Relevansinya dengan Pemuliaan Tanaman
APLIKASI PENANDA MOLEKULER PADA PEMULIAAN TANAMAN BARLEY (HORDEUM VULGARE)
Penanda molekuler kini telah diadopsi secara rutin pada program pemuliaan serealia. Barley merupakan tanaman ideal untuk aplikasi teknologi pemuliaan molekuler, karena
tanaman ini diploid (2n = 14). Tanaman ini memiliki siklus hidup yang singkat dan kultivarnya silang-dalam, sehingga analisis genetik maupun fisiologis mudah dilakukan (Forster et al., 1999). Beberapa spesies sumber, seperti landrace yang beradaptasi secara spesifik dan barley liar (H. spontaneum), tersedia untuk introgresi gen-gen yang diinginkan ke dalam kultivar silang-dalam. Selain itu, barley liar dan landrace semuanya diploid dan dapat diantar-silangkan.
Harus dicatat di sini bahwa barley adalah salah satu spesies tanaman tertua yang diketahui (dari data arkeologi) telah dibudidayakan sejak 8000 tahun SM. Sejarah panjang seleksi telah menjadikan kultivar-kultivar modern cukup seragam. Akan tetapi beberapa sifat yang diinginkan berada pada barley liar yang dapat diintrogresikan ke dalam kultivar. Pendekatan tradisonal adalah mencoba dan mengintroduksi satu sifat dalam satu waktu. Dengan tersedianya penanda molekuler, dan suatu prosedur yang efektif untuk mendapatkan galur-galur doubled-haploid dari kultur antera barley, para pemulia kini membidik introgresi beberapa sifat secara simultan (misalnya sifat toleransi terhadap kekeringan dan resistensi terhadap penyakit embun; resistensi terhadap cereal cyst nematode (CCN); toleransi terhadap boron (BT); resistensi terhadap barley yellow dwarf virus (BYDV) dan embun tepung (Mlo);
efisiensi mangan (Mn); dan gen kerdil Denso).
Dengan keberhasilan teknik pemuliaan molekuler yang telah dibuktikan, para pemulia kini dapat menskrining bahan pemuliaan dalam proporsi yang lebih besar. Akan tetapi, jumlah penanda yang kini ada tidak mencukupi. Dengan upaya kerjasama internasional dan mudahnya penggunaan data secara bersama-sama, dibarengi dengan kemajuan di bidang teknik penanda berbasis PCR, suatu hari nanti tidak mustahil akan tersedia database yang sangat bermanfaat bagi para pemulia tanaman. Melalui seleksi dengan bantuan penanda, lebih sedikit individu yang perlu diskrining di dalam suatu populasi namun memungkinkan untuk memperoleh frekuensi gen yang lebih besar, yang sangat meningkatkan efisiensi program pemuliaan. Penggunaan penanda molekuler untuk silang-balik yang dipercepat kini diterima secara luas, yang memfasilitasi identifikasi dini dan membuang galur-galur yang tidak diinginkan, sehingga mengurangi beban kerja.
Upaya paling awal introgresi sifat-sifat tunggal ke dalam kultivar barley dari spesies liar terhalang oleh fakta bahwa sejumlah sifat yang tidak diinginkan juga terintegrasi dengan sifat- sifat yang diinginkan (Saghai-Maroof et al., 1994). Akan tetapi, informasi terbaru menunjukkan bahwa dengan menggunakan latar belakang genetik yang tepat, beberapa pautan yang tidak diinginkan dapat diputus, dan hal ini akan memungkinkan diperolehnya galur pemuliaan yang tidak mungkin bisa diperoleh tanpa menggunakan peralatan modern. Dengan
mempertimbnagkan begitu banyaknya upaya yang telah dilakukan untuk program pemuliaan seperti itu oleh para pemulia tanaman, didukung oleh berbagai perangkat molekuler yang sangat mengagumkan yang secara terus-menerus diperbaiki, bukan tidak mungkin bahwa tanaman-tanaman pertanian yang benar-benar diinginkan akan dapat diregenerasikan dalam waktu dekat.
139 Bab 1
Belliard, G., Vedel, F. and Pelletier, G. (1979). Mitochondrial recombination in cytoplasmic hybrids of Nicotiana tabacum by protoplast fusion. Nature281, 401-402.
Bourgin, J.P. and Nitsch, J.P. (1967). Obtention de Nicotiana haploides à partir d'étamines cultivées in vitro. Annales des Physiologie Vegetale9, 377-382.
Cocking, E.C. (1960). A method for the isolation of plant protoplast and vacuoles. Nature 187, 927-929.
Gautheret, R.J. (1934). Culture dus tissus cambial. Comptes Rendus des Seances Academie des Sciences198, 2195-2196.
Gleba, Y.Y. and Sytnik, K.M. (1984). Protoplast Fusion: Genetic Engineering of Higher Plants. Heidelberg: Springer-Verlag.
Guha, S. and Maheshwari, S.C. (1964). Embryo production of embryos from anthers of Datura. Nature204, 497.
Guha, S. and Maheshwari, S.C. (1966). Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature212, 97-98.
Morel, G. (1960). Producing virus-free cymbidium. American Orchid Society Bulletin 29, 495-497.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum15, 473-497.
Nobecourt, P. (1937). Cultures en série de tissus végétaux sur milieu artificiel. Comptes Rendus Hebdomadaires des Seances Academie des Sciences200, 521-523.
Nobecourt, P. (1939). Sur la perennite et l'augmentation de volume des cultures de tissus végétaux. Comptes rendus des Seances Socite de Biologie et de ses Filiales 130, 1270- 1271.
Reinert, J. (1958). Morphogeneses und ihre kontrolle an gewebe kulturen aus karotten.
Naturwiss45, 344-345.
Schell, J. (1987). Transgenic plants as a tool to study the molecular organization of plant genes. Science, 1176-1183.
Schell, J. and Vasil, K. (1989). Cell Culture and Somatic Cell Genetics of Plants. Vol. 6., Molecular Biology of Plant Nuclear Genes. New York: Academic Press.
Skoog, F. and Miller, C.O. (1957). Chemical regulation of growth and organ formation.
Symposium of the Society for Experimental Biology11, 118-131.
Steward, F.C., Mapes, M.O. and Mears, K. (1958). Growth and organized development of cultured cells. American Journal of Botany45, 693-713.
White, P.R. (1934). Potentially unlimited growth of excised tomato tips in liquid medium.
Plant Physiology9, 585-600.
Bab 2
Miller, C.O., Skoog, F., Von-Saltzo, M.N. and Strong, F.M. (1955). Kinetin, a cell division factor from deoxyribonucleic acid. Journal of American Chemical Society77, 1392. Skoog, F. and Miller, C.O. (1957). Chemical regulation of growth and organ formation.
Symposium of the Society for Experimental Biology11, 118-131.
Taiz, L. and Zeiger, E. (1991). Plant Physiology. Sydney: The Benjamin/Cummings Publishing Company, Inc.
Tran-Thanh-Van, M. (1980). Control of morphogenesis by inherent and exogenously applied factors in thin cell layers. In 'International Review of Cytology, Supplement IIA' pp. 175-194. (Academic Press: New York)
Bab 3
Broertjes, C. and Van-Harten, A.M. (1978). Application of Mutation Breeding Methods in the Improvement of Vegetatively Propagated Crops. Amsterdam: Elsevier Scientific Publishing Company.
Cresswell, R.J. and Nitsch, C. (1975). Organ culture of Eucalyptus grandis. Planta 125, 87- 90.
Debergh, P.C. and Maene, L.J. (1981). A scheme for commercial propagation of ornamental plants by tissue culture. Scientia Horticulturae14, 335-345.
de-Fossard, R.A. (1976). Tissue Culture for Plant Propagators. Armidale, Australia: University of New England.
Dumet, D. (1994). Cryoconservation des massifs d'embryos somatiques de palmier a huile (Ealeis guineensis Jacq.) par deshydration-vitrification. Etude du role du saccharose pendant le pretraitment. PhD thesis, L'Universite P. et M. Curie, Paris.
Jones, W.N. (1937). Chimeras: A summary and some special aspects. Botanical Review 3, 545-562.
Kartha, K.K. (Ed.). (1985). Cryopreservation of Plant Cells and Organs. Boca Raton, FL: CRC Press.
Kartha, K.K. and Engelmann, F. (1994). Cryopreservation and germplasm storage. In 'Plant Cell and Tissue Culture'. (Eds Vasil, I.K. and Thorpe, T.A.) pp. 195-230. (Kluwer Academic Press: Dordrecht)
Kumar, P.P., Reid, D.M. and Thorpe, T.A. (1987). The role of ethylene and carbon dioxide in differentiation of shoot-buds in excised cotyledons of Pinus radiata in vitro.
Physiologia Plantarum69, 244-252.
Maene, L.J. and Debergh, P.C. (1986). Optimisation of plant micropropagation. Medical Facility Landbouw Gent51, 1479-1488.
Read, P.E. (1988). Stock plants influence micropropagation success. Acta Horticulturae 226, 41-52.
Schafer-Menuhr, A., Schumacher, H.M. and Mix-Wagner, G. (1994). Langzeitlagerung alter Kartoffelsorten durch Kryokonservierung der Leristeme in flussigen Sticktoff.
Smith, R.H. (1992). Plant Tissue Culture: Techniques and Experiments. New York: Academic Press Inc.
Withers, L.A. (1995). Collecting for genetic resources conservation. In 'Plant Genetic Diversity: Technical Guidelines'. (Eds Guarino, L., Ramanatha, R. and Reid, R.) pp. 115-123. (CAB International: New York)
Withers, L.A. and Engelmann, F. (1995). In vitro conservation of plant genetic resources. In 'Biotechnology in Agriculture'. (Ed. Altman, A.) pp. 57-88. (Marcel Dekker Inc: New York)
Bab 4
Bhojwani, S.S. and Razdan, M.K. (1983). Plant Tissue Culture: Theory and Practice. New York: Elsevier Publishing Co.
Bourgin, J.P. and Nitsch, J.P. (1967). Obtention de Nicotiana haploides à partir d'étamines cultivées in vitro. Annales des Physiologie Vegetale9, 377-382.
Dunwell, J.M. (1976). A comparative study of environmental and developmental factors which influence embryo induction and growth in cultured anthers of Nicotiana tabacum.
Environmental and Experimental Botany16, 109-118.
Guha, S. and Maheshwari, S.C. (1964). Embryo production of embryos from anthers of Datura. Nature204, 497.
Prakash, N. (2000). Methods in Plant Microtechnique. Armidale, Australia: University of New England.
Sunderland, N. and Wicks, F.M. (1971). Embryoid formation in pollen grains of Nicotiana tabacum. Journal of Experimental Botany22, 213-226.
Thanh-Tuyen, N.T. and de-Guzman, E.V. (1983). Formation of pollen embryos in cultured anthers of coconut (Cocos nucifera L.). Plant Science Letters29, 81-88.
Bab 5
Balatkovà, V. and Tupy, J. (1968). Test-tube fertilization in Nicotiana tabacum by means of an artificial pollen tube culture. Biologia Plantarum10, 266-270.
Kanta, K., Rangaswamy, N.S. and Maheshwari, P. (1962). Test-tube fertilization in a flowering plant. Nature194, 1214-1217.
Pierik, R.L.M. (1997). In Vitro Culture of Higher Plants. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Taji, A.M. and Williams, R.R. (1987). Perpetuation of the self-incompatible rare species of
Swainsona laxa R. Br. by pollination in vitro and in situ. Plant Science Letters 48, 137- 140.
Van-Overbeek, J. (1942). Hormonal control of embryo and seedling. Cold Spring Harbor Symposium and Quantitative Biology10, 126-133.
Zenkteler, M. (1970). Test-tube fertilization of ovules in Malandrium album Mill. with pollen grains of several species of Caryophyllaceae family. Experientia23, 775-776.
Bab 6
Carlson, P.S., Smith, H.H. and Dearing, R.D. (1972). Parasexual interspecific plant hybridization. Proceedings of National Academy of Science, USA69, 2292-2294.
Cocking, E.C. (1960). A method for the isolation of plant protoplast and vacuoles. Nature 187, 927-929.
Dodds, J.H. and Roberts, L.W. (1985). Experiments in Plant Tissue Culture. Cambridge: Cambridge University Press.
Stafford, A. and Warren, G. (1991). Plant Cell and Tissue Culture. New York: John Willey & Sons Ltd.
Bab 7
Carlson, P.S. (1973). Methionine-sulfoximine-resistant mutants of tobacco. Science 180, 1366-1368.
Dix, P.J. (1994). Isolation and characterization of mutant cell lines. In 'Plant Cell and Tissue Culture'. (Eds Vasil, I.K. and Thorpe, T.A.) pp. 119-138. (Kluwer Academic Publishers: Dordrecht)
Jayasankar, S. (2000). Variations in tissue culture. In 'Plant Tissue Culture Concepts and Laboratory Exercise'. (Eds Trigiano, R.N. and Gray, D.J.) pp. 387-395. (CRC Press: Boca Raton)
Larkin, P.J. and Scowcroft, W.R. (1981). Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theory and Application Genetic60, 197-214. Maliga, P., Breznovitis, A. and Marton, L. (1973). Streptomycin-resistant plants from callus
cultures of haploid tobacco. Nature: New Biology244, 29-30.
Schaefer, G.W. and Sharpe, F.T. (1990). Modification of amino acid composition of endosperm proteins from in vitro selected high lysine mutants in rice. Theoretical and Applied Genetics80, 841-846.
Toyoda, H., Chatani, K., Matsuda, Y. and Obuchi, S. (1989). Multiplication of tobacco mosaic virus in tobacco callus cultures and in vitro selection for viral disease resistance.
Plant Cell Reports8, 433-436. Bab 8
Coen, E.S., Romero, J.M., Doyle, S., Elliot, R., Murphy, G. and Carpenter, C. (1990). 'Floricaula': A homeotic gene required for flower development in Antirrhinum majus.
Cell63, 1311-1322.
Dix, P.J. (1999). Mutagenesis and selection of resistant mutants. In 'Methods in Molecular Biology, Volume 3, Plant Cell Culture Protocolsm'. (Ed. Hall, R.D.). (Humana Press Inc: Totowa NJ)
Donnini, P. and Sonnino, A. (Eds). (1998). Induced Mutation in Plant Breeding: Current Status and Future Outlook. Somaclonal Variation and Induced Mutations in Crop Improvement. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Liljegren, S.J., Ditta, G.S., Eshed, H.Y., Savidge, B., Bowman, J.L. and Yanofsky, M.F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis.
Nature404, 766-770.
Maluszynski, M., Nichterlein, K., van-Zante, L. and Ahloowalia, B.S. (2000). Officially released mutant varieties - the Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Database. Mutation Breeding Review12, 1-84.
McClintock, B. (1951). Chromosome organization and gene expression. Cold Spring Harbour Symposium of Quantitative Biology16, 13-57.
Negrutiu, I. (Ed.). (1990). In Vitro Mutagenesis. Plant Cell Line Selection: Procedures and Applications. Weinheim, Germany: VCH Publishers.
Rodriguez, F.I., Esch, J.J., Hall, A.E., Binder, B.M., Schaller, G.E. and Bleecker, A.B. (1999). A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science283, 996- 998.
Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J.D.G., Dean, C., Ma, H. and Martiensen, R. (1995). Patterns of gene-action in plant development revealed by enhancer trap and gene trap transposable elements. Genes and Development 9, 1797- 1810.
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, J.N., Feldmann, K.A. and Meyerowitz, E.M. (1990). The protein encoded by the Arabidopsis homeotic gene Agamous resembles transcription factors. Nature346, 35-39.
Bab 9
Bhojwani, S.S. (1990). Plant Tissue Culture: Applications and Limitations. Amsterdam: Elsevier.
Gautheret, R.J. (1985). History of plant tissue and cell culture: A personal account. In 'Cell Culture and Somatic Cell Genetics of Plants, Volume 2'. (Ed. Vasil, I.K.) pp. 1-59. (Academic Press: New York)
Groose, R.W. and Bingham, E.T. (1986). An unstable anthocyanin mutation recovered from tissue culture of alfalfa (Medicago sativa). 1. High frequency of reversion upon reculture. Plant Cell Reports5, 104-107.
Henry, R.J. (1997). Practical Applications of Plant Molecular Biology. London: Chapman and Hill.
Kumar, A. and Bennetzen, J.F. (1999). Plant retransposons. Annual Review of Genetics 33, 479-532.
Larkin, P.J. and Scowcroft, W.R. (1981). Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theory and Application Genetic60, 197-214. McClintock, B. (1984). The significance of responses of the genome to challenge. Science
226, 792-801.
Prakash, A.P. and Kumar, P.P. (1997). Inhibition of shoot induction by 5-azacytidine and 5- aza-2'-deoxycytidine in Petunia involves hypomethylation. Plant Cell Reports 16, 719- 724.
Bab 10
Bajaj, Y.P.S. (1995). Cryopreservation of Plant Germplasm: Biotechnology in Agriculture and Forestry, volume 32. Berlin: Springer-Verlag.
Dodds, J.H. (1991). In Vitro Methods for Conservation of Plant Genetic Resources. London: Chapman and Hill.
Guy, C.L., Niemi, K.J., Fennel, A. and Carter, J.V. (1986). Survival of Cormus sericea L. stem cortical cells following immersion in liquid helium. Plant Cell and Environment9, 447-450.
Kartha, K.K. (Ed.). (1985). Cryopreservation of Plant Cells and Organs. Boca Raton, FL: CRC Press.
Kartha, K.K., Fowke, L.C., Leung, N.L., Caswell, K.L. and Hakman, I. (1988). Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). Journal of Plant Physiology132, 529-539.
Kumu, Y., Harada, T. and Yakuwa, T. (1983). Development of a whole plant from a shoot tip of Asparagus officinalis L. frozen down to -196oC. Journal of Faculty of Agriculture (Hokkaido University, Japan)61, 285-294.
Bab 11
Bajaj, Y.P.S. (1995). Cryopreservation of Plant Germplasm: Biotechnology in Agriculture and Forestry, volume 32. Berlin: Springer-Verlag.
Dodds, J.H. (1991). In Vitro Methods for Conservation of Plant Genetic Resources. London: Chapman and Hill.
Guy, C.L., Niemi, K.J., Fennel, A. and Carter, J.V. (1986). Survival of Cormus sericea L. stem cortical cells following immersion in liquid helium. Plant Cell and Environment9, 447-450.
Kartha, K.K. (Ed.). (1985). Cryopreservation of Plant Cells and Organs. Boca Raton, FL: CRC Press.
Kartha, K.K., Fowke, L.C., Leung, N.L., Caswell, K.L. and Hakman, I. (1988). Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). Journal of Plant Physiology132, 529-539.
Kumu, Y., Harada, T. and Yakuwa, T. (1983). Development of a whole plant from a shoot tip of Asparagus officinalis L. frozen down to -196oC. Journal of Faculty of Agriculture (Hokkaido University, Japan)61, 285-294.
Bab 12
Bernier, G. (1988). The control of floral evocation and morphogenesis. Annual Review of Plant Physiology and Molecular Biology39, 175-219.
Bernier, G., Corbesier, L., Perilleux, C., Havelange, A. and Lejeune, P. (1998). Physiological analysis of the floral transition. In 'Genetic and Environmental Manipulation of Horticultural Crops'. (Eds Cockshull, K.E., Gray, D., Seymour, G.B. and Thomas, B.) pp. 103-110. (CABI Publishing: Oxon, UK)
Bernier, G., Havelange, A., Houssa, C., Petitjean, A. and Lejeune, P. (1993). Physiological signals that induce flowering. The Plane Cell5, 1147-1155.
Bernier, G., Kinet, M. and Sachs, R.M. (1981a). The Physiology of Flowering. I. The Initiation of Flowers. Boca Raton, FL: CRC Press.
Bernier, G., Kinet, M. and Sachs, R.M. (1981b). The Physiology of Flowering. II. Transition to Reproductive Growth. Boca Raton, FL: CRC Press.
Colasanti, J. and Sundaresan, V. (1996). Control of the transition to flowering. Current Opinion in Biotechnology7, 145-149.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum15, 473-497.
Nadgauda, R.S., Prasharami, V.A. and Mascarenhas, A.F. (1990). Precocious flowering and seeding behavior in tissue cultured bamboos. Nature344, 335-336.
Van-Staden, J. and Dickens, C.W.S. (1991). In vitro induction of flowering and its relevance to micropropagation. In 'Biotechnology in Agriculture and Forestry, vol. 17. High-Tech and Micropropagation 1'. (Ed. Bajaj, Y.P.S.) pp. 85-115. (Springer-Verlag: Berlin) Weigel, D. and Meyerowitz, E. (1994). The ABCs of floral homeotic genes. Cell78, 203-209. Weigel, D. and Nilsson, O. (1995). The genetics of flower development. From floral
induction to ovule morphogenesis. Annual Review of Genetics29, 19-39. Bab 13
Baker, W.G. (1953). A method for the in vitro culturing of potato tubers. Science118, 384- 385.
Harney, M.A., Rowley, M.P. and Clinch, P.E.M. (1966). The effect of growth regulators on tuberisation of cultured stem pieces of Solanum tuberosum. European Potato Journal9, 146-151.
Hussey, G. and Stacey, N.J. (1984). Factors affecting the formation of in vitro tubers of potato (Solanum tuberosum L.). Annals of Botany53, 565-578.
Jean, M. and Cappadocia, M. (1991). In vitro tuberisation in Dioscorea alata L. 'Brazo fuerte' and 'Florido' and D. abyssinica Hoch. Plant Cell, Tissue and Organ Culture 26, 147- 152.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum15, 473-497.
Seabrook, J.E.A., Coleman, S. and Levy, D. (1993). Effect of photoperiod on in vitro
tuberisation of potato (Solanum tuberosum L.). Plant Cell, Tissue and Organ Culture 34, 43-51.
Bab 14
Cox, T.S. (1998). Deepening the wheat gene pool. Journal of Crop Production1, 1-25.
Ellis, R.P., Forster, B.P., Robinson, D., Handley, L.L., Gordon, D.C., Russel, J.R. and Powell, W. (2000). Wild barley: A source of gene for crop improvement in rhea 21st century?
Eujay, I., Baum, M., Powell, W., Erskine, W. and Pehu, E. (1998). A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines.
Theoretical and Applied Genetics97, 83-89.
Forster, B.P., Ellis, R.P., Newton, A.C., Tuberosa, R., This, D., El-Gamal, A.S., Nahri, M.H. and Ben-Salem, M. (1999). Molecular breeding of barley for droughted low input agricultural conditions. In 'Plant Nutrition: Molecular Biology and Genetics'. (Eds Gieel-Nielsen, G. and Jensen, A.) pp. 359-363. (Kluwer Academic Publishers: Dordrecht)
Karp, A., Isaac, P.G. and Ingram, D. (1998). Molecular Tools for Screening Biodiversity. New York: Chapman and Hall.
Loo, A.H.B., Tan, H.T.W., Kumar, P.P. and Saw, L.G. (1999). Population analysis of Licuala glabra Griff. var. glabra using RAPD profiling. Annals of Botany84, 421-427.
Paul, S., Wachira, F.N., Powell, W. and Waugh, R. (1997). Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camelia sinensis (L) O Kuntze) revealed by AFLP markers. Theoretical and Applied Genetics94, 255-263. Rajaseger, G., Tan, H.T.W., Turner, I.M. and Kumar, P.P. (1997). Analysis of genetic
diversity among Ixora cultivars (Rubiaceae) using Random Amplified Polymorphic DNA. Annals of Botany80, 355-361.
Saghai-Maroof, M.A., Biyashev, R.M., Yang, G.P., Zhang, Q. and Allard, R.W. (1994). Extraordinarily polymorphic microsatelite DNA in barley: Species diversity, chromosomal location, and population dynamics. Proceedings of National Academy of Science, USA91, 5466-5470.
Swanston, J.S., Thomas, W.T.B., Powell, W., Young, G.R., Lawrence, P.E., Ramsay, L. and Waugh, R. (1999). Using molecular markers to determine barley most suitable for malt whisky distilling. Molecular Breeding5, 103-109.
Toojinda, T., Baird, E., Booth, A., Broers, L., Hayes, P., Powell, W., Thomas, W., Vivar, H. and Young, G. (1998). Intogression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: An example of marker-assisted line development. Theoretical and Applied Genetics96, 123-131.
147
Agen alkylating, 87
Cahaya dan pembungaan in vitro, 117,
Ahloowalia, B. S., 94
122-124
Air kelapa, 62, 124
Cahaya dan produksi umbi mikro, 126, 127
Akumulator asam-asam amino, 82 Cappadocia, M., 145 Albinisme, 52
Carlson, P.S., 142
Allard, R. W., 146
Carpenter, C., 42
Amplified fragmented length polymorphism Carter, J.V., 144 (AFLP), 100, 130, 131, 134-136 Casein hydrolysate, 61, 63 Analog basa, 87, 88 Caswell, K.L., 144 Androgenesis, 43, 45-52 Chatani, K., 42 Anggrek, 1, 3, 26, 57, 61, 63, 124 Chlamydomonas, 5, 7 Anggur, mikropropagasi komersial, 27, 31
Clinch, P.E.M., 145 Antera, 2-4, 43-52, 121, 137
Cocking, E.C., 139, 142
Antioksidan, 19
Coen, E.S., 142
Asam absisat (ABA), 120
Colasanti, J., 145 Asparagus, 28, 77, 105, 106 Coleman, S., 145 Auksin. 1, 2, 24, 49, 118, 119 Corbesier, L., 144 Cox, T.S., 145 Baird, E., 146 Cresswell, R.J., 140 Bajaj, Y.P.S., 144, 145 Baker, W.G., 145 Dean, C., 143 Balatkovà, V., 141 Dearing, R.D., 142 Bambu, 119, 121, 123, 124 Debergh, P.C., 140 Baum, M., 146 Dediferensiasi, 2 Bawang putih, 29 de-Fossard, R.A., 140 Belliard, G., 139 de-Guzman, E.V., 141 Bennetzen, J.F., 143 Desikasi, 34,102
Ben-Salem, M., 146 Dickens, C.W.S., 145
Bernier, G., 144, 145 Diferensiasi, 5, 6, 8, 11, 12, 43, 46, 49, 50,
Bhojwani, S.S., 141, 143
118
Biji, 1, 56-58, 61-63, 77, 90, 102, 112, 133. Dinding sel, 13, 62, 65-70, 74, 90. Lihat
Lihat juga berbagai subjek
Embrio
juga Teknologi protoplas
Binder, B.M., 143
Diploid, 43, 51, 93, 94, 137 Bingham, E.T., 143 Dithiothreitol, 113
Biologi, 3, 59, 66, 71, 84, 85, 101, 108, 110, Ditta, G.S., 143 129 Dix, P.J., 142 Bioteknologi, 4, 65, 66 Dodds, J.H., 142, 144 Biyashev, R.M., 146 Donnini, P., 142 Bleecker, A.B., 143 Doyle, S., 142
Booth, A., 146 Drews, J.N., 143
Bourgin, J.P., 139, 141 Dumet, D., 140 Bowman, J.L., 143 Dunwell, J.M., 141 Breznovitis, A., 142
Broers, L., 146 Eksplan untuk pembungaan in vitro, 118-124 Broertjes, C., 140 Eksplan untuk mikropropagasi, 16-21, 23, Buah-buahan, 15, 28-31 30, 35, 36, 39
Elektrofusi, 72 Guha, S., 139, 141
El-Gamal, A.S., 146 Guy, C.L., 144 Eliminasi patogen, 4, 31, 111
Eliminasi virus, 27, 31-33, 114 Hakman, I., 144
Elliot, R., 142 Hall, A.E., 143
Ellis, R.P., 145, 146 Hall, R.D., 142 Embriogenesis somatik, 2, 26 Handley, L.L., 145
Embriogenesis, 2, 26, 39, 46, 49, 50, 64, 91 Haploid, 2, 4, 43-46, 50, 51, 60, 63, 93, 94,
Endomitosis, 51 133, 134, 137
Endotesium, 44 Harada T., 144
Engelmann, F., 140, 141 Harney, M.A., 145 Enkapsulasi untuk kreopreservasi, 104 Havelange, A., 144, 145
Erskine, W., 146 Haward, S., 143
Esch, J.J., 143 Hayes, P., 146
Eshed, H.Y., 143 Haemacytometer Fuchs-Rosenthal, 71 Etilen, 24, 85, 120 Henry, R.J., 143
Eujay, I., 146 Hibridisasi somatik, 65, 75, 77
Hibridisasi, 57, 58, 60, 65, 72, 75, 77, 100 Feldmann, K.A., 143 Hiperhidrasi, 22
Fennel, A., 144 Houssa, C., 145
Fluorescence, 73 Hussey, G., 145
Forster, B.P., 145, 146 Indeksing virus, 26
Fowke, L.C., 144 Ingram, D., 146
Fusi protoplas, 2, 64, 66, 72, 75-78 Inkompatibilitas, 112, 114-116 Iradiasi, 35, 36, 76, 87
Galur sel, 37, 79-82, 84, 90, 94, 96 Isaac, P.G., 146 Gametofit betina, 55, 56 Isozim, 130 Gametofit jantan, 51
Garam, 1, 8, 9, 20, 24, 49, 50, 55, 56, 62, 67, Jarak genetik, 133, 136 83, 84, 98, 99, 108, 114, 121, 122, Jayasankar, S., 142
124, 127 Jean, M., 145
Garam mineral (MS), 1, 121 Jensen, A., 146
Gautheret, R.J., 139, 143 Jerusalem artichoke, 13 Gen, 4, 33, 38, 43, 78-81, 84, 90-93, 96, 97, Jones, J.D.G., 143
101, 129, 133-135, 137 Jones, W.N., 140 Genetika, Mendel, 129
Genom, 38, 45, 75, 76, 79, 90, 91, 95, 97, Kalogenesis, 20 100, 130-132, 134, 135 Kalsium, 13, 104 Genotipe, 15, 28, 29, 34, 37, 45, 50, 64, 72, Kalus tanaman lili, 12
74, 98, 110, 126, 128, 134-136 Kanta, K., 141 Giberelin, 12, 117, 119, 121 Karp, A., 146
Gieel-Nielsen, G., 146 Kartha K.K., 140, 144
Ginogenesis, 43, 45 Kaulogenesis adventif, 20-23
Gleba, Y.Y., 139 Kentang, 30, 31, 33, 77, 82, 86, 90, 98, 103,
Gordon, D.C., 145 106, 125-128
Gottlieb Haberlandt, 1 Keragaman epigenetik, 79, 96. 97
Gray, D.J., 142, 144 Keragaman genetik, 35, 86, 93-95, 97, 98,
Groose, R.W., 143 100, 101, 135, 136
Guarino, L., 141 Keragaman somaklon, 79, 93-95, 97-100,
Gugur embrio, 63, 64 107
Keragaman. Lihat Keragaman somaklon Mix-Wagner, G., 140
Kimera (kimerik), 35, 37-40, 45, 90 Monoploid. Lihat Produksi tanaman haploid
Kinet, M., 145 Morel, G., 139
Kinetin, 10, 11, 13, 119, 121 Morfogenesis, 1, 5-14
Kolkisin, 50, 51, 75
Mosaik, 37, 94, 98 Kompatibilitas, 112, 114-116. Lihat juga Murashige, T., 139, 145 Inkompatibilitas Murphy, G., 142
Kompetensi, 2, 118 Mutagen, 35-41, 84,-92, 99, Kompetisi, 38, 75, 76, 126 Mutagen fisik, 36, 86, 91 Kreopresevasi, 33, 34, 101-110 Mutagen kimiawi, 37, 85-90 Kultur antera, 2-4, 45, 46, 49, 60, 137 Mutagenesis in vitro, 37, 85-92
Kultur embrio, 3, 4, 61-64 Mutagenesis. Lihat Mutagenesis in vitro
Kultur jaringan tanaman, 1-4, 14, 25, 30, Mutasi, 4, 35, 37-41, 85, 92, 95, 132, 133.
62, 93, 98 Lihat juga Mutagenesis in vitro;
Kultur kalus, 1, 3, 79, 81, 83, 95. 98. 99, 118 Keragaman somaklon Kultur meristem, 3, 27, 31, 111, 125
Kultur organ, 3 Nadgauda, R.S., 145
Kultur protoplas, 1-3, 74, 75, 80, 87, 90, 91, Nahri, M.H., 146
95, 99 Negrutiu, I., 143
Kultur sel tunggal, 3, 40, 65 Netron, 35, 86, 87 Kultur suspensi sel, 3, 74, 95, 99 Newton, A.C., 146
Kumar, A., 143 Nichterlein, K., 143
Kumar, P.P., 140, 143, 146 Niemi K.J., 144
Nitsch, C., 140 Larkin, P.J., 142, 143 Nitsch, J.P., 139, 141 Lawrence, P.E., 146 Nobecourt, P., 139
Lejeune, P., 144, 145 Nuclear magnetic resonance (NMR), 108 Lektin, 56
Levy, D., 145 Obuchi, S., 142
Liljegren, S.J., 143 Organisme yang dimodifikasi secara
Loo, A.H.B., 146 genetik (GMO), 81, 129
Organogenesis langsung, 39
Ma, H., 143 Organogenesis, 5, 20, 64, 97. Lihat juga
Maene, L.J., 140 Morfogenesis
Maheshwari, P., 141
Maheshwari, S.C., 139, 141 Paul, S., 146
Maliga, P., 142 Pehu, E., 146
Maluszynski, M., 143 Pektin, 68, 69 Mapes, M.O., 139 Pelletier, G., 139
Martiensen, R., 143 Pembekuan untuk penyimpanan, 34, 102-110
Marton, L., 142 Lihat juga Kreopreservasi
Mascarenhas, A.F., 145 Pembuahan in vitro, 55-64. Lihat juga
Matsuda, Y., 142 Penyerbukan
McClintock, Barbara, 143 Pembungaan in vitro, 117-124
Mears, K., 139 Pemuliaan barley, 135
Meyerowitz, E.M., 143, 145 Pemuliaan molekuler, 129-138 Microsatelites, 130 Penanda molekuler, 129-138 Mikropropagasi, 15-41, 79, 100, 125
Pengukuran pertumbuhan, 7
Miller, C.O., 139, 140 Pengumbian in vitro, 125-128 Penyambungan in vitro, 31, 111-116 Roberts, L.W., 142
Penyelamatan embrio, 58, 61, 63, 64, 77 Robinson, D., 145 Penyerbukan in vitro, 55-64 Rodriguez, F.I., 143 Penyimpanan plasma nutfah, 26, 32-34 Romero, J.M., 142 Perilleux, C., 144 Rowley, M.P., 145
Perkecambahan, 17, 44, 59, 60, 63, 64, 70, Rumah kaca, 15, 16, 24, 111, 112
134 Russel, J.R., 145
Perkembangan, definisi, 5
Pertumbuhan, definisi, 5 Sachs, R.M., 145
Petitjean, A., 145 Saghai-Maroof, M.A., 146 Petunia, 16, 26, 71, 80, 97
Silang balik dipercepat, 133-135
Phloem, 6, 12, 13, 114 Sambung mikro, 111-116
Pierik, R.L.M., 141 Sambung mikro secara in vitro. Lihat
Pohon buah-buahan tropis, Sambung mikro mikropropagasi komersial, 29, 30
Sambung pucuk, 112
Polimorfisme, 130, 131, 134-138 Savidge, B., 143
Poligonum, 55 Saw, L.G., 146
Polymerase chain reaction (PCR), 100, 131, Sayuran, mikropropagasi komersial, 15,
132, 134, 137 26, 29
Powell, W., 145, 146 Schaefer, G.W., 142 Prakash, A.P., 143 Schafer-Menuhr, A., 140
Prakash, N., 141 Schaller, G.E., 143 Prasharami, V.A., 145 Schell, J., 187
Produksi hibrid, 59, 75 Schumacher, H.M., 140 Produksi umbi mikro, 125-128. Lihat juga Scowcroft, W.R., 142, 143
Pengumbian in vitro Seabrook, J.E.A., 145 Protoplas, 1-3, 51, 64-78, 80, 81, 87, 90, 91, Seleksi dengan bantuan penanda, 133, 137
95, 99, 108 Semigamy, 45
Pucuk adventif, 21, 39, 46, 91
Senyawa fenol, 18-20, 113, 115 Serbuk sari, 45-53, 55-61, 102, 106
Quantitative trait loci (QTL), 133, 134, 136 Seymour, G.B., 144 Sharpe, F.T., 142
Radiasi, 36, 76, 86, 87. Lihat juga iradiasi Short tandem repeats (STR), 130 Radiasi UV, 86, 87 Sibridisasi, 76
Rajaseger, G., 146 Sidik jari genetik, 133, 135 Ramanatha, R., 141
Silang-balik, 133-135, 137
Ramsay, L., 146 Sinar gamma, 35, 86, 87, 90
Random Amplified Polymorphic DNA Sinar X, 45, 76, 86, 87, 90
(RAPD), 100, 130, 131, 135, 136 Sistem Sorba Rod, 113
Rangaswamy, N.S., 141 Sitokinin, 1, 2, 10-13, 17, 20, 21, 23-25, 49, Razdan, M.K., 141 95, 112, 117-120, 124, 126
Read, P.E., 140 Skoog, F., 139, 140, 145 Reaksi hipersensitivitas, 18 Smith, H.H., 142
Reid, D.M., 140 Smith, R.H., 141