• Tidak ada hasil yang ditemukan

Bilangan peroksida merupakan jumlah miliekivalen peroksida per 1000 gram sampel, yang dioksidasi kalium iodida.

Minyak atau lemak bersifat tidak larut dalam semua pelarut berair, tetapi larut dalam pelarut organik seperti misalnya : petroleum eter, dietil eter, alkohol panas, khloroform dan benzena. Dimana asam lemak rantai pendek sampai panjang rantai atom karbon sebanyak delapan bersifat larut dalam air. Makin panjang rantai sehingga akan terbentuk gugus karboksil yang tidak bermuatan. Kemudian dilakukan ekstraksi menggunakan pelarut non-polar seperti petroleum. Asam lemak jenuh sangat stabil terhadap oksidasi, akan tetapi asam lemak tidak jenuh sangat mudah terserang oksidasi. Dimana lemak tidak dapat meleleh pada satu titik suhu, akan tetapi lemak akan menjadi lunak pada suatu interval suhu tertentu. Hal ini disebabkan karena pada umumnya lemak merupakan campuran gliserida dan masing-masing gliserida mempunyai titik cair sendiri-sendiri (Tranggono & Setiaji, 1989).

Molekul-molekul lemak yang mengandung radikal asam lemak tidak jenuh mengalami oksidasi dan menjadi tengik. Bau tengik yang tidak sedap tersebut disebabkan pembentukkan senyawa-senyawa hasil pemecahan hidroperoksida. Menurut teori yang sampai kini masih dianut orang sebuah atom hidrogen yang terikat pada suatu atom karbon yang letaknya disebelah atom karbon lain yang mempunyai ikatan rangkap dapat disingkirkan oleh suatu kuantum energi sehingga membentuk radikal bebas. Kemudian radikal ini dengan oksigen membentuk peroksida aktif yang dapat membentuk hidroperoksida yang bersifat sangat tidak stabil dan mudah pecah menjadi senyawa dengan rantai karbon yang lebih pendek oleh radiasi energi tinggi, energi panas, katalis logam, atau enzim. Senyawa dengan rantai C lebih pendek ini adalah asam-asam lemak, aldehid- aldehid, dan keton yang bersifat volatil dan menimbulkan bau tengik pada lemak (Winarno, 1997)

Reaksi oksidasi bergantung pada banyak frekuensi reaksi dari lemak dalam bahan makanan. Ini biasanya terdiri oleh atmosfer oksigen, frekuensi yang sedikit oleh ozon, peroksida, logam dan agen oksidasi yang lain. Dalam penambahan untuk oksigen dan ozon, lemak dapat dirusak oleh pembentukan reaksi lain, seperti anion superoksida (O2) dan radikal (O2), radikal perhidrosilik (HO2), hidrogen peroksida dan hidrosil radikal (HO). Asam peroksida diproduksi oleh autoxidasi dari aldehid, dan mungkin reaksi dengan molekul lain dari produk aldehid asam karboksilat.

Bilangan peroksida adalah nilai terpenting untuk menentukan derajat kerusakan pada lemak dan minyak. Asam lemak tidak jenuh dapat mengikat oksigen pada ikatan rangkapnya sehingga membentuk peroksida. Peroksida dapat ditentukan dengan metode iodometri. Cara yang sering digunakan untuk menentukan bilangan peroksida, berdasarkan pada reaksi antara alkali iodida dalam larutan asam dengan ikatan peroksida. Iod yang dibebaskan pada reaksi ini kemudian dititrasi dengan natrium tiosulfat. Penentuan peroksida ini kurang baik dengan cara iodometri biasa meskipun bereaksi sempurna dengan alkali iod. Hal ini disebabkan karena peroksida jenis lainnya hanya bereaksi sebagian. Di samping itu dapat terjadi kesalahan yang disebabkan oleh reaksi antara alkali iodida dengan oksigen dari udara (Ketaren, 1986).

Pada proses oksidasi ini akan dihasilkan sejumlah aldehid, asam bebas dan peroksida organik. Untuk mengetahui tingkat ketengikan dari minyak atau lemak, dapat dilakukan dengan menggunakan jumlah peroksida yang telah terbentuk pada minyak atau lemak tersebut. Lemak tidak jenuh khususnya oleat ternyata lebih cepat tengik dibandingkan lemak jenuh. Lemak yang tengik menimbulkan rasa tidak enak, bahkan pada beberapa individu dapat menimbulkan keracunan ringan, dan dapat merusak zat-zat lain yang ada dalam makanan seperti karoten, vitamin A dan vitamin E. Kerusakan minyak dan lemak selain disebabkan oleh proses oksidasi dapat juga disebabkan oleh proses hidrolisa. Pada proses hidrolisa dihasilkan gliserida dari asam-asam lemak berantai pendek (C4-C12) sehingga akan terjadi perubahan rasa dan bau menjadi tengik. (Winarno, 1997)

Menurut Buckle et al. (1997) ada dua tipe kerusakan yang utama pada minyak dan lemak, yaitu :

a. Ketengikan terjadi bila komponen cita-rasa dan bau yang mudah menguap terbentuk sebagai akibat kerusakan oksidatif dari lemak dan minyak tak jenuh. Komponen-komponen ini menyebabkan bau dan cita-rasa yang tak diinginkan dalam lemak dan minyak produk-produk yang mengandung lemak dan minyak itu.

b. Hidrolisa minyak dan lemak menghasilkan asam-asam lemak bebas yang dapat mempengaruhi cita-rasa dan bau daripada bahan itu. Hidrolisa dapat disebabkan oleh adanya air dalam lemak atau minyak atau karena kegiatan enzim.

Menurut Soedarmo et al (1988), kerusakan karena proses hidrolisa terutama banyak terjadi pada minyak atau lemak yang mengandung asam lemak jenuh dalam jumlah cukup banyak seperti pada minyak kelapa yang mengandung asam laurat, sedangkan bau yang tengik ditimbulkan oleh asam lemak bebas yang terbentuk selama proses hidrolisa. Proses hidrolisa pada minyak atau lemak umumnya disebabkan oleh aktifitas enzim dan mikroba. Proses hidrolisa dapat dipercepat dengan kondisi kelembaban yang tinggi, kadar air tinggi serta temperatur tinggi. Proses hidrolisa pada minyak dan lemak akan menghasilkan ketengikan hidrolitik, dimana terjadi pembebasan asam-asam lemak yang mempengaruhi rasa dari minyak tersebut. Enzim yang dapat menimbulkan ketengikan hidrolitik adalah enzim lipase. Ketengikan pada minyak dan lemak nabati terjadi karena berkurangnya kandungan vitamin E (tocopherol) yang dapat berfungsi sebagai anti oksidan.

Lemak netral murni tidak berbau, tidak ada rasa, dan umumnya tidak berwarna. Warna dari lemak dan minyak alami adalah karena adanya pigmen-pigmen yang bercampur atau larut dalam lemak. Bila lemak dibiarkan dalam waktu yang lama kontak langsung dengan udara dan lembab, khususnya ada cahaya dan panas, akan terjadi perubahan menjadi tengik. Perubahan ini terjadi karena proses oksidasi dan

proses ini akan dipercepat dengan adanya logam-logam yang bersifat katalisator seperti Zn, Cu. (Soedarno & Girindra, 1988)

2.7.1 Titrasi Iodometri

Pada titrasi iodometri, analit yang dipakai adalah oksidator yang dapat bereaksi dengan I- (iodide) untuk menghasilkan I2. I2 yang terbentuk secara kuantitatif dapat dititrasi dengan larutan tiosulfat. Dari pengertian diatas maka titrasi iodometri adalah dapat dikategorikan sebagai titrasi kembali.

Iodida adalah reduktor lemah dan dengan mudah akan teroksidasi jika direaksikan dengan oksidator kuat. Iodida tidak dipakai sebagai titrant hal ini disebabkan karena faktor kecepatan reaksi dan kurangnya jenis indikator yang dapat dipakai untuk iodide. Oleh sebab itu titrasi kembali merupakan proses titrasi yang sangat baik untuk titrasi yang melibatkan iodida.

Senyawaan iodida umumnya KI ditambahkan secara berlebih pada larutan oksidator sehingga terbentuk I2. I2 yang terbentuk adalah equivalent dengan jumlah oksidator yang akan ditentukan. Jumlah I2 ditentukan dengan menitrasi I2 dengan larutan standar tiosulfat (umumnya yang dipakai adalah Na2S2O3) dengan indikator amilum jadi perubahan warnanya dari biru tua kompleks amilum I2 sampai warna ini

tepat hilang. Reaksi yang terjadi pada titrasi iodometri untuk penentuan iodat adalah sebagai berikut :

IO3- + 5 I- + 6H+ → 3I2 + H2O I2 + 2S2O32-→ 2I

+ S4O62-

Setiap mmol IO3- akan menghasilkan 3 mmol I2 dan 3 mmol I2 ini akan tepat bereaksi dengan 6 mmol S2O32- (1 mmol I2 tepat bereaksi dengan 2 mmol S2O3

2-sehingga mmol IO3- ditentukan atau setara dngan 1/6 mmol S2O32- Kita menitrasi langsung antara tiosulfat dengan analit, alasannya adalah karena analit yang bersifat sebagai oksidator dapat mengoksidasi tiosulfat menjadi senyawaan yang bilangan oksidasinya lebih tinggi dari tetrationat dan umumnya reaksi ini tidak stoikiometri. Alasan kedua adalah tiosulfat dapat membentuk ion kompleks dengan beberapa ion logam seperti Besi(II).

Beberapa hal yang perlu diperhatikan dalam melakukan titrasi Iodometri adalah sebagai berikut: Penambahan amilum sebaiknya dilakukan saat menjelang akhir titrasi, dimana hal ini ditandai dengan warna larutan menjadi kuning muda (dari oranye sampai coklat akibat terdapatnya I2 dalam jumlah banyak), alasannya kompleks amilum- I2 terdisosiasi sangat lambat akibatnya maka banyak I2 yang akan terabsorbsi oleh amilum jika amilum ditambahkan pada awal titrasi, alasan kedua adalah biasanya iodometri dilakukan pada media asam kuat sehingga akan menghindari terjadinya hidrolisis amilum. Titrasi harus dilakukan dengan cepat untuk meminimalisasi terjadinya oksidasi iodida oleh udara bebas. Pengocokan pada saat melakukan titrasi iodometri sangat diwajibkan untuk menghindari penumpukan tiosulfat pada area tertentu, penumpukkan konsentrasi tiosulfat dapat menyebabkan terjadinya dekomposisi tiosulfat untuk menghasilkan belerang. Terbentuknya reaksi ini dapat diamati dengan adanya belerang dan larutan menjadi bersifat koloid (tampak keruh oleh kehadiran S).

Pastikan jumlah iodida yang ditambahkan adalah berlebih sehingga semua analit tereduksi dengan demikian titrasi akan menjadi akurat. Kelebihan iodida tidak akan mengganggu jalannya titrasi redoks akan tetapi jika titrasi tidak dilakukan dengan segera maka I- dapat teroksidasi oleh udara menjadi I2.

2.7.2 Natrium Tiosulfat

Larutan Natrium tiosulfat tidak stabil dalam waktu lama. Bakteri yang memakai belerang akhirnya masuk ke larutan itu, dan proses metaboliknya akan mengakibatkan pembentukan SO32-, SO42- dan belerang koloidal. Belerang ini akan menyebabkan kekeruhan, bila timbul kekeruhan larutan harus dibuang. Biasanya air yang digunakan untuk menyiapkan larutan tiosulfat dididihkan agar steril, dan sering ditambahkan boraks atau natrium karbonat sebagai pengawet. Oksidasi tiosulfat oleh udara berlangsung lambat. Tetapi runutan tembaga sering kadang-kadang terdapat dalam air suling akan mengkatalisis oksidasi oleh udara. Tiosulfat diuraikan dalam larutan asam dengan membentuk belerang sebagai endapan mirip susu. (A.L. Underwood, 1986).

Larutan standard yang digunakan dalam kebanyakan proses iodometri adalah natrium tiosulfat. Lazimnya garam ini dibeli sebagai pentahidrat, Na2S2O3.5H2O. Larutan tak boleh distandarisasikan berdasarkan penimbangan langsung, melainkan harus distandarisasikan terhadap standard primer.

S2O32- + 2H+→ H2S2O3 → H2S2O3 + S(s)

Tetapi reaksi lambat dan tak terjadi bila tiosulfat dititrasikan ke dalam larutan iod yang asam, jika larutan diaduk dengan baik. Reaksi antara iod dan tiosulfat jauh lebih cepat daripada reaksi penguraian.

Iod mengoksidasi tiosulfat menjadi ion tetrationat : 4I2 + S2O32- + 5H2O → 8I- + 2SO42- + 10H+

Dalam larutan netral atau sedikit sekali basa, oksidasi menjadi sulfat itu tidak terjadi, jika digunakan iod sebagai titran. Banyak zat pengoksid kuat, seperti pereaksi dichromat, permanganat dan garam serium (IV), mengoksidasi tiosulfat menjadi sulfat, namun reaksinya tidak kuantitatif. (A.L. Underwood, 1986)

2.7.3 Kanji (Starch)

Larutan kanji mudah terurai oleh bakteri, suatu proses yang dapat dihambat dengan jalan sterilisasi atau dengan penambahan suatu zat pengawet. Hasil peruraiannya memakai iodium dan berubah menjadi kemerah-merahan. Merkurium (II) iodida, asam borat atau asam furoat dapat digunakan sebagai pengawet. Kondisi yang menimbulkan hidrolisis atau koagulasi kanji hendaklah dihindari. Kepekaan indikator berkurang dengan naiknya temperatur dan oleh beberapa zat organik, seperti metil dan etil alkohol.

Warna larutan iod 0,1 N cukup kuat sehingga iodium dapat bertindak sebagai indikator sendiri. Iodium juga memberikan warna ungu atau merah lembayung yang kuat kepada pelarut-pelarut seperti karbon tetraklorida atau kloroform, dan kadang-kadang hal ini digunakan untuk mengetahui titik akhir reaksi. Akan tetapi lebih umum digunakan suatu larutan (dispersi koloid) kanji, dari warna biru tua kompleks pati-iodium berperan sebagai uji kepekaan terhadap pati-iodium.

Kepekaan lebih besar dalam larutan sedikit sekali asam daripada dalam larutan netral dan lebih adanya ion iodida. Mekanisme yang tepat dari pembentukan kompleks itu belum diketahui. Tetapi diduga bahwa molekul iodium diikat pada permukaan β -amilosa, suatu konstituen-konstituen kanji lain, α-amilosa, atau amilopektin, membentuk kompleks kemerahan dimana warna tidak mudah dihilangkan. Oleh karena itu, kanji yang mengandung amilopektin sebaiknya tak digunakan. Produk

Dokumen terkait