• Tidak ada hasil yang ditemukan

J00143

N/A
N/A
Protected

Academic year: 2017

Membagikan " J00143"

Copied!
15
0
0

Teks penuh

Loading

Gambar

Figure 1 Confusion matrix
Figure 2 A flow chart showing the grid algorithm for SVM, NN, and SVDD classifiers
Figure 3 A flow chart of the main programme for SVDD, SVM, and NN classifiers with feature selection
Table 3 Computational time for the classifier without feature selection
+4

Referensi

Garis besar

Dokumen terkait

Keywords: Optimization, SVR, Optimal Parameter, Feature Selection, Local Best PSO, Software Effort Estimation.. 1

Klasifikasi risiko penentun kelayakan kredit menggunakan algoritma K-NN berbasis Forward Selection telah dilakukan dengan hasil akurasi 73,60%. Hasil ini diperoleh

In a detailed evaluation which involves 5 different neighborhood definitions, 21 features, 6 approaches for feature subset selection and 2 different classifiers, we demonstrate

A search-based feature selection is used to find the opti- mal feature subset. It also removes the irrelevant features and finds the best subset that maximizes the fitness function.

Metode klasifikasi yang digunakan untuk mengetahui Analisis Sentimen pada kurikulum Merdeka Belajar adalah metode K-Nearest Neighbor (K-NN) dengan Forward Selection (FS)..

Dalam penelitian ini digunakan forward feature selection (FFS) dan backward feature elimination (BFE) sebagai seleksi fitur berbasis wrapper. FFS dan BFE mempunyai tujuan yang

Proposed work Here using the method of feature selection for getting the best feature set to be selected for privacy preservation by using PCA Principle Component Analysis Hasan, &

Performance accuracy of BESTrees auto feature selection and single classifiers 5 Conclusion This study proposed an optimized bagging ensemble framework by analyzing vari- ous