• Tidak ada hasil yang ditemukan

On the Equivalence of Control Systems on the Orthogonal Group SO (4)

N/A
N/A
Protected

Academic year: 2025

Membagikan "On the Equivalence of Control Systems on the Orthogonal Group SO (4)"

Copied!
23
0
0

Teks penuh

(1)

On the Equivalence of Control Systems on the Orthogonal Group SO (4)

Ross M. Adams ∗ , Rory Biggs, Claudiu C. Remsing

Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140, South Africa

WSEAS International Conference on DYNAMICAL SYSTEMS and

CONTROL, Porto, Portugal, July 1–3, 2012

(2)

Outline

1 Introduction

2 The orthogonal group SO (4)

3 Equivalence

4 An illustrative example

(3)

Outline

1 Introduction

2 The orthogonal group SO (4)

3 Equivalence

4 An illustrative example

(4)

Problem statement

Left-invariant control affine systems on Lie groups.

Study the local geometry by introducing a natural equivalence relation.

Detached feedback equivalence and L-equivalence.

Classify, under L-equivalence, all homogeneous systems on

SO (4).

(5)

Left-invariant control affine systems

A left-invariant control affine system Σ = (G, Ξ) g ˙ = g Ξ(1, u) = g(A + u 1 B 1 + . . . u ` B ` ) where g ∈ G , u ∈ R ` and A, B 1 , . . . , B ` ∈ g.

The parameterization map Ξ(1, ·) : R ` → g is an injective affine map (i.e., B 1 , . . . , B ` are linearly independent).

The trace of Σ is Γ = im Ξ(1, ·) = A + hB 1 , . . . , B ` i.

Σ is homogeneous if A ∈ hB 1 , . . . , B ` i.

(6)

Equivalences

Let Σ = (G, Ξ) and Σ 0 = (G, Ξ 0 ).

Detached feedback equivalence

Σ and Σ 0 are (locally) detached feedback equivalent if there exist 1 ∈ N and 1 ∈ N 0 , and

a (local) diffeomorphism Φ = φ × ϕ : N × R ` → N 0 × R ` , φ(1) = 1, such that

T g φ · Ξ (g, u) = Ξ 0 (φ(g), ϕ(u)) for all g ∈ N and u ∈ R `

L-equivalence

Σ and Σ 0 are L-equivalent if there exists a Lie algebra automorphism ψ : g → g such that

ψ · Γ = Γ 0 .

(7)

Outline

1 Introduction

2 The orthogonal group SO (4)

3 Equivalence

4 An illustrative example

(8)

The orthogonal group SO (4)

The orthogonal group SO (4) = n

g ∈ GL (4, R ) : g > g = 1, det g = 1 o is a six-dimensional, non-commutative, semisimple, compact Lie group.

The Lie algebra

so (4) = n

A ∈ R 4×4 : A > + A = 0 o

.

(9)

Decomposition so (4) ∼ = so (3) ⊕ so (3)

Natural Basis

Isomorphism ς : so (3) ⊕ so (3) → so (4).

Induces a natural basis for so (4).

E 1 E 2 E 3 E 4 E 5 E 6

E 1 0 E 3 −E 2 0 0 0

E 2 −E 3 0 E 1 0 0 0

E 3 E 2 −E 1 0 0 0 0

E 4 0 0 0 0 E 6 −E 5

E 5 0 0 0 −E 6 0 E 4

E 6 0 0 0 E 5 −E 4 0

(10)

Automorphisms of so (4)

Lemma

Group of inner automorphisms Int (so (4)) =

ψ 1 0 0 ψ 2

: ψ 1 , ψ 2 ∈ SO (3)

.

Proposition

Aut (so (4)) is generated by Int (so (4)) and the automorphism ζ =

0 1 1 0

.

(11)

Outline

1 Introduction

2 The orthogonal group SO (4)

3 Equivalence

4 An illustrative example

(12)

Basic observations

Proposition

Let Γ, e Γ ⊂ so (4) and ψ ∈ Aut (so (4)). Then ψ · Γ = e Γ ⇐⇒ ψ · Γ ⊥ = e Γ ⊥ .

Any R ∈ SO (3) can be expressed as a product of rotations ρ 1 (θ), ρ 2 (θ) and ρ 3 (θ), denoted respectively

1 0 0

0 cos θ − sin θ 0 sin θ cos θ

 ,

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

cos θ − sin θ 0 sin θ cos θ 0

0 0 1

 .

(13)

Example

Let the trace of Σ be Γ =

D E 1 +

3E 3 + E 4 , 3E 2 + E 5 + E 6 E . Then

(ρ 2 ( π 3 ), 1) · Γ =

cos π 3 E 1 − sin π 3 E 3 +

3 (sin π 3 E 1 + cos π 3 E 3 ) + E 4 , 3E 2 + E 5 + E 6

= h2E 1 + E 4 , 3E 2 + E 5 + E 6 i . Also,

(1, ρ 1 (− π 4 )) · h2E 1 + E 4 , 3E 2 + E 5 + E 6 i

= D

E 1 + 1 2 E 4 , E 2 +

√ 2 3 E 5

E

= e Γ.

Therefore, Σ is L-equivalent to Σ e (with trace e Γ). Note that ψ = ρ 2 ( π 3 ), ρ 1 (− π 4 )

is such that ψ · Γ ⊥ = e Γ ⊥ .

(14)

One-input systems

Theorem

Any one-input system is L-equivalent to a system

Ξ 1 1 (1, u) = u 1 E 1

Ξ 1 2,α (1, u) = u 1 (E 1 + αE 4 )

for some 0 < α ≤ 1.

Proof

Let Σ be a one-input system.

Let A 1 = P 3

i=1 a i E i and A 2 = P 6

i=4 a i E i .

Then Γ 1 = hA 1 i, Γ 2 = hA 2 i, or Γ 3 = hA 1 + A 2 i.

(15)

Proof (cont.)

For Γ 1 , ∃ ψ = (ψ 1 , 1) ∈ Int(so (4)) such that ψ · Γ 1 = hE 1 i = Γ 1 1 . Similarly, there exists a ψ = (1, ψ 2 ) such that ψ · Γ 2 = hE 4 i.

Hence ζ · ψ · Γ 2 = hE 1 i = Γ 1 1 .

For Γ 3 , there exists a ψ = (ψ 1 , ψ 2 ) such that ψ · Γ 3 = hE 1 + αE 4 i for some α > 0.

If α ≤ 1, then ψ · Γ 3 = Γ 1 2,α .

If α > 1, then ζ · ψ · Γ 3 = hE 4 + αE 1 i =

E 1 + α 1 E 4

= Γ 1 2,

1 α

.

(16)

Five-input systems

Corollary

Any five-input system is L-equivalent to a system

Ξ 5 1 (1, u) = u 1 E 2 + u 2 E 3 + u 3 E 4 + u 4 E 5 + u 6 E 6 Ξ 5 2,α (1, u) = u 1 E 2 + u 2 E 3 + u 3 E 5

+ u 4 E 6 + u 5 (αE 1 − E 4 )

for some 0 < α ≤ 1.

Any five-input system has full rank.

(17)

Two-input systems

Theorem

Any two-input system is L-equivalent to a system

Ξ 2 1 (1, u) = u 1 E 1 + u 2 E 2 Ξ 2 2 (1, u) = u 1 E 1 + u 2 E 4

Ξ 2 3,α (1, u) = u 1 E 1 + u 2 (E 2 + αE 5 ) Ξ 2 4,αβ (1, u) = u 1 (E 1 + αE 4 + βE 5 )

+ u 2 (E 2 + αE 5 )

for some α > 0, β ≥ 0.

(18)

Four-input systems

Corollary

Any four-input system is L-equivalent to a system

Ξ 4 1 (1, u) = u 1 E 3 + u 2 E 4 + u 3 E 5 + u 4 E 6 Ξ 4 2 (1, u) = u 1 E 2 + u 2 E 3 + u 5 E 5 + u 6 E 6 Ξ 4 3,α (1, u) = u 1 E 3 + u 2 E 4 + u 3 E 6

+ u 4 (αE 2 − E 5 )

Ξ 4 4,αβ (1, u) = u 1 E 3 + u 2 E 6 + u 3 βE 1 + αE 2

− E 5

+ u 4 (αE 1 − E 4 )

for some α > 0 and β ≥ 0.

(19)

Three-input systems

Theorem

Any three-input system is L-equivalent to a system

Ξ 3 1,αβ (1, u) = u 1 (E 1 + α 1 E 4 ) + u 2 (E 2 + α 2 E 5 ) + u 3 (E 3 + βE 6 )

Ξ 3 2,γ (1, u) = u 1 (E 1 + γE 4 ) + u 2 (E 2 + γ E 5 ) + u 3 (E 3 ± γE 6 )

Ξ 3 3,γ (1, u) = u 1 (E 1 + γE 4 ) + u 2 E 2 + u 3 E 6

for some α 1 ≥ α 2 ≥ |β| ≥ 0 and 0 ≤ γ ≤ 1. Here α 1 6= α 2 or

α 2 6= |β|.

(20)

Outline

1 Introduction

2 The orthogonal group SO (4)

3 Equivalence

4 An illustrative example

(21)

An illustrative example

Any system

Ξ γ (1, u) = γ 1 E 4 + u 1 (γ 2 E 1 + γ 3 E 2 + γ 4 E 3 )

+ u 2 (γ 5 E 3 + γ 6 E 4 ) + u 3 (γ 7 E 4 ) + u 4 (γ 8 E 5 )

is L-equivalent to the system

Ξ(1, e u) = u 1 E 2 + u 2 E 3 + u 3 E 4 + u 4 E 5 .

Here γ i > 0, i = 1, . . . , 8. The automorphism relating the traces of these systems is given by ψ = (ψ 1 , 1) , where

ψ 1 =

γ

3

γ

22

23

− √ γ

2

γ

22

32

0

γ

2

γ

22

23

γ

3

γ

22

32

0

0 0 1

.

(22)

An illustrative example

The corresponding feedback transformation ϕ, defined by ψ · Ξ γ (1, u) = Ξ (1, ϕ(u)) e

is given by

ϕ : u 7→

 q

γ 2 2 + γ 3 2 0 0 0

γ 4 γ 5 0 0

0 γ 6 γ 7 0

0 0 0 γ 8

 u +

 0 0 γ 1

0

 .

There exists a φ ∈ Aut(SO (4)) such that T 1 φ = ψ.

φ establishes a one-to-one correspondence between trajectories

of Ξ γ and Ξ. e

(23)

Concluding remark

Obtained a list of equivalence representatives for homogeneous systems on SO (4).

Attempt to obtain a classification of systems.

A classification can be obtained for the one-input case.

For the two-input and three-input cases the calculations become

quite involved.

Referensi

Dokumen terkait