0 < h 2 0 , c 0 = h 2 0 , c 0 > h 2 0
For λ = 1 2 : p 3 = 0, p 2 = 1, p 1 ∈ R :
h 0 = 1 + 1 2 p 2 1 and c 0 = p 1 2 + 1 = ⇒ c 0 = 2h 0 − 1 We further consider:
c 0 = 2h 0 − 1, c 0 > 2h 0 − 1
Integration: H(p) = p 2 + 1 2 p 1 2 : 0 < 2h 0 − 1 < c 0 < h 2 0
-2 0 2
E1* -2
0 2 E2* -2
0 2
E3*
-2 0 2
E1* -2
0 2 E2* -2
0 2
E3*
Theorem: H(p) = p 2 + 1 2 p 1 2
For 0 < 2h 0 − 1 < c 0 < h 2 0 , σ ∈ {−1, 1},
p ¯ 1 (t) = σ
√
2δ 1 + k sn (Ω t, k ) dn (Ω t, k ) p ¯ 2 (t) = h 0 + δ − 2δ
1 − k sn (Ω t , k) p ¯ 3 (t) = σk Ω √
2δ cn (Ω t, k ) k sn (Ω t, k ) − 1 Here Ω = √
h 0 − 1 + δ, k =
√
h
0−1−δ
√
h
0−1+δ , and δ = q
h 2 0 − c 0
Proof (Sketch)
H(p) = p 2 + 1 2 p 2 1 and C(p) = p 2 1 + p 2 2 + p 3 2
d
dt ¯ p 2 = p 1 p 3 = q
2(h 0 − p ¯ 2 )(c 0 − 2(h 0 − p ¯ 2 ) − ¯ p 2 2 ) Transform it into standard form, letting s = ¯ p ¯ p
2−r
12
−r
2,
√
2 t = 1
(r 1 − r 2 ) √ A 1 A 2
Z
p¯2(t)−r1
¯ p2(t)−r2
0
ds r
s 2 + B A
22
s 2 + B A
11
A 1 = 1
4δ > 0 A 2 = h 0 − 1 − δ 2δ > 0 B 1 = − 1
4δ < 0 B 2 = − h 0 − 1 + δ
2δ < 0
r 1 = h 0 + δ r 2 = h 0 − δ.
Proof (Sketch)
Applying the integral formula Z x
a
dt
p (t 2 − a 2 )(t 2 − b 2 ) = 1 a dc −1
1 a x , b a
, b < a ≤ x we obtain
¯ p 2 (t) = r 2
q
− B A
22
dc
(r 1 − r 2 ) √ 2A 1 A 2
q
− B A
22
t, r 1
−
BA22
− r 1
q
− B A
22
dc
(r 1 − r 2 ) √ 2A 1 A 2
q
− B A
22
t, r 1
−
BA22
− 1
·
Hence
¯ p 2 (t) = h 0 + δ (k + dc (Ω t, k))
k − dc (Ω t, k ) ·
Proof (Sketch)
Using sn (x+K 1 ,k) = dc (x , k ) and a translation in t we get p ¯ 2 (t) = h 0 + δ + 2δ
k sn (Ω t, k) − 1 · Solve for p ¯ 1 (t) and p ¯ 3 (t) using constants of motion.
Verify dt d p(t) = ¯ H(¯ p(t)), for example d
dt p ¯ 2 (t) − ¯ p 1 (t)¯ p 3 (t)
= 2k δ(−1 + σ 2 )Ω cn (Ω t, k ) dn (Ω t, k )
(−1 + k sn (Ω t, k)) 2 ·
which is zero for σ ∈ {−1, 1}.
Proof (Sketch)
Verify p(t ) = ¯ p(t + t 0 )
We have p 2 (0) + 1 2 p 1 (0) 2 = h 0 and p 1 (0) 2 + p 2 (0) 2 + p 3 (0) 2 = c 0 . Thus
1 − p
1 + c 0 − 2h 0 ≤ p 2 (0) ≤ 1 + p
1 + c 0 − 2h 0 . Now ¯ p 2 ( K Ω ) = 1 − √
1 + c 0 − 2h 0 and ¯ p 2 ( 3K Ω ) = 1 + √
1 + c 0 − 2h 0 . Thus ∃t 1 ∈ [ K Ω , 3K Ω ] such that ¯ p 2 (t 1 ) = p 2 (0).
Then
min p
2(h 0 − p 2 (0)) = h 0 − 1 − p
1 + c 0 − 2h 0 > 0.
Thus p 1 (0) 6= 0. Let σ = sgn (p 1 (0)).
Proof (Sketch)
Then, we have
p 1 (0) 2 = 2h 0 − 2p 2 (0) = 2h 0 − 2¯ p 2 (t 1 ) = ¯ p 1 (t 1 ) 2 . As sgn (p 1 (0)) = σ = sgn (¯ p 1 (t 1 )), p 1 (0) = ¯ p 1 (t 1 ).
Also,
p 3 (0) 2 = c 0 − p 1 (0) 2 − p 2 (0) 2
= c 0 − p ¯ 1 (t 1 ) 2 − ¯ p 2 (t 1 ) 2 = ¯ p 3 (t 0 ) 2 . Thus p 3 (0) = ±¯ p 3 (t 1 ).
Now
p ¯ 1 (−t+ 2K Ω ) = ¯ p 1 (t), ¯ p 2 (−t + 2K Ω ) = ¯ p 2 (t), ¯ p 3 (−t+ 2K Ω ) = −¯ p 3 (t).
Thus there exists t 0 ∈ R such that p(0) = ¯ p(t 0 ).
Theorem: H(p) = p 2 + 1 2 p 1 2
For h 2 0 < c 0 , σ ∈ {−1, 1}
¯ p 1 (t) = σ
√ 2 p
h 0 + δ − 1 cn (Ω t, k)
¯ p 2 (t) = h 0 − (h 0 + δ − 1) cn (Ω t, k ) 2
¯ p 3 (t) = σ √ 2 p
h 0 + δ − 1 Ω dn (Ω t, k ) sn (Ω t, k ) . Here Ω = √
δ, k =
q h
0+δ−1
2δ , and δ = √
1 + c 0 − 2h 0
-2 0 2 E1* -2
0 2 E2* -2 0 2
E3*
-2 0 2 E1* -2
0 2 E2* -2 0 2
E3*
Theorem: H(p) = p 2 + 1 2 p 1 2
Limitng c 0 → h 0 2 , h 0 > 1, σ ∈ {−1, 1}
p ¯ 1 (t) = 2σ p
h 0 − 1 sech p
h 0 − 1 t
p ¯ 2 (t) = h 0 − 2(h 0 − 1) sech p
h 0 − 1 t 2
p ¯ 3 (t) = 2σ(h 0 − 1) sech p
h 0 − 1 t
tanh p
h 0 − 1 t .
-2 0 2 E1* -2
0 2 E2* -2 0 2
E3*
-2 0 2 E1* -2
0 2 E2* -2 0 2
E3*
Classification on so (3) ∗ −
H(p) = pQp >
1 2 p 2 1 p 2 1 + 1 2 p 2 2
H(p) = pA + pQp >
αp 1 p 2 + 1 2 p 1 2 p 1 + 1 2 p 1 2 p 1 + αp 2 + 1 2 p 1 2
α 1 p 1 + α 2 p 2 + γ p 3 + p 1 2 + βp 2 2
Conditions α > 0
α 1 , α 2 ≥ 0
γ ∈ R
0 < β < 1.
Integration: H(p) = p 1 + αp 2 + 1 2 p 2 1
Equations of motion
p ˙ 1 = −αp 3 p ˙ 2 = (1 + p 1 )p 3
p ˙ 3 = αp 1 − (1 + p 1 )p 2 .
Consider H(p) = p 1 + p 2 + 1 2 p 1 2 Transform equation
d ¯ p 1 dt = − 1
2 q
4c 0 − 4h 0 2 + 8h 0 ¯ p 1 − 8¯ p 1 2 + 4h 0 p ¯ 2 1 − 4¯ p 3 1 − ¯ p 4 1 Decompose into
d ¯ p 1 dt
2
= (γ 1 p 2 1 + γ 2 p 1 + γ 3 )(η 1 p 2 1 + η 2 p 1 + η 3 )
Integration: H(p) = p 1 + αp 2 + 1 2 p 2 1
-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
-2 0
2 E1*
-2 0
E2* 2 -2 0 2
E3*
Conclusion
Summary
Classification of Hamilton-Poisson systems on so (3) ∗ − Stability nature of equilibria
Integration of several systems Outlook
Integration of remaining systems
Associated optimal control problems on SO (3)
Systems on so (4) ∗ −